Skip to main content
Erschienen in: Journal of Iron and Steel Research International 10/2020

14.08.2020 | Original Paper

Highly improved hydrogen storage dynamics of nanocrystalline and amorphous NdMg12-type alloys by mechanical milling

verfasst von: Ying-chun Liu, Yan Qi, Wei Zhang, Jin-liang Gao, Yang-huan Zhang

Erschienen in: Journal of Iron and Steel Research International | Ausgabe 10/2020

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To improve the hydrogenation and dehydrogenation dynamics of NdMg12-type alloy, we replaced part of Mg with Ni in the samples and used the ball milling method to prepare NdMg11Ni + x wt.% Ni (x = 100, 200) samples. The influences of milling duration and Ni content on the electrochemical and gaseous dynamics of the samples were studied in detail. Dehydrogenation activation energies of samples were calculated by using Kissinger and Arrhenius methods. The conclusions show that the dynamic properties of samples are significantly enhanced with the increase in Ni content. With the change of the milling duration, the gaseous hydrogenation rate and high rate discharging capability reach the maximal values. However, the dehydrogenation dynamics of sample alloys are always enhanced with the prolonging of milling duration. More concretely, prolonging milling duration from 5 to 60 h improves the dehydrogenation ratio of NdMg11Ni + 100 wt.% Ni alloy from 58.03% to 64.81% and that of NdMg11Ni + 200 wt.% Ni alloy from 62.20% to 71.59%. Besides, the enhancement of gaseous hydrogen storage dynamics of the samples is believed to be the result of the declined dehydrogenation activation energy resulted from the increase in milling duration and Ni content.
Literatur
[1]
Zurück zum Zitat R. Lan, J.T.S. Irvine, S. Tao, Int. J. Hydrogen Energy 37 (2012) 1482–1494. R. Lan, J.T.S. Irvine, S. Tao, Int. J. Hydrogen Energy 37 (2012) 1482–1494.
[2]
Zurück zum Zitat Y.M. Li, Y.H. Zhang, H.P. Ren, Acta Metall. Sin. (Engl. Lett.) 31 (2018) 723–734. Y.M. Li, Y.H. Zhang, H.P. Ren, Acta Metall. Sin. (Engl. Lett.) 31 (2018) 723–734.
[3]
Zurück zum Zitat G. Cipriani, V. Di Dio, F. Genduso, D. La Cascia, R. Liga, R. Miceli, G.R. Galluzzo, Int. J. Hydrogen Energy 39 (2014) 8482–8494. G. Cipriani, V. Di Dio, F. Genduso, D. La Cascia, R. Liga, R. Miceli, G.R. Galluzzo, Int. J. Hydrogen Energy 39 (2014) 8482–8494.
[4]
Zurück zum Zitat Y. Zhu, L. Ouyang, H. Zhong, J. Liu, H. Wang, H. Shao, Z. Huang, M. Zhu, Angew. Chem. Int. Ed. 25 (2020) 8623–8629. Y. Zhu, L. Ouyang, H. Zhong, J. Liu, H. Wang, H. Shao, Z. Huang, M. Zhu, Angew. Chem. Int. Ed. 25 (2020) 8623–8629.
[5]
Zurück zum Zitat L. Schlapbach, A. Züttel, Nature 414 (2001) 353–358. L. Schlapbach, A. Züttel, Nature 414 (2001) 353–358.
[6]
Zurück zum Zitat V.A. Yartys, M.V. Lototskyy, E. Akiba, R. Albert, V.E. Antonov, J.R. Ares, M. Baricco, N. Bourgeois, C.E. Buckley, J.M.B. von Colbe, J.C. Crivello, F. Cuevas, R.V. Denys, M. Dornheim, M. Felderhoff, D.M. Grant, B.C. Hauback, T.D. Humphries, I. Jacob, T.R. Jensen, P.E. de Jongh, J.M. Joubert, M.A. Kuzovnikov, M. Latroche, M. Paskevicius, L. Pasquini, L. Popilevsky, V.M. Skripnyuk, E. Rabkin, M.V. Sofianos, A. Stuart, G. Walker, H. Wang, C.J. Webb, M. Zhu, Int. J. Hydrogen Energy 44 (2019) 7809–7859. V.A. Yartys, M.V. Lototskyy, E. Akiba, R. Albert, V.E. Antonov, J.R. Ares, M. Baricco, N. Bourgeois, C.E. Buckley, J.M.B. von Colbe, J.C. Crivello, F. Cuevas, R.V. Denys, M. Dornheim, M. Felderhoff, D.M. Grant, B.C. Hauback, T.D. Humphries, I. Jacob, T.R. Jensen, P.E. de Jongh, J.M. Joubert, M.A. Kuzovnikov, M. Latroche, M. Paskevicius, L. Pasquini, L. Popilevsky, V.M. Skripnyuk, E. Rabkin, M.V. Sofianos, A. Stuart, G. Walker, H. Wang, C.J. Webb, M. Zhu, Int. J. Hydrogen Energy 44 (2019) 7809–7859.
[7]
Zurück zum Zitat J. Andersson, S. Grӧnkvist, Int. J. Hydrogen Energy 44 (2019) 11901–11919. J. Andersson, S. Grӧnkvist, Int. J. Hydrogen Energy 44 (2019) 11901–11919.
[8]
Zurück zum Zitat L.Z. Ouyang, X.S. Yang, H.W. Dong, M. Zhu, Scripta Mater. 61 (2009) 339–342. L.Z. Ouyang, X.S. Yang, H.W. Dong, M. Zhu, Scripta Mater. 61 (2009) 339–342.
[9]
Zurück zum Zitat M. Zhu, H. Wang, L.Z. Ouyang, M.Q. Zeng, Int. J. Hydrogen Energy 31 (2006) 251–257. M. Zhu, H. Wang, L.Z. Ouyang, M.Q. Zeng, Int. J. Hydrogen Energy 31 (2006) 251–257.
[10]
Zurück zum Zitat G.H. Ağaoğlu, G. Orhan, Int. J. Hydrogen Energy 42 (2017) 8098–8108. G.H. Ağaoğlu, G. Orhan, Int. J. Hydrogen Energy 42 (2017) 8098–8108.
[11]
Zurück zum Zitat W. Zhao, Y. Wu, P. Li, L. Jiang, X. Qu, RSC Adv. 8 (2018) 40647–40654. W. Zhao, Y. Wu, P. Li, L. Jiang, X. Qu, RSC Adv. 8 (2018) 40647–40654.
[12]
Zurück zum Zitat J.L. Gao, Y. Qi, Y.Q. Li, H.W. Shang, D.L. Zhao, Y.H. Zhang, J. Iron Steel Res. Int. 24 (2017) 198–205. J.L. Gao, Y. Qi, Y.Q. Li, H.W. Shang, D.L. Zhao, Y.H. Zhang, J. Iron Steel Res. Int. 24 (2017) 198–205.
[13]
Zurück zum Zitat L.Z. Ouyang, F.X. Qin, M. Zhu, Scripta Mater. 55 (2006) 1075–1078. L.Z. Ouyang, F.X. Qin, M. Zhu, Scripta Mater. 55 (2006) 1075–1078.
[14]
Zurück zum Zitat S. Niaz, T. Manzoor, A.H. Pandith, Renew. Sustain. Energy Rev. 50 (2015) 457–469. S. Niaz, T. Manzoor, A.H. Pandith, Renew. Sustain. Energy Rev. 50 (2015) 457–469.
[15]
Zurück zum Zitat L.E. Klebanoff, J.O. Keller, Int. J. Hydrogen Energy 38 (2013) 4533–4576. L.E. Klebanoff, J.O. Keller, Int. J. Hydrogen Energy 38 (2013) 4533–4576.
[16]
Zurück zum Zitat L. Ouyang, W. Chen, J. Liu, M. Felderhoff, H. Wang, M. Zhu, Adv. Energy Mater. 7 (2017) 1700299. L. Ouyang, W. Chen, J. Liu, M. Felderhoff, H. Wang, M. Zhu, Adv. Energy Mater. 7 (2017) 1700299.
[17]
Zurück zum Zitat D.L. Sun, F. Gingl, Y. Nakamura, H. Enoki, M. Bououdina, E. Akiba, J. Alloy. Compd. 333 (2002) 103–108. D.L. Sun, F. Gingl, Y. Nakamura, H. Enoki, M. Bououdina, E. Akiba, J. Alloy. Compd. 333 (2002) 103–108.
[18]
Zurück zum Zitat Y. Wang, S.Z. Qiao, X. Wang, Int. J. Hydrogen Energy 33 (2008) 5066–5072. Y. Wang, S.Z. Qiao, X. Wang, Int. J. Hydrogen Energy 33 (2008) 5066–5072.
[19]
Zurück zum Zitat F.J. Antiqueira, D.R. Leiva, G. Zepon, B.F.R.F. de Cunha, S.J.A. Figueroa, W.J. Botta, Int. J. Hydrogen Energy 45 (2020) 12408–12418. F.J. Antiqueira, D.R. Leiva, G. Zepon, B.F.R.F. de Cunha, S.J.A. Figueroa, W.J. Botta, Int. J. Hydrogen Energy 45 (2020) 12408–12418.
[20]
Zurück zum Zitat F. Guo, T. Zhang, L. Shi, L. Song, Int. J. Hydrogen Energy 44 (2019) 16745–16756. F. Guo, T. Zhang, L. Shi, L. Song, Int. J. Hydrogen Energy 44 (2019) 16745–16756.
[21]
Zurück zum Zitat Y.H. Zhang, Z.H. Hou, Y. Cai, H.W. Shang, Y. Qi, D.L. Zhao, J. Iron Steel Res. Int. 24 (2017) 296–305. Y.H. Zhang, Z.H. Hou, Y. Cai, H.W. Shang, Y. Qi, D.L. Zhao, J. Iron Steel Res. Int. 24 (2017) 296–305.
[22]
Zurück zum Zitat A.K. Patel, B. Tougas, P. Sharma, J. Huot, J. Mater. Res. Technol. 8 (2019) 5623–5630. A.K. Patel, B. Tougas, P. Sharma, J. Huot, J. Mater. Res. Technol. 8 (2019) 5623–5630.
[23]
Zurück zum Zitat M.Y. Song, E. Choi, Y.J. Kwak, Int. J. Hydrogen Energy 44 (2019) 3779–3789. M.Y. Song, E. Choi, Y.J. Kwak, Int. J. Hydrogen Energy 44 (2019) 3779–3789.
[24]
Zurück zum Zitat C. Chiu, S.J. Huang, T.Y. Chou, E. Rabkin, J. Alloy. Compd. 743 (2018) 437–447. C. Chiu, S.J. Huang, T.Y. Chou, E. Rabkin, J. Alloy. Compd. 743 (2018) 437–447.
[25]
Zurück zum Zitat Z. Ding, Y. Fu, Y. Wang, J. Bi, L. Zhang, D. Peng, Y. Li, S. Han, Int. J. Hydrogen Energy 44 (2019) 8347–8356. Z. Ding, Y. Fu, Y. Wang, J. Bi, L. Zhang, D. Peng, Y. Li, S. Han, Int. J. Hydrogen Energy 44 (2019) 8347–8356.
[26]
Zurück zum Zitat L. Yao, H. Han, Y. Liu, Y. Zhu, Y. Zhang, L. Li, Prog. Nat. Sci. Mater. Int. 28 (2018) 7–14. L. Yao, H. Han, Y. Liu, Y. Zhu, Y. Zhang, L. Li, Prog. Nat. Sci. Mater. Int. 28 (2018) 7–14.
[27]
Zurück zum Zitat P.E. de Jongh, R.W.P. Wagemans, T.M. Eggenhuisen, B.S. Dauvillier, P.B. Radstake, J.D. Meeldijk, J.W. Geus, K.P. de Jong, Chem. Mater. 19 (2007) 6052 − 6057. P.E. de Jongh, R.W.P. Wagemans, T.M. Eggenhuisen, B.S. Dauvillier, P.B. Radstake, J.D. Meeldijk, J.W. Geus, K.P. de Jong, Chem. Mater. 19 (2007) 6052 − 6057.
[28]
Zurück zum Zitat M. Lototskyy, J. Goh, M.W. Davids, V. Linkov, L. Khotseng, B. Ntsendwana, R. Denys, V.A. Yartys, Int. J. Hydrogen Energy 44 (2019) 6687–6701. M. Lototskyy, J. Goh, M.W. Davids, V. Linkov, L. Khotseng, B. Ntsendwana, R. Denys, V.A. Yartys, Int. J. Hydrogen Energy 44 (2019) 6687–6701.
[29]
Zurück zum Zitat S.S. Han, H.Y. Lee, N.H. Goo, W.T. Jeong, K.S. Lee, J. Alloy. Compd. 330–332 (2002) 841–845. S.S. Han, H.Y. Lee, N.H. Goo, W.T. Jeong, K.S. Lee, J. Alloy. Compd. 330–332 (2002) 841–845.
[30]
Zurück zum Zitat J. Zou, X. Zeng, Y. Ying, X. Chen, H. Gao, S. Zhou, W. Ding, Int. J. Hydrogen Energy 38 (2013) 2337–2346. J. Zou, X. Zeng, Y. Ying, X. Chen, H. Gao, S. Zhou, W. Ding, Int. J. Hydrogen Energy 38 (2013) 2337–2346.
[31]
Zurück zum Zitat D.C. Feng, H. Sun, X.T. Wang, Y.H. Zhang, J. Iron Steel Res. Int. 25 (2018) 746–754. D.C. Feng, H. Sun, X.T. Wang, Y.H. Zhang, J. Iron Steel Res. Int. 25 (2018) 746–754.
[32]
Zurück zum Zitat Y. Wang, X. Wang, C.M. Li, Int. J. Hydrogen Energy 35 (2010) 3550–3554. Y. Wang, X. Wang, C.M. Li, Int. J. Hydrogen Energy 35 (2010) 3550–3554.
[33]
Zurück zum Zitat M. Abdellaoui, S. Mokbli, F. Cuevas, M. Latroche, A. Percheron-Guégan, H. Zarrouk, J. Alloy. Compd. 356–357 (2003) 557–561. M. Abdellaoui, S. Mokbli, F. Cuevas, M. Latroche, A. Percheron-Guégan, H. Zarrouk, J. Alloy. Compd. 356–357 (2003) 557–561.
[34]
Zurück zum Zitat R.V. Denys, A.A. Poletaev, J.K. Solberg, B.P. Tarasov, V.A. Yartys, Acta Mater. 58 (2010) 2510–2519. R.V. Denys, A.A. Poletaev, J.K. Solberg, B.P. Tarasov, V.A. Yartys, Acta Mater. 58 (2010) 2510–2519.
[35]
Zurück zum Zitat B. Li, J. Li, H. Zhao, X. Yu, H. Shao, Int. J. Hydrogen Energy 44 (2019) 6007–6018. B. Li, J. Li, H. Zhao, X. Yu, H. Shao, Int. J. Hydrogen Energy 44 (2019) 6007–6018.
[36]
Zurück zum Zitat J.M. Huang, R.M. Duan, L.Z. Ouyang, Y.J. Wen, H. Wang, M. Zhu, Int. J. Hydrogen Energy 39 (2014) 13564–13568. J.M. Huang, R.M. Duan, L.Z. Ouyang, Y.J. Wen, H. Wang, M. Zhu, Int. J. Hydrogen Energy 39 (2014) 13564–13568.
[37]
Zurück zum Zitat A. Teresiak, A. Gebert, M. Savyak, M. Uhlemann, C. Mickel, N. Mattern, J. Alloy. Compd. 398 (2005) 156–164. A. Teresiak, A. Gebert, M. Savyak, M. Uhlemann, C. Mickel, N. Mattern, J. Alloy. Compd. 398 (2005) 156–164.
[38]
Zurück zum Zitat X.Y. Zhao, Y. Ding, L.Q. Ma, L.Y. Wang, M. Yang, X.D. Shen, Int. J. Hydrogen Energy 33 (2008) 6727–6733. X.Y. Zhao, Y. Ding, L.Q. Ma, L.Y. Wang, M. Yang, X.D. Shen, Int. J. Hydrogen Energy 33 (2008) 6727–6733.
[39]
Zurück zum Zitat G. Zhang, B.N. Popov, R.E. White, J. Electrochem. Soc. 142 (1995) 2695–2698. G. Zhang, B.N. Popov, R.E. White, J. Electrochem. Soc. 142 (1995) 2695–2698.
[40]
Zurück zum Zitat N. Kuriyama, T. Sakai, H. Miyamura, I. Uehara, H. Ishikawa, T. Iwasaki, J. Alloy. Compd. 202 (1993) 183–197. N. Kuriyama, T. Sakai, H. Miyamura, I. Uehara, H. Ishikawa, T. Iwasaki, J. Alloy. Compd. 202 (1993) 183–197.
[41]
Zurück zum Zitat Y.H. Zhang, Z.M. Yuan, T. Yang, Y. Qi, D.L. Zhao, J. Solid State Electrochem. 19 (2015) 1187–1195. Y.H. Zhang, Z.M. Yuan, T. Yang, Y. Qi, D.L. Zhao, J. Solid State Electrochem. 19 (2015) 1187–1195.
[42]
Zurück zum Zitat M. Anik, F. Karanfil, N. Küçükdeveci, Int. J. Hydrogen Energy 37 (2012) 299–308. M. Anik, F. Karanfil, N. Küçükdeveci, Int. J. Hydrogen Energy 37 (2012) 299–308.
[43]
Zurück zum Zitat Y. Wu, W. Han, S.X. Zhou, M.V. Lototsky, J.K. Solberg, V.A. Yartys, J. Alloy. Compd. 466 (2008) 176–181. Y. Wu, W. Han, S.X. Zhou, M.V. Lototsky, J.K. Solberg, V.A. Yartys, J. Alloy. Compd. 466 (2008) 176–181.
[44]
Zurück zum Zitat M. Pourabdoli, S. Raygan, H. Abdizadeh, D. Uner, Int. J. Hydrogen Energy 38 (2013) 11910–11919. M. Pourabdoli, S. Raygan, H. Abdizadeh, D. Uner, Int. J. Hydrogen Energy 38 (2013) 11910–11919.
[45]
Zurück zum Zitat M. Anik, J. Alloy. Compd. 491 (2010) 565–570. M. Anik, J. Alloy. Compd. 491 (2010) 565–570.
[46]
Zurück zum Zitat T. Sadhasivam, M.S.L. Hudson, S.K. Pandey, A. Bhatnagar, M.K. Singh, K. Gurunathan, O.N. Srivastava, Int. J. Hydrogen Energy 38 (2013) 7353–7362. T. Sadhasivam, M.S.L. Hudson, S.K. Pandey, A. Bhatnagar, M.K. Singh, K. Gurunathan, O.N. Srivastava, Int. J. Hydrogen Energy 38 (2013) 7353–7362.
[47]
Zurück zum Zitat K.J. Laidler, Pure Appl. Chem. 68 (1996) 149–192. K.J. Laidler, Pure Appl. Chem. 68 (1996) 149–192.
[48]
Zurück zum Zitat Y. Zhang, K. Zhang, Z. Yuan, Y. Li, H. Shang, Y. Qi, X. Dong, D. Zhao, J. Iron Steel Res. Int. 25 (2018) 1255–1264. Y. Zhang, K. Zhang, Z. Yuan, Y. Li, H. Shang, Y. Qi, X. Dong, D. Zhao, J. Iron Steel Res. Int. 25 (2018) 1255–1264.
[49]
Zurück zum Zitat H.E. Kissinger, Anal. Chem. 29 (1957) 1702–1706. H.E. Kissinger, Anal. Chem. 29 (1957) 1702–1706.
[50]
Zurück zum Zitat M. Baricco, M.W. Rahman, S. Livraghi, A. Castellero, S. Enzo, E. Giamello, J. Alloy. Compd. 536 (2012) S216–S221. M. Baricco, M.W. Rahman, S. Livraghi, A. Castellero, S. Enzo, E. Giamello, J. Alloy. Compd. 536 (2012) S216–S221.
[51]
Zurück zum Zitat M. Ma, R. Duan, L. Ouyang, X. Zhu, Z. Chen, C. Peng, M. Zhu, J. Alloy. Compd. 691 (2017) 929–935. M. Ma, R. Duan, L. Ouyang, X. Zhu, Z. Chen, C. Peng, M. Zhu, J. Alloy. Compd. 691 (2017) 929–935.
[52]
Zurück zum Zitat T. Zhang, S. Isobe, A. Jain, Y. Wang, S. Yamaguchi, H. Miyaoka, T. Ichikawa, Y. Kojima, N. Hashimoto, J. Alloy. Compd. 711 (2017) 400–405. T. Zhang, S. Isobe, A. Jain, Y. Wang, S. Yamaguchi, H. Miyaoka, T. Ichikawa, Y. Kojima, N. Hashimoto, J. Alloy. Compd. 711 (2017) 400–405.
[53]
Zurück zum Zitat D. Wu, L. Ouyang, C. Wu, Q. Gu, H. Wang, J. Liu, M. Zhu, J. Alloy. Compd. 690 (2017) 519–522. D. Wu, L. Ouyang, C. Wu, Q. Gu, H. Wang, J. Liu, M. Zhu, J. Alloy. Compd. 690 (2017) 519–522.
[54]
Zurück zum Zitat S. Kumar, G.P. Tiwari, J. Mater. Sci. 52 (2017) 6962–6968. S. Kumar, G.P. Tiwari, J. Mater. Sci. 52 (2017) 6962–6968.
[55]
Zurück zum Zitat L.Z. Ouyang, X.S. Yang, M. Zhu, J.W. Liu, H.W. Dong, D.L. Sun, J. Zou, X.D. Yao, J. Phys. Chem. C 118 (2014) 7808–7820. L.Z. Ouyang, X.S. Yang, M. Zhu, J.W. Liu, H.W. Dong, D.L. Sun, J. Zou, X.D. Yao, J. Phys. Chem. C 118 (2014) 7808–7820.
[56]
Zurück zum Zitat H. Liu, X. Wang, Y. Liu, Z. Dong, G. Cao, S. Li, M. Yan, J. Mater. Chem. A 1 (2013) 12527–12535. H. Liu, X. Wang, Y. Liu, Z. Dong, G. Cao, S. Li, M. Yan, J. Mater. Chem. A 1 (2013) 12527–12535.
Metadaten
Titel
Highly improved hydrogen storage dynamics of nanocrystalline and amorphous NdMg12-type alloys by mechanical milling
verfasst von
Ying-chun Liu
Yan Qi
Wei Zhang
Jin-liang Gao
Yang-huan Zhang
Publikationsdatum
14.08.2020
Verlag
Springer Singapore
Erschienen in
Journal of Iron and Steel Research International / Ausgabe 10/2020
Print ISSN: 1006-706X
Elektronische ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-020-00473-2

Weitere Artikel der Ausgabe 10/2020

Journal of Iron and Steel Research International 10/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.