Skip to main content
Erschienen in:
Buchtitelbild

2018 | OriginalPaper | Buchkapitel

Hybrid Solar Cells: Effects of the Incorporation of Inorganic Nanoparticles into Bulk Heterojunction Organic Solar Cells

verfasst von : Jilian Nei de Freitas, João Paulo de Carvalho Alves, Ana Flávia Nogueira

Erschienen in: Nanoenergy

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Organic solar cells are among the most promising devices for low-cost solar energy conversion. The classical device consists of a bulk heterojunction of a conjugated polymer/fullerene network. Many research groups have focused on the replacement of the fullerene derivative with other materials, especially inorganic nanoparticles, due to their easily tunable properties, such as size/shape, absorption/emission, and charge carrier transport. In this chapter, the progress achieved on the incorporation of inorganic semiconductor nanoparticles and metal nanoparticles into organic solar cells is highlighted. The role of such nanoparticles in the improvement of current, voltage, and efficiency is discussed and a critical view is presented, particularly considering their effects on the morphology of the systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Fthenakis V, Alsema E (2006) Photovoltaics energy payback times, greenhouse gas emissions and external costs: 2004—early 2005 status. Prog Photovolt 14:275–280CrossRef Fthenakis V, Alsema E (2006) Photovoltaics energy payback times, greenhouse gas emissions and external costs: 2004—early 2005 status. Prog Photovolt 14:275–280CrossRef
2.
Zurück zum Zitat Zhao J, Wang A, Altermatt P, Green MA (1995) 24 percent efficient silicon solar-sells with double-layer antireflection coatings and reduced resistance loss. Appl Phys Lett 66:3636–3638CrossRef Zhao J, Wang A, Altermatt P, Green MA (1995) 24 percent efficient silicon solar-sells with double-layer antireflection coatings and reduced resistance loss. Appl Phys Lett 66:3636–3638CrossRef
3.
Zurück zum Zitat Zhao J, Wang A, Green MA, Ferrazza F (1998) 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells. Appl Phys Lett 73:1991–1993CrossRef Zhao J, Wang A, Green MA, Ferrazza F (1998) 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells. Appl Phys Lett 73:1991–1993CrossRef
4.
Zurück zum Zitat Shockley W, Queisser HQ (1961) Detailed balance limit of efficiency of p–n junction solar cells. J Appl Phys 32:510–519CrossRef Shockley W, Queisser HQ (1961) Detailed balance limit of efficiency of p–n junction solar cells. J Appl Phys 32:510–519CrossRef
5.
Zurück zum Zitat Knapp K, Jester T (2001) Empirical investigation of the energy payback time for photovoltaic modules. Sol Energy 71:165–172CrossRef Knapp K, Jester T (2001) Empirical investigation of the energy payback time for photovoltaic modules. Sol Energy 71:165–172CrossRef
6.
Zurück zum Zitat Goetzberger A, Luther J, Willeke G (2002) Solar cells: past, present, future. Sol Energy Mater Sol Cells 74:1–11CrossRef Goetzberger A, Luther J, Willeke G (2002) Solar cells: past, present, future. Sol Energy Mater Sol Cells 74:1–11CrossRef
7.
Zurück zum Zitat Liu Y, Zhao J, Li Z, Mu C, Ma W, Hu H, Jiang K, Lin H, Ade H, Yan H (2014) Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat Commun 5(5293):1–8 Liu Y, Zhao J, Li Z, Mu C, Ma W, Hu H, Jiang K, Lin H, Ade H, Yan H (2014) Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat Commun 5(5293):1–8
8.
Zurück zum Zitat He Z, Xiao B, Liu F, Wu H, Yang Y, Xiao S, Wang C, Russel TP, Cao Y (2015) Single-junction polymer solar cells with high efficiency and photovoltage. Nat Photon 9:174–179CrossRef He Z, Xiao B, Liu F, Wu H, Yang Y, Xiao S, Wang C, Russel TP, Cao Y (2015) Single-junction polymer solar cells with high efficiency and photovoltage. Nat Photon 9:174–179CrossRef
9.
Zurück zum Zitat Heeger AJ (2010) Semiconducting polymers: the third generation. Chem Soc Rev 39:2354–2371CrossRef Heeger AJ (2010) Semiconducting polymers: the third generation. Chem Soc Rev 39:2354–2371CrossRef
10.
Zurück zum Zitat Liz-Marzán LM (2004) Nanometals: formation and color. Mater Today 7:26–31CrossRef Liz-Marzán LM (2004) Nanometals: formation and color. Mater Today 7:26–31CrossRef
11.
Zurück zum Zitat Scholes GD, Rumbles G (2006) Excitons in nanoscale systems. Nat Mater 5:683–696CrossRef Scholes GD, Rumbles G (2006) Excitons in nanoscale systems. Nat Mater 5:683–696CrossRef
12.
Zurück zum Zitat Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15:353–389CrossRef Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15:353–389CrossRef
13.
Zurück zum Zitat Manna L, Sher EC, Alivisatos AP (2002) Shape control of colloidal semiconductor nanocrystals. J Clust Sci 13:521–532CrossRef Manna L, Sher EC, Alivisatos AP (2002) Shape control of colloidal semiconductor nanocrystals. J Clust Sci 13:521–532CrossRef
14.
Zurück zum Zitat Cozzoli PD, Pellegrino T, Manna L (2006) Synthesis, properties and perspectives of hybrid nanocrystal structures. Chem Soc Rev 35:1195–1208CrossRef Cozzoli PD, Pellegrino T, Manna L (2006) Synthesis, properties and perspectives of hybrid nanocrystal structures. Chem Soc Rev 35:1195–1208CrossRef
15.
Zurück zum Zitat Biju V, Itoh T, Anas A, Sujith A, Ishikawa M (2008) Semiconductor quantum dots and metal nanoparticles: syntheses, optical properties, and biological applications. Anal Bioanal Chem 391:2469–2495CrossRef Biju V, Itoh T, Anas A, Sujith A, Ishikawa M (2008) Semiconductor quantum dots and metal nanoparticles: syntheses, optical properties, and biological applications. Anal Bioanal Chem 391:2469–2495CrossRef
16.
Zurück zum Zitat Moriarty P (2001) Nanostructured materials. Rep Prog Phys 64:297–381CrossRef Moriarty P (2001) Nanostructured materials. Rep Prog Phys 64:297–381CrossRef
17.
Zurück zum Zitat Sau TK, Rogach AL (2010) Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control. Adv Mater 22:1781–1804CrossRef Sau TK, Rogach AL (2010) Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control. Adv Mater 22:1781–1804CrossRef
18.
Zurück zum Zitat Sau TK, Rogach AL, Jäckel F, Klar TA, Feldmann J (2010) Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv Mater 22:1805–1825CrossRef Sau TK, Rogach AL, Jäckel F, Klar TA, Feldmann J (2010) Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv Mater 22:1805–1825CrossRef
19.
Zurück zum Zitat Henzie J, Lee J, Lee MH, Hasan W, Odom TW (2009) Nanofabrication of plasmonic structures. Annu Rev Phys Chem 60:147–165CrossRef Henzie J, Lee J, Lee MH, Hasan W, Odom TW (2009) Nanofabrication of plasmonic structures. Annu Rev Phys Chem 60:147–165CrossRef
20.
Zurück zum Zitat Eustis S, El-Sayed MA (2006) Why gold nanopartilces are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35:209–217CrossRef Eustis S, El-Sayed MA (2006) Why gold nanopartilces are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35:209–217CrossRef
21.
Zurück zum Zitat Noguez C, Garzon IL (2009) Optically active metal nanoparticles. Chem Soc Rev 38:757–771CrossRef Noguez C, Garzon IL (2009) Optically active metal nanoparticles. Chem Soc Rev 38:757–771CrossRef
22.
Zurück zum Zitat Zhang JZ, Noguez C (2008) Plasmonic optical properties and applications of metal nanostructures. Plasmonics 3:127–150CrossRef Zhang JZ, Noguez C (2008) Plasmonic optical properties and applications of metal nanostructures. Plasmonics 3:127–150CrossRef
23.
Zurück zum Zitat Arici E, Meissner D, Schaffler F, Sariciftci NS (2003) Core/shell nanomaterials in photovoltaics. Int J Photoenergy 5:199–208CrossRef Arici E, Meissner D, Schaffler F, Sariciftci NS (2003) Core/shell nanomaterials in photovoltaics. Int J Photoenergy 5:199–208CrossRef
24.
Zurück zum Zitat Saunders BR, Turner ML (2008) Nanoparticle-polymer photovoltaic cells. Adv Colloid Interface Sci 138:1–23CrossRef Saunders BR, Turner ML (2008) Nanoparticle-polymer photovoltaic cells. Adv Colloid Interface Sci 138:1–23CrossRef
25.
Zurück zum Zitat Skompska M (2010) Hybrid conjugated polymer/semiconductor photovoltaic cells. Synth Met 160:1–15CrossRef Skompska M (2010) Hybrid conjugated polymer/semiconductor photovoltaic cells. Synth Met 160:1–15CrossRef
26.
Zurück zum Zitat Tang CW (1986) 2-layer organic photovoltaic cell. Appl Phys Lett 48:183–185CrossRef Tang CW (1986) 2-layer organic photovoltaic cell. Appl Phys Lett 48:183–185CrossRef
27.
Zurück zum Zitat Meskers SCJ, Huebner M, Oestreich M, Baessler H (2001) Dispersive relaxation dynamics of photoexcitations in a polyfluorene film involving energy transfer: experiment and Monte Carlo simulations. J Phys Chem B 105:9139–9149CrossRef Meskers SCJ, Huebner M, Oestreich M, Baessler H (2001) Dispersive relaxation dynamics of photoexcitations in a polyfluorene film involving energy transfer: experiment and Monte Carlo simulations. J Phys Chem B 105:9139–9149CrossRef
28.
Zurück zum Zitat Mayer AC, Scully SR, Hardin BE, Rowell MW, McGehee MD (2007) Polymer-based solar cells. Mater Today 10:28–33CrossRef Mayer AC, Scully SR, Hardin BE, Rowell MW, McGehee MD (2007) Polymer-based solar cells. Mater Today 10:28–33CrossRef
29.
Zurück zum Zitat Pope M, Swenberg CE (1999) Electronic Processes in Organic Crystals and Polymers, 2nd edn. Oxford University Press, New York Pope M, Swenberg CE (1999) Electronic Processes in Organic Crystals and Polymers, 2nd edn. Oxford University Press, New York
30.
Zurück zum Zitat Miranda PB, Moses D, Heeger AJ (2001) Ultrafast photogeneration of charged polarons in conjugated polymers. Phys Rev B 64:081201-1–081201-4 Miranda PB, Moses D, Heeger AJ (2001) Ultrafast photogeneration of charged polarons in conjugated polymers. Phys Rev B 64:081201-1–081201-4
31.
Zurück zum Zitat Harrison NT, Hayes GR, Phillips RT, Friend RH (1996) Singlet intrachain exciton generation and decay in poly(p-phenylenevinylene). Phys Rev Lett 77:1881–1884CrossRef Harrison NT, Hayes GR, Phillips RT, Friend RH (1996) Singlet intrachain exciton generation and decay in poly(p-phenylenevinylene). Phys Rev Lett 77:1881–1884CrossRef
32.
Zurück zum Zitat Yu G, Zhang C, Heeger AJ (1994) Dual function semiconducting polymer devices—light-emitting and photodetecting diodes. Appl Phys Lett 64:1540–1542CrossRef Yu G, Zhang C, Heeger AJ (1994) Dual function semiconducting polymer devices—light-emitting and photodetecting diodes. Appl Phys Lett 64:1540–1542CrossRef
33.
34.
Zurück zum Zitat Savenije TJ, Warman JM, Goossens A (1998) Visible light sensitisation of titanium dioxide using a phenylene vinylene polymer. Chem Phys Lett 287:148–153CrossRef Savenije TJ, Warman JM, Goossens A (1998) Visible light sensitisation of titanium dioxide using a phenylene vinylene polymer. Chem Phys Lett 287:148–153CrossRef
35.
Zurück zum Zitat Nelson J (2002) Organic photovoltaic films. Curr Opin Solid State Mater Sci 6:87–95CrossRef Nelson J (2002) Organic photovoltaic films. Curr Opin Solid State Mater Sci 6:87–95CrossRef
36.
Zurück zum Zitat Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Polymer photovoltaic cells—enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270:1789–1791CrossRef Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Polymer photovoltaic cells—enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270:1789–1791CrossRef
37.
Zurück zum Zitat Halls JJM, Walsh CA, Greenham NC, Marseglia EA, Friend RH, Moratti SC, Holmes AB (1995) Efficient photodiodes from interpenetrating polymer networks. Nature 376:498–500CrossRef Halls JJM, Walsh CA, Greenham NC, Marseglia EA, Friend RH, Moratti SC, Holmes AB (1995) Efficient photodiodes from interpenetrating polymer networks. Nature 376:498–500CrossRef
38.
Zurück zum Zitat Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F (1992) Photoinduced electron-transfer from a conducting polymer to Buckminsterfullerene. Science 258:1474–1476CrossRef Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F (1992) Photoinduced electron-transfer from a conducting polymer to Buckminsterfullerene. Science 258:1474–1476CrossRef
39.
Zurück zum Zitat Brabec CJ, Zerza G, Cerulo G, De Silvestri S, Luzatti S, Hummelen JC, Sariciftci NS (2001) Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time. Chem Phys Lett 340:232–236CrossRef Brabec CJ, Zerza G, Cerulo G, De Silvestri S, Luzatti S, Hummelen JC, Sariciftci NS (2001) Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time. Chem Phys Lett 340:232–236CrossRef
40.
Zurück zum Zitat Nogueira AF, Montanari I, Nelson J, Durrant JR, Winder C, Sariciftci NS, Brabec CJ (2003) Charge recombination in conjugated polymer/fullerene blended films studied by transient absorption spectroscopy. J Phys Chem B 107:1567–1573CrossRef Nogueira AF, Montanari I, Nelson J, Durrant JR, Winder C, Sariciftci NS, Brabec CJ (2003) Charge recombination in conjugated polymer/fullerene blended films studied by transient absorption spectroscopy. J Phys Chem B 107:1567–1573CrossRef
41.
Zurück zum Zitat Kim JS, Granström M, Friend RH, Johansson N, Salaneck WR, Daik R, Feast WJ, Cacialli F (1998) Indium-tin oxide treatments for single- and double-layer polymeric light-emitting diodes: the relation between the anode physical, chemical, and morphological properties and the device performance. J Appl Phys 84:6859–6870CrossRef Kim JS, Granström M, Friend RH, Johansson N, Salaneck WR, Daik R, Feast WJ, Cacialli F (1998) Indium-tin oxide treatments for single- and double-layer polymeric light-emitting diodes: the relation between the anode physical, chemical, and morphological properties and the device performance. J Appl Phys 84:6859–6870CrossRef
42.
Zurück zum Zitat Koch N, Kahn A, Ghijsen J, Prieaux JJ, Schwartz S, Johnson RL, Elschner A (2003) Conjugated organic molecules on metal versus polymer electrodes: demonstration of a key energy level alignment mechanism. Appl Phys Lett 82:70–72CrossRef Koch N, Kahn A, Ghijsen J, Prieaux JJ, Schwartz S, Johnson RL, Elschner A (2003) Conjugated organic molecules on metal versus polymer electrodes: demonstration of a key energy level alignment mechanism. Appl Phys Lett 82:70–72CrossRef
43.
Zurück zum Zitat Brabec CJ, Shaheen SE, Winder C, Sariciftci NS, Denk P (2002) Effect of LiF/metal electrodes on the performance of plastic solar cells. Appl Phys Lett 80:1288–1290CrossRef Brabec CJ, Shaheen SE, Winder C, Sariciftci NS, Denk P (2002) Effect of LiF/metal electrodes on the performance of plastic solar cells. Appl Phys Lett 80:1288–1290CrossRef
44.
Zurück zum Zitat Malliaras GG, Salem JR, Brock PJ, Scott JC (1998) Photovoltaic measurement of the built-in potential in organic light emitting diodes and photodiodes. J Appl Phys 84:1583–1587CrossRef Malliaras GG, Salem JR, Brock PJ, Scott JC (1998) Photovoltaic measurement of the built-in potential in organic light emitting diodes and photodiodes. J Appl Phys 84:1583–1587CrossRef
45.
Zurück zum Zitat Markvart T, Castafier L (2005) Principles of solar cell operation. In: Markvart T, Castafier L (eds) Solar cells: materials, manufacture and operation. Elsevier, Amsterdam Markvart T, Castafier L (2005) Principles of solar cell operation. In: Markvart T, Castafier L (eds) Solar cells: materials, manufacture and operation. Elsevier, Amsterdam
46.
Zurück zum Zitat Meissner D, Ronstalski J (2001) Photovoltaics of interconnected networks. Synth Met 121:1551–1552CrossRef Meissner D, Ronstalski J (2001) Photovoltaics of interconnected networks. Synth Met 121:1551–1552CrossRef
47.
Zurück zum Zitat Gregg BA, Hanna MC (2003) Comparing organic to inorganic photovoltaic cells: theory, experiment, and simulation. J Appl Phys 93:3605–3614CrossRef Gregg BA, Hanna MC (2003) Comparing organic to inorganic photovoltaic cells: theory, experiment, and simulation. J Appl Phys 93:3605–3614CrossRef
48.
Zurück zum Zitat Hoppe H, Glatzel T, Niggemann M, Schwinger W, Schaeffler F, Hinsch A, Lux-Steiner MC, Sariciftci NS (2006) Efficiency limiting morphological factors of MDMO-PPV:PCBM plastic solar cells. Thin Solid Films 511:587–592CrossRef Hoppe H, Glatzel T, Niggemann M, Schwinger W, Schaeffler F, Hinsch A, Lux-Steiner MC, Sariciftci NS (2006) Efficiency limiting morphological factors of MDMO-PPV:PCBM plastic solar cells. Thin Solid Films 511:587–592CrossRef
49.
Zurück zum Zitat Hoppe H, Niggemann M, Winder C, Kraut J, Hiesgen R, Hinsch A, Meissner D, Sariciftci NS (2004) Nanoscale morphology of conjugated polymer/fullerene-based bulk-heterojunction solar cells. Adv Funct Mater 14:1005–1011CrossRef Hoppe H, Niggemann M, Winder C, Kraut J, Hiesgen R, Hinsch A, Meissner D, Sariciftci NS (2004) Nanoscale morphology of conjugated polymer/fullerene-based bulk-heterojunction solar cells. Adv Funct Mater 14:1005–1011CrossRef
50.
Zurück zum Zitat Rispens MT, Meetsma A, Rittberger R, Brabec CJ, Sariciftci NS, Hummelen JC (2003) Influence of the solvent on the crystal structure of PCBM and the efficiency of MDMO-PPV:PCBM “plastic” solar cells. Chem Commun 17:2116–2118CrossRef Rispens MT, Meetsma A, Rittberger R, Brabec CJ, Sariciftci NS, Hummelen JC (2003) Influence of the solvent on the crystal structure of PCBM and the efficiency of MDMO-PPV:PCBM “plastic” solar cells. Chem Commun 17:2116–2118CrossRef
51.
Zurück zum Zitat Gebeyehu D, Brabec CJ, Padinger F, Fromherz T, Hummelen JC, Badt D, Schindler H, Sariciftci NS (2001) The interplay of efficiency and morphology in photovoltaic devices based on interpenetrating networks of conjugated polymers with fullerenes. Synth Met 118:1–9CrossRef Gebeyehu D, Brabec CJ, Padinger F, Fromherz T, Hummelen JC, Badt D, Schindler H, Sariciftci NS (2001) The interplay of efficiency and morphology in photovoltaic devices based on interpenetrating networks of conjugated polymers with fullerenes. Synth Met 118:1–9CrossRef
52.
Zurück zum Zitat Yang X, Alexeev A, Michels MAJ, Loos J (2005) Effect of spatial confinement on the morphology evolution of thin poly(p-phenylenevinylene)/methanofullerene composite films. Macromolecules 38:4289–4295CrossRef Yang X, Alexeev A, Michels MAJ, Loos J (2005) Effect of spatial confinement on the morphology evolution of thin poly(p-phenylenevinylene)/methanofullerene composite films. Macromolecules 38:4289–4295CrossRef
53.
Zurück zum Zitat Choulis SA, Nelson J, Kim Y, Poplavskyy D, Kreouzis T, Durrant JR, Bradley D (2003) Investigation of transport properties in polymer/fullerene blends using time-of-flight photocurrent measurements. Appl Phys Lett 83:3812–3814CrossRef Choulis SA, Nelson J, Kim Y, Poplavskyy D, Kreouzis T, Durrant JR, Bradley D (2003) Investigation of transport properties in polymer/fullerene blends using time-of-flight photocurrent measurements. Appl Phys Lett 83:3812–3814CrossRef
54.
Zurück zum Zitat Snaith HJ, Arias AC, Morteani AC, Silva C, Friend RH (2002) Charge generation kinetics and transport mechanisms in blended polyfluorene photovoltaic devices. Nano Lett 2:1353–1357CrossRef Snaith HJ, Arias AC, Morteani AC, Silva C, Friend RH (2002) Charge generation kinetics and transport mechanisms in blended polyfluorene photovoltaic devices. Nano Lett 2:1353–1357CrossRef
55.
Zurück zum Zitat Brabec CJ, Cravino A, Meissner D, Saricftci NS, Fromherz T, Rispens MT, Sanchez L, Hummelen JC (2001) Origin of the open circuit voltage of plastic solar cells. Adv Funct Mater 11:374–380CrossRef Brabec CJ, Cravino A, Meissner D, Saricftci NS, Fromherz T, Rispens MT, Sanchez L, Hummelen JC (2001) Origin of the open circuit voltage of plastic solar cells. Adv Funct Mater 11:374–380CrossRef
56.
Zurück zum Zitat Brabec CJ (2004) Organic photovoltaics: technology and market. Sol Energy Mater Sol Cells 83:273–292CrossRef Brabec CJ (2004) Organic photovoltaics: technology and market. Sol Energy Mater Sol Cells 83:273–292CrossRef
57.
Zurück zum Zitat Brabec CJ, Cravino A, Meissner D, Sariciftci NS, Rispens MT, Sanchez L, Hummelen JC, Fromherz T (2002) The influence of materials work function on the open circuit voltage of plastic solar cells. Thin Solid Films 403:368–372CrossRef Brabec CJ, Cravino A, Meissner D, Sariciftci NS, Rispens MT, Sanchez L, Hummelen JC, Fromherz T (2002) The influence of materials work function on the open circuit voltage of plastic solar cells. Thin Solid Films 403:368–372CrossRef
58.
Zurück zum Zitat Sharber MC, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CJ (2006) Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Adv Mater 18:789–794CrossRef Sharber MC, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CJ (2006) Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Adv Mater 18:789–794CrossRef
59.
Zurück zum Zitat Gadisa A, Svensson M, Andersson M, Inganäs O (2004) Correlation between oxidation potential and open-circuit voltage of composite solar cells based on blends of polythiophenes/fullerene derivative. Appl Phys Lett 84:1609–1611CrossRef Gadisa A, Svensson M, Andersson M, Inganäs O (2004) Correlation between oxidation potential and open-circuit voltage of composite solar cells based on blends of polythiophenes/fullerene derivative. Appl Phys Lett 84:1609–1611CrossRef
60.
Zurück zum Zitat Yamanari T, Taima T, Sakai J, Saito K (2009) Origin of the open-circuit voltage of organic thin-film solar cells based on conjugated polymers. Sol Energy Mater Sol Cells 93:759–761CrossRef Yamanari T, Taima T, Sakai J, Saito K (2009) Origin of the open-circuit voltage of organic thin-film solar cells based on conjugated polymers. Sol Energy Mater Sol Cells 93:759–761CrossRef
61.
Zurück zum Zitat Liu J, Shi Y, Yang Y (2001) Solvation-induced morphology effects on the performance of polymer-based photovoltaic devices. Adv Funct Mater 11:420–424CrossRef Liu J, Shi Y, Yang Y (2001) Solvation-induced morphology effects on the performance of polymer-based photovoltaic devices. Adv Funct Mater 11:420–424CrossRef
62.
Zurück zum Zitat Mihailetchi VD, Blom PWM, Hummelen JC, Rispens MT (2003) Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar cells. J Appl Phys 94:6849–6854CrossRef Mihailetchi VD, Blom PWM, Hummelen JC, Rispens MT (2003) Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar cells. J Appl Phys 94:6849–6854CrossRef
63.
Zurück zum Zitat Ramsdale CM, Barker JA, Arias AC, MacKenzie JD, Friend RH (2002) The origin of the open-circuit voltage in polyfluorene-based photovoltaic devices. J Appl Phys 92:4266–4270CrossRef Ramsdale CM, Barker JA, Arias AC, MacKenzie JD, Friend RH (2002) The origin of the open-circuit voltage in polyfluorene-based photovoltaic devices. J Appl Phys 92:4266–4270CrossRef
64.
Zurück zum Zitat Eo YS, Rhee HW, Chin BD, Yu J-W (2009) Influence of metal cathode for organic photovoltaic device performance. Synth Met 159:1910–1913CrossRef Eo YS, Rhee HW, Chin BD, Yu J-W (2009) Influence of metal cathode for organic photovoltaic device performance. Synth Met 159:1910–1913CrossRef
65.
Zurück zum Zitat Alem S, Gao J, Wantz G (2009) Photovoltaic response of symmetric sandwich polymer cells with identical electrodes. J Appl Phys 106:044505-1–044505-5CrossRef Alem S, Gao J, Wantz G (2009) Photovoltaic response of symmetric sandwich polymer cells with identical electrodes. J Appl Phys 106:044505-1–044505-5CrossRef
66.
Zurück zum Zitat Frohne H, Shaheen S, Brabec CJ, Müeller D, Sariciftci NS, Meerholz K (2002) Influence of the anodic work function on the performance of organic solar cells. Chem Phys Chem 3:795–799CrossRef Frohne H, Shaheen S, Brabec CJ, Müeller D, Sariciftci NS, Meerholz K (2002) Influence of the anodic work function on the performance of organic solar cells. Chem Phys Chem 3:795–799CrossRef
67.
Zurück zum Zitat Shaheen SE, Brabec CJ, Saricftci NS, Padinger F, Fromherz T, Hummelen JC (2001) 2.5% efficient organic plastic solar cells. Appl Phys Lett 78:841–843CrossRef Shaheen SE, Brabec CJ, Saricftci NS, Padinger F, Fromherz T, Hummelen JC (2001) 2.5% efficient organic plastic solar cells. Appl Phys Lett 78:841–843CrossRef
68.
Zurück zum Zitat Alem S, de Bettignies R, Nunzi J-M, Cariou M (2004) Efficient polymer-based interpenetrated network photovoltaic cells. Appl Phys Lett 84:2178–2180CrossRef Alem S, de Bettignies R, Nunzi J-M, Cariou M (2004) Efficient polymer-based interpenetrated network photovoltaic cells. Appl Phys Lett 84:2178–2180CrossRef
69.
Zurück zum Zitat Schilinsky P, Waldauf C, Brabec CJ (2002) Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors. Appl Phys Lett 81:3885–3887CrossRef Schilinsky P, Waldauf C, Brabec CJ (2002) Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors. Appl Phys Lett 81:3885–3887CrossRef
70.
Zurück zum Zitat Padinger F, Rittberger R, Sariciftci NS (2003) Effects of postproduction treatment on plastic solar cells. Adv Funct Mater 13:85–88CrossRef Padinger F, Rittberger R, Sariciftci NS (2003) Effects of postproduction treatment on plastic solar cells. Adv Funct Mater 13:85–88CrossRef
71.
Zurück zum Zitat Dennler G, Mozer AJ, Juska G, Pivrikas A, Osterbacka R, Fucnsbauer A, Sariciftci NS (2006) Charge carrier mobility and lifetime versus composition of conjugated polymer/fullerene bulkheterojunction solar cells. Org Electron 7:229–234CrossRef Dennler G, Mozer AJ, Juska G, Pivrikas A, Osterbacka R, Fucnsbauer A, Sariciftci NS (2006) Charge carrier mobility and lifetime versus composition of conjugated polymer/fullerene bulkheterojunction solar cells. Org Electron 7:229–234CrossRef
72.
Zurück zum Zitat Kline RJ, Mcgehee MD, Kadnikova EN, Liu J, Fréchet JM (2003) Controlling the field-effect mobility of regioregular polythiophene by changing the molecular weight. Adv Mater 15:1519–1522CrossRef Kline RJ, Mcgehee MD, Kadnikova EN, Liu J, Fréchet JM (2003) Controlling the field-effect mobility of regioregular polythiophene by changing the molecular weight. Adv Mater 15:1519–1522CrossRef
73.
Zurück zum Zitat Hoppe H, Sariciftci NS (2004) Organic solar cells: an overview. J Mater Res 19:1924–1945CrossRef Hoppe H, Sariciftci NS (2004) Organic solar cells: an overview. J Mater Res 19:1924–1945CrossRef
74.
Zurück zum Zitat Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4:864–868CrossRef Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4:864–868CrossRef
75.
Zurück zum Zitat Yang X, Loos J, Veenstra SC, Verhees WJH, Wienk MM, Kroon JM, Michaels MAJ, Janssen RAJ (2005) Nanoscale morphology of high-performance polymer solar cells. Nano Lett 5:579–583CrossRef Yang X, Loos J, Veenstra SC, Verhees WJH, Wienk MM, Kroon JM, Michaels MAJ, Janssen RAJ (2005) Nanoscale morphology of high-performance polymer solar cells. Nano Lett 5:579–583CrossRef
76.
Zurück zum Zitat Erb T, Zhokkavets U, Gobsch G, Raleva S, Stühn B, Schilinsky P, Waldauf C, Brabec CJ (2005) Correlation between structural and optical properties of composite polymer/fullerene films for organic solar cells. Adv Funct Mater 15:1193–1196CrossRef Erb T, Zhokkavets U, Gobsch G, Raleva S, Stühn B, Schilinsky P, Waldauf C, Brabec CJ (2005) Correlation between structural and optical properties of composite polymer/fullerene films for organic solar cells. Adv Funct Mater 15:1193–1196CrossRef
77.
Zurück zum Zitat Zhokhavets U, Erb T, Hoppe H, Gobsch G, Sariciftci NS (2006) Effect of annealing of poly(3-hexylthiophene)/fullerene bulk heterojunction composites on structural and optical properties. Thin Solid Films 496:679–682CrossRef Zhokhavets U, Erb T, Hoppe H, Gobsch G, Sariciftci NS (2006) Effect of annealing of poly(3-hexylthiophene)/fullerene bulk heterojunction composites on structural and optical properties. Thin Solid Films 496:679–682CrossRef
78.
Zurück zum Zitat Reyes-Reyes M, Kim K, Dewald J, López-Sandoval R, Avadhanula A, Curran S, Carroll DL (2005) Meso-structure formation for enhanced organic photovoltaic cells. Org Lett 7:5749–5752CrossRef Reyes-Reyes M, Kim K, Dewald J, López-Sandoval R, Avadhanula A, Curran S, Carroll DL (2005) Meso-structure formation for enhanced organic photovoltaic cells. Org Lett 7:5749–5752CrossRef
79.
Zurück zum Zitat Ma W, Yang C, Gong X, Lee K, Heeger AJ (2005) Thermally stable, efficient polymer solar cells with nanoscale control of interpenetrating network morphology. Adv Funct Mater 15:1617–1622CrossRef Ma W, Yang C, Gong X, Lee K, Heeger AJ (2005) Thermally stable, efficient polymer solar cells with nanoscale control of interpenetrating network morphology. Adv Funct Mater 15:1617–1622CrossRef
80.
Zurück zum Zitat Li G, Shrotriya V, Yao Y, Yang Y (2005) Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene). J Appl Phys 98:043704-1–043704-5 Li G, Shrotriya V, Yao Y, Yang Y (2005) Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene). J Appl Phys 98:043704-1–043704-5
81.
Zurück zum Zitat Clarke TM, Ballantyne AM, Nelson J, Bradley DDC, Durrant JR (2008) Free energy control of charge photogeneration in polythiophene/fullerene solar cells: the influence of thermal annealing on P3HT/PCBM blends. Adv Funct Mater 18:4029–4035CrossRef Clarke TM, Ballantyne AM, Nelson J, Bradley DDC, Durrant JR (2008) Free energy control of charge photogeneration in polythiophene/fullerene solar cells: the influence of thermal annealing on P3HT/PCBM blends. Adv Funct Mater 18:4029–4035CrossRef
82.
Zurück zum Zitat Moon JS, Takacs CJ, Cho S, Coffin RC, Kim H, Bazan GC, Heeger AJ (2010) Effect of processing additive on the nanomorphology of a bulk heterojunction material. Nano Lett 10:4005–4008CrossRef Moon JS, Takacs CJ, Cho S, Coffin RC, Kim H, Bazan GC, Heeger AJ (2010) Effect of processing additive on the nanomorphology of a bulk heterojunction material. Nano Lett 10:4005–4008CrossRef
83.
Zurück zum Zitat Privikas A, Stadler P, Neugebauer H, Sariciftci NS (2008) Substituting the postproduction treatment for bulk-heterojunction solar cells using chemical additives. Org Electron 9:775–782CrossRef Privikas A, Stadler P, Neugebauer H, Sariciftci NS (2008) Substituting the postproduction treatment for bulk-heterojunction solar cells using chemical additives. Org Electron 9:775–782CrossRef
84.
Zurück zum Zitat Peet J, Heeger AJ, Bazan GC (2009) “Plastic” solar cells: self-assembly of bulk heterojunction nanomaterials by spontaneous phase separation. Acc Chem Res 42:1700–1708CrossRef Peet J, Heeger AJ, Bazan GC (2009) “Plastic” solar cells: self-assembly of bulk heterojunction nanomaterials by spontaneous phase separation. Acc Chem Res 42:1700–1708CrossRef
85.
Zurück zum Zitat Ameri T, Dennler G, Lungenschmied C, Brabec CJ (2009) Organic tandem solar cells: a review. Energy Environ Sci 2:347–363CrossRef Ameri T, Dennler G, Lungenschmied C, Brabec CJ (2009) Organic tandem solar cells: a review. Energy Environ Sci 2:347–363CrossRef
86.
Zurück zum Zitat Helgesen M, Sondergaard R, Krebs FC (2010) Advanced materials and processes for polymer solar cell devices. J Mater Chem 20:36–60CrossRef Helgesen M, Sondergaard R, Krebs FC (2010) Advanced materials and processes for polymer solar cell devices. J Mater Chem 20:36–60CrossRef
87.
Zurück zum Zitat Liang Y, Xu Z, Xia J, Tsai S-T, Wu Y, Li G, Ray C, Yu L (2010) For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv Mater 22:E135–E138CrossRef Liang Y, Xu Z, Xia J, Tsai S-T, Wu Y, Li G, Ray C, Yu L (2010) For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv Mater 22:E135–E138CrossRef
88.
Zurück zum Zitat Kim JY, Lee K, Coates NE, Moses D, Nguyen TQ, Dante M, Heeger AJ (2007) Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317:222–225CrossRef Kim JY, Lee K, Coates NE, Moses D, Nguyen TQ, Dante M, Heeger AJ (2007) Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317:222–225CrossRef
89.
Zurück zum Zitat Wong WY, Wang XZ, He Z, Djurišić AB, Yip CT, Cheung KY, Wang H, Mak CSK, Chan WK (2007) On the efficiency of polymer solar cells. Nat Mater 6:704–705CrossRef Wong WY, Wang XZ, He Z, Djurišić AB, Yip CT, Cheung KY, Wang H, Mak CSK, Chan WK (2007) On the efficiency of polymer solar cells. Nat Mater 6:704–705CrossRef
90.
Zurück zum Zitat He Z, Zhong C, Huang X, Wong W-Y, Wu H, Chen L, Su S, Cao Y (2011) Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells. Adv Mater 23:4636–4643CrossRef He Z, Zhong C, Huang X, Wong W-Y, Wu H, Chen L, Su S, Cao Y (2011) Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells. Adv Mater 23:4636–4643CrossRef
91.
Zurück zum Zitat He Z, Zhong C, Su S, Xu M, Wu H, Cao Y (2012) Enhanced power conversion efficiency in polymer solar cells using an inverted device structure. Nat Photon 6:591–595 He Z, Zhong C, Su S, Xu M, Wu H, Cao Y (2012) Enhanced power conversion efficiency in polymer solar cells using an inverted device structure. Nat Photon 6:591–595
92.
Zurück zum Zitat Zhang S, Ye L, Zhao W, Liu D, Yao H, Hou J (2014) Side chain selection for designing highly efficient photovoltaic polymers with 2D-conjugated structure. Macromolecules 47:4653–4659CrossRef Zhang S, Ye L, Zhao W, Liu D, Yao H, Hou J (2014) Side chain selection for designing highly efficient photovoltaic polymers with 2D-conjugated structure. Macromolecules 47:4653–4659CrossRef
93.
Zurück zum Zitat Nam S, Seo J, Woo S, Kim WH, Bradley DDC, Kim Y (2015) Inverted polymer fullerene solar cells exceeding 10% efficiency with poly(2-ethyl-2-oxazoline) nanodots on electron-collecting buffer layers. Nat Commun 6(8929):1–9 Nam S, Seo J, Woo S, Kim WH, Bradley DDC, Kim Y (2015) Inverted polymer fullerene solar cells exceeding 10% efficiency with poly(2-ethyl-2-oxazoline) nanodots on electron-collecting buffer layers. Nat Commun 6(8929):1–9
94.
Zurück zum Zitat Nozik AJ (2010) Nanoscience and nanostructures for photovoltaics and solar fuels. Nano Lett 10:2735–2741CrossRef Nozik AJ (2010) Nanoscience and nanostructures for photovoltaics and solar fuels. Nano Lett 10:2735–2741CrossRef
95.
Zurück zum Zitat Nozik AJ (2008) Multiple exciton generation in semiconductor quantum dots. Chem Phys Lett 457:3–11CrossRef Nozik AJ (2008) Multiple exciton generation in semiconductor quantum dots. Chem Phys Lett 457:3–11CrossRef
96.
97.
Zurück zum Zitat Nozik AJ, Beard MC, Luther JM, Law M, Ellingson RJ, Johnson JC (2010) Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem Rev 110:6873–6890CrossRef Nozik AJ, Beard MC, Luther JM, Law M, Ellingson RJ, Johnson JC (2010) Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem Rev 110:6873–6890CrossRef
98.
Zurück zum Zitat Rabani E, Baer R (2010) Theory of multiexciton generation in semiconductor nanocrystals. Chem Phys Lett 496:227–235CrossRef Rabani E, Baer R (2010) Theory of multiexciton generation in semiconductor nanocrystals. Chem Phys Lett 496:227–235CrossRef
99.
Zurück zum Zitat Beard MC, Midgett AG, Hanna MC, Luther JM, Hughes BK, Nozik AJ (2010) Comparing multiple exciton generation in quantum dots to impact ionization in bulk semiconductors: implications for enhancement of solar energy conversion. Nano Lett 10:3019–3027CrossRef Beard MC, Midgett AG, Hanna MC, Luther JM, Hughes BK, Nozik AJ (2010) Comparing multiple exciton generation in quantum dots to impact ionization in bulk semiconductors: implications for enhancement of solar energy conversion. Nano Lett 10:3019–3027CrossRef
100.
Zurück zum Zitat Kang MS, Sahu A, Norris DJ, Frisbie D (2010) Size-dependent electrical transport in CdSe nanocrystal thin films. Nano Lett 10:3727–3732CrossRef Kang MS, Sahu A, Norris DJ, Frisbie D (2010) Size-dependent electrical transport in CdSe nanocrystal thin films. Nano Lett 10:3727–3732CrossRef
101.
Zurück zum Zitat Arici E, Sariciftci NS, Meissner D (2003) Hybrid solar cells based on nanoparticles of CuInS2 in organic matrices. Adv Funct Mater 13:165–171CrossRef Arici E, Sariciftci NS, Meissner D (2003) Hybrid solar cells based on nanoparticles of CuInS2 in organic matrices. Adv Funct Mater 13:165–171CrossRef
102.
Zurück zum Zitat Arici E, Hoppe H, Schaffler F, Meissner D, Malik MA, Sariciftci NS (2004) Morphology effects in nanocrystalline CuInSe2-conjugated polymer hybrid systems. Appl Phys A—Mater Sci Process 79:59–64CrossRef Arici E, Hoppe H, Schaffler F, Meissner D, Malik MA, Sariciftci NS (2004) Morphology effects in nanocrystalline CuInSe2-conjugated polymer hybrid systems. Appl Phys A—Mater Sci Process 79:59–64CrossRef
103.
Zurück zum Zitat Arici E, Hoppe H, Schaffler F, Meissner D, Malik MA, Sariciftci NS (2004) Hybrid solar cells based on inorganic nanoclusters and conjugated polymers. Thin Solid Films 451:612–618CrossRef Arici E, Hoppe H, Schaffler F, Meissner D, Malik MA, Sariciftci NS (2004) Hybrid solar cells based on inorganic nanoclusters and conjugated polymers. Thin Solid Films 451:612–618CrossRef
104.
Zurück zum Zitat Yue W, Han S, Peng R, Shen W, Geng H, Wu F, Tao S, Wang M (2010) CuInS2 quantum dots synthesized by a solvothermal route and their application as effective electron acceptors for hybrid solar cells. J Mater Chem 20:7570–7578CrossRef Yue W, Han S, Peng R, Shen W, Geng H, Wu F, Tao S, Wang M (2010) CuInS2 quantum dots synthesized by a solvothermal route and their application as effective electron acceptors for hybrid solar cells. J Mater Chem 20:7570–7578CrossRef
105.
Zurück zum Zitat Maier E, Rath T, Haas W, Werzer O, Saf R, Hofer F, Meissner D, Volobujeva O, Bereznev S, Mellikov E, Amenitsch H, Resel R, Trimmel G (2011) CuInS2-poly(3-(ethyl-4-butanoate)thiophene) nanocomposite solar cells: preparation by na in situ formation route, performance and stability issues. Sol Energy Mater Sol Cells 95:1354–1361CrossRef Maier E, Rath T, Haas W, Werzer O, Saf R, Hofer F, Meissner D, Volobujeva O, Bereznev S, Mellikov E, Amenitsch H, Resel R, Trimmel G (2011) CuInS2-poly(3-(ethyl-4-butanoate)thiophene) nanocomposite solar cells: preparation by na in situ formation route, performance and stability issues. Sol Energy Mater Sol Cells 95:1354–1361CrossRef
106.
Zurück zum Zitat Rath T, Edler M, Haas W, Fischereder A, Moscher S, Schenk A, Trattnig R, Sezen M, Mauthner G, Pein A, Meischler D, Bartl K, Saf R, Bansal N, Haque SA, Hofer F, List EJW, Trimmel G (2011) A direct route towards polymer/copper indium sulfide nanocomposite solar cells. Adv Energy Mater 1:1046–1050CrossRef Rath T, Edler M, Haas W, Fischereder A, Moscher S, Schenk A, Trattnig R, Sezen M, Mauthner G, Pein A, Meischler D, Bartl K, Saf R, Bansal N, Haque SA, Hofer F, List EJW, Trimmel G (2011) A direct route towards polymer/copper indium sulfide nanocomposite solar cells. Adv Energy Mater 1:1046–1050CrossRef
107.
Zurück zum Zitat Radychev N, Scheunemann D, Kruszynska M, Frevert K, Miranti R, Kolny-Olesiak J, Borchert H, Parisi J (2012) Investigation of the morphology and electrical characteristics of hybrid blends based on poly(2-hexylthiophene) and colloidal CuInS2 nanocrystals of different shapes. Org Electron 13:3154–3164CrossRef Radychev N, Scheunemann D, Kruszynska M, Frevert K, Miranti R, Kolny-Olesiak J, Borchert H, Parisi J (2012) Investigation of the morphology and electrical characteristics of hybrid blends based on poly(2-hexylthiophene) and colloidal CuInS2 nanocrystals of different shapes. Org Electron 13:3154–3164CrossRef
108.
Zurück zum Zitat Arar M, Gruber M, Edler M, Haas W, Hofer F, Bansal N, Reynolds LX, Haque SA, Zojer K, Trimmel G, Rath T (2013) Influence of morphology and polymer:nanoparticle ratio on device performance of hybrid solar cells—an approach in experiment and simulation. Nanotechnology 24:484005CrossRef Arar M, Gruber M, Edler M, Haas W, Hofer F, Bansal N, Reynolds LX, Haque SA, Zojer K, Trimmel G, Rath T (2013) Influence of morphology and polymer:nanoparticle ratio on device performance of hybrid solar cells—an approach in experiment and simulation. Nanotechnology 24:484005CrossRef
109.
Zurück zum Zitat Arar M, Pein A, Haas W, Hofer F, Norrman K, Krebs FC, Rath T, Trimmel G (2012) Comprehensive investigation of silver nanoparticle/aluminum electrodes for copper indium sulfide/polymer hybrid solar cells. J Phys Chem C 116:19191–19196CrossRef Arar M, Pein A, Haas W, Hofer F, Norrman K, Krebs FC, Rath T, Trimmel G (2012) Comprehensive investigation of silver nanoparticle/aluminum electrodes for copper indium sulfide/polymer hybrid solar cells. J Phys Chem C 116:19191–19196CrossRef
110.
Zurück zum Zitat Yue W, Zhang G, Wang S, Sun W, Lan M, Nie G (2014) Influence of crystal phase for CuInS2 on device performance of polymer-CuInS2/oxide nanoarrays solar cells. Mater Sci Semicond Process 25:337–343CrossRef Yue W, Zhang G, Wang S, Sun W, Lan M, Nie G (2014) Influence of crystal phase for CuInS2 on device performance of polymer-CuInS2/oxide nanoarrays solar cells. Mater Sci Semicond Process 25:337–343CrossRef
111.
Zurück zum Zitat Yang Y, Zhong H, Bai H, Zou B, Li Y, Scholes GD (2012) Transition from photoconductivity to photovoltaic effect in P3HT/CuInSe2 composites. J Phys Chem C 116:7280–7286CrossRef Yang Y, Zhong H, Bai H, Zou B, Li Y, Scholes GD (2012) Transition from photoconductivity to photovoltaic effect in P3HT/CuInSe2 composites. J Phys Chem C 116:7280–7286CrossRef
112.
Zurück zum Zitat Lin Y-Y, Wang D-Y, Yen H-C, Chen H-L, Chen C-C, Chen C-M, Tang C-Y, Chen C-W (2009) Extended red light harvesting in a poly(3-hexylthiophene)/iron disulfide nanocrystal hybrid solar cell. Nanotechnology 20:405207CrossRef Lin Y-Y, Wang D-Y, Yen H-C, Chen H-L, Chen C-C, Chen C-M, Tang C-Y, Chen C-W (2009) Extended red light harvesting in a poly(3-hexylthiophene)/iron disulfide nanocrystal hybrid solar cell. Nanotechnology 20:405207CrossRef
113.
Zurück zum Zitat Steinhagen C, Harvey TB, Stolle CJ, Harris J, Korgel BA (2012) Pyrite nanocrystal solar cells: promising, or fool’s gold? J Phys Chem Lett 3:2352–2356CrossRef Steinhagen C, Harvey TB, Stolle CJ, Harris J, Korgel BA (2012) Pyrite nanocrystal solar cells: promising, or fool’s gold? J Phys Chem Lett 3:2352–2356CrossRef
114.
Zurück zum Zitat Layek A, Middya S, Ray PP (2013) Increase in open circuit voltage by the incorporation of band gap engineered FeS2 nanoparticle within MEHPPV solar cell. J Mater Sci Mater Electron 24:3749–3755CrossRef Layek A, Middya S, Ray PP (2013) Increase in open circuit voltage by the incorporation of band gap engineered FeS2 nanoparticle within MEHPPV solar cell. J Mater Sci Mater Electron 24:3749–3755CrossRef
115.
Zurück zum Zitat Bansal N, O’Mahony FTF, Lutz T, Haque SA (2013) Solution processed polymer-inorganic semiconductor solar cells employing Sb2S3 as a light harvesting and electron transporting material. Adv Energy Mater 3:986–990CrossRef Bansal N, O’Mahony FTF, Lutz T, Haque SA (2013) Solution processed polymer-inorganic semiconductor solar cells employing Sb2S3 as a light harvesting and electron transporting material. Adv Energy Mater 3:986–990CrossRef
116.
Zurück zum Zitat O’Mahony FTF, Cappel UB, Tokmoldin N, Lutz T, Lindblad R, Rensmo H (2013) Low-temperature solution processing of mesoporous metal-sulfide semiconductors as light-harvesting photoanodes. Angew Chem Int Ed 52:12047–12051CrossRef O’Mahony FTF, Cappel UB, Tokmoldin N, Lutz T, Lindblad R, Rensmo H (2013) Low-temperature solution processing of mesoporous metal-sulfide semiconductors as light-harvesting photoanodes. Angew Chem Int Ed 52:12047–12051CrossRef
117.
Zurück zum Zitat Saha SK, Pal AJ (2015) Schottky diodes between Bi2S3 nanorods and metal nanoparticles in a polymer matrix as hybrid bulk-heterojunction solar cells. J Appl Phys 118:014503CrossRef Saha SK, Pal AJ (2015) Schottky diodes between Bi2S3 nanorods and metal nanoparticles in a polymer matrix as hybrid bulk-heterojunction solar cells. J Appl Phys 118:014503CrossRef
118.
Zurück zum Zitat Wang Z, Qu S, Zeng X, Liu J, Zhang C, Tan F, Jin L, Wang Z (2009) The application of SnS nanoparticles to bulk heterojunction solar cells. J Alloys Compd 482:203–207CrossRef Wang Z, Qu S, Zeng X, Liu J, Zhang C, Tan F, Jin L, Wang Z (2009) The application of SnS nanoparticles to bulk heterojunction solar cells. J Alloys Compd 482:203–207CrossRef
119.
Zurück zum Zitat Du Pasquier A, Mastrogiovanni DDT, Klein LA, Wang T, Garfunkel E (2007) Photoinduced charge transfer between poly(3-hexylthiophene) and germanium nanowires. Appl Phys Lett 91:183501-1–183501-3CrossRef Du Pasquier A, Mastrogiovanni DDT, Klein LA, Wang T, Garfunkel E (2007) Photoinduced charge transfer between poly(3-hexylthiophene) and germanium nanowires. Appl Phys Lett 91:183501-1–183501-3CrossRef
120.
Zurück zum Zitat Novotny CJ, Yu ET, Yu PKL (2008) InP nanowire/polymer hybrid photodiode. Nano Lett 8:775–779CrossRef Novotny CJ, Yu ET, Yu PKL (2008) InP nanowire/polymer hybrid photodiode. Nano Lett 8:775–779CrossRef
121.
Zurück zum Zitat Liu C-Y, Holman ZC, Kortshagen UR (2009) Hybrid solar cells from P3HT and silicon nanocrystals. Nano Lett 9:449–452CrossRef Liu C-Y, Holman ZC, Kortshagen UR (2009) Hybrid solar cells from P3HT and silicon nanocrystals. Nano Lett 9:449–452CrossRef
122.
Zurück zum Zitat Huynh WU, Dittmer JJ, Alivisatos AP (2002) Hybrid nanorod-polymer solar cells. Science 295:2425–2427CrossRef Huynh WU, Dittmer JJ, Alivisatos AP (2002) Hybrid nanorod-polymer solar cells. Science 295:2425–2427CrossRef
123.
Zurück zum Zitat Huynh WU, Dittmer JJ, Libby WC, Whiting GL, Alivisatos AP (2003) Controlling the morphology of nanocrystal-polymer composites for solar cells. Adv Funct Mater 13:73–79CrossRef Huynh WU, Dittmer JJ, Libby WC, Whiting GL, Alivisatos AP (2003) Controlling the morphology of nanocrystal-polymer composites for solar cells. Adv Funct Mater 13:73–79CrossRef
124.
Zurück zum Zitat Sun BQ, Greenham NC (2006) Improved effciency of photovoltaics based on CdSe nanorods and poly(3-hexylthiophene) nanofibers. Phys Chem Chem Phys 8:3557–3560CrossRef Sun BQ, Greenham NC (2006) Improved effciency of photovoltaics based on CdSe nanorods and poly(3-hexylthiophene) nanofibers. Phys Chem Chem Phys 8:3557–3560CrossRef
125.
Zurück zum Zitat Hindson JC, Saghi Z, Hernandez-Garrido J-C, Midgley PA, Greenham NC (2011) Morphological study of nanoparticle-polymer solar cells using high-angle annular dark-field electron tomography. Nano Lett 11:904–909CrossRef Hindson JC, Saghi Z, Hernandez-Garrido J-C, Midgley PA, Greenham NC (2011) Morphological study of nanoparticle-polymer solar cells using high-angle annular dark-field electron tomography. Nano Lett 11:904–909CrossRef
126.
Zurück zum Zitat Zhou Y, Li YC, Zhong HZ, Hou JH, Ding YQ, Yang CH, Li YF (2006) Hybrid nanocrystal/polymer solar cells based on tetrapod-shaped CdSexTe1-x nanocrystals. Nanotechnology 17:4041–4047CrossRef Zhou Y, Li YC, Zhong HZ, Hou JH, Ding YQ, Yang CH, Li YF (2006) Hybrid nanocrystal/polymer solar cells based on tetrapod-shaped CdSexTe1-x nanocrystals. Nanotechnology 17:4041–4047CrossRef
127.
Zurück zum Zitat Sun BQ, Marx E, Greenham NC (2003) Photovoltaic devices using blends of branched CdSe nanoparticles and conjugated polymers. Nano Lett 3:961–963CrossRef Sun BQ, Marx E, Greenham NC (2003) Photovoltaic devices using blends of branched CdSe nanoparticles and conjugated polymers. Nano Lett 3:961–963CrossRef
128.
Zurück zum Zitat Gur I, Fromer NA, Chen C-P, Kanaras AG, Alivisatos AP (2007) Hybrid solar cells with prescribed nanoscale morphologies based on hyperbranched semiconductor nanocrystals. Nano Lett 7:409–414CrossRef Gur I, Fromer NA, Chen C-P, Kanaras AG, Alivisatos AP (2007) Hybrid solar cells with prescribed nanoscale morphologies based on hyperbranched semiconductor nanocrystals. Nano Lett 7:409–414CrossRef
129.
Zurück zum Zitat Grancini G, Biasiucci M, Mastria R, Scotognella F, Tassone F, Polli D, Gigli G, Lanzani G (2012) Dynamic microscopy study of ultrafast charge transfer in a hybrid P3HT/hyperbranched CdSe nanoparticle blend for photovoltaics. J Phys Chem Lett 3:517–523CrossRef Grancini G, Biasiucci M, Mastria R, Scotognella F, Tassone F, Polli D, Gigli G, Lanzani G (2012) Dynamic microscopy study of ultrafast charge transfer in a hybrid P3HT/hyperbranched CdSe nanoparticle blend for photovoltaics. J Phys Chem Lett 3:517–523CrossRef
130.
Zurück zum Zitat Lee K-S, Kim I, Gullapalli S, Wong MS, Jabbour GE (2011) Enhanced performance of hybrid solar cells using longer arms of quantum cadmium selenide tetrapods. Appl Phys Lett 99:223515CrossRef Lee K-S, Kim I, Gullapalli S, Wong MS, Jabbour GE (2011) Enhanced performance of hybrid solar cells using longer arms of quantum cadmium selenide tetrapods. Appl Phys Lett 99:223515CrossRef
131.
Zurück zum Zitat Dayal S, Reese MO, Ferguson AJ, Ginley DS, Rumbles G, Kopidakis N (2010) The effect of nanoparticle shape on the photocarrier dynamics and photovoltaic device performance of poly(3-hexylthiophene):CdSe nanoparticle bulk heterojunction solar cells. Adv Funct Mater 20:2629–2635CrossRef Dayal S, Reese MO, Ferguson AJ, Ginley DS, Rumbles G, Kopidakis N (2010) The effect of nanoparticle shape on the photocarrier dynamics and photovoltaic device performance of poly(3-hexylthiophene):CdSe nanoparticle bulk heterojunction solar cells. Adv Funct Mater 20:2629–2635CrossRef
132.
Zurück zum Zitat Sun BQ, Snaith HJ, Dhoot AS, Westenhoff S, Greenham NC (2005) Vertically segregated hybrid blends for photovoltaic devices with improved efficiency. J Appl Phys 97:014914-1–014914-6 Sun BQ, Snaith HJ, Dhoot AS, Westenhoff S, Greenham NC (2005) Vertically segregated hybrid blends for photovoltaic devices with improved efficiency. J Appl Phys 97:014914-1–014914-6
133.
Zurück zum Zitat Dayal S, Kopidakis N, Olson DC, Ginley DS, Rumbles G (2010) Photovoltaic devices with a low band gap polymer and CdSe nanostructures exceeding 3% efficiency. Nano Lett 10:239–242CrossRef Dayal S, Kopidakis N, Olson DC, Ginley DS, Rumbles G (2010) Photovoltaic devices with a low band gap polymer and CdSe nanostructures exceeding 3% efficiency. Nano Lett 10:239–242CrossRef
134.
Zurück zum Zitat Kuo C-Y, Su M-S, Chen G-Y, Ku C-S, Lee H-Y, Wei K-H (2011) Annealing treatment improves the morphology and performance of photovoltaic devices prepared from thieno[3,4-c]pyrrole-4,6-dione-based donor/acceptor conjugated polymers and CdSe nanostructures. Energy Environ Sci 4:2316–2322CrossRef Kuo C-Y, Su M-S, Chen G-Y, Ku C-S, Lee H-Y, Wei K-H (2011) Annealing treatment improves the morphology and performance of photovoltaic devices prepared from thieno[3,4-c]pyrrole-4,6-dione-based donor/acceptor conjugated polymers and CdSe nanostructures. Energy Environ Sci 4:2316–2322CrossRef
135.
Zurück zum Zitat Zhou R, Zheng Y, Qian L, Yang Y, Holloway PH, Xue J (2012) Solution-processed, nanostructured hybrid solar cells with broad spectral sensitivity and stability. Nanoscale 4:3507–3514CrossRef Zhou R, Zheng Y, Qian L, Yang Y, Holloway PH, Xue J (2012) Solution-processed, nanostructured hybrid solar cells with broad spectral sensitivity and stability. Nanoscale 4:3507–3514CrossRef
136.
Zurück zum Zitat Qiao F (2013) Improved performance of photovoltaic devices based on poly(3-hexylthiophene) nanofibers and CdSe quantum dots through ligand exchange and annealing treatment. Solid-State Electron 82:25–28CrossRef Qiao F (2013) Improved performance of photovoltaic devices based on poly(3-hexylthiophene) nanofibers and CdSe quantum dots through ligand exchange and annealing treatment. Solid-State Electron 82:25–28CrossRef
137.
Zurück zum Zitat Peng Y, Song G, Hu X, He G, Chen Z, Xu X, Hu J (2013) In situ synthesis of P3HT-capped CdSe superstructures and their application in solar cells. Nanoscale Res Lett 8:106CrossRef Peng Y, Song G, Hu X, He G, Chen Z, Xu X, Hu J (2013) In situ synthesis of P3HT-capped CdSe superstructures and their application in solar cells. Nanoscale Res Lett 8:106CrossRef
138.
Zurück zum Zitat Celik D, Krueger M, Veit C, Schleiermacher HF, Zimmermann B, Allard S, Dumsch I, Scherf U, Rauscher F, Niyamakom P (2012) Performance enhancement of CdSe nanorod-polymer based hybrid solar cells utilizing a novel combination of post-synthetic nanoparticle surface treatments. Sol Energy Mater Sol Cells 98:433–440CrossRef Celik D, Krueger M, Veit C, Schleiermacher HF, Zimmermann B, Allard S, Dumsch I, Scherf U, Rauscher F, Niyamakom P (2012) Performance enhancement of CdSe nanorod-polymer based hybrid solar cells utilizing a novel combination of post-synthetic nanoparticle surface treatments. Sol Energy Mater Sol Cells 98:433–440CrossRef
139.
Zurück zum Zitat Wu Y, Zhang G (2010) Performance enhancement of hybrid solar cells through chemical vapor annealing. Nano Lett 10:1628–1631CrossRef Wu Y, Zhang G (2010) Performance enhancement of hybrid solar cells through chemical vapor annealing. Nano Lett 10:1628–1631CrossRef
140.
Zurück zum Zitat Choi S-H, Song HJ, Park IK, Yum J-H, Kim S-S, Lee SH, Sung Y-E (2006) Synthesis of size-controlled CdSe quantum dots and characterization of CdSe-conjugated polymer blends for hybrid solar cells. J Photochem Photobiol A 179:135–141CrossRef Choi S-H, Song HJ, Park IK, Yum J-H, Kim S-S, Lee SH, Sung Y-E (2006) Synthesis of size-controlled CdSe quantum dots and characterization of CdSe-conjugated polymer blends for hybrid solar cells. J Photochem Photobiol A 179:135–141CrossRef
141.
Zurück zum Zitat Tang A-W, Teng F, Jui H, Gao Y-H, Hou Y-B, Liang C-J, Wang Y-S (2007) Investigation on photoconductive properties of MEH-PPV/CdSe-nanocrystal nanocomposites. Mater Lett 61:2178–2181CrossRef Tang A-W, Teng F, Jui H, Gao Y-H, Hou Y-B, Liang C-J, Wang Y-S (2007) Investigation on photoconductive properties of MEH-PPV/CdSe-nanocrystal nanocomposites. Mater Lett 61:2178–2181CrossRef
142.
Zurück zum Zitat Han LL, Qin DH, Jiang X, Liu YS, Wang L, Chen JW, Cao Y (2006) Synthesis of high quality zinc-blende CdSe nanocrystals and their application in hybrid solar cells. Nanotechnology 17:4736–4742CrossRef Han LL, Qin DH, Jiang X, Liu YS, Wang L, Chen JW, Cao Y (2006) Synthesis of high quality zinc-blende CdSe nanocrystals and their application in hybrid solar cells. Nanotechnology 17:4736–4742CrossRef
143.
Zurück zum Zitat Jiang X, Chen F, Qiu W, Yan Q, Nan Y, Xu H, Yang L, Chen H (2010) Effects of molecular interface modification in CdS/polymer hybrid bulk heterojunction solar cells. Sol Energy Mater Sol Cells 94:2223–2229CrossRef Jiang X, Chen F, Qiu W, Yan Q, Nan Y, Xu H, Yang L, Chen H (2010) Effects of molecular interface modification in CdS/polymer hybrid bulk heterojunction solar cells. Sol Energy Mater Sol Cells 94:2223–2229CrossRef
144.
Zurück zum Zitat Chen F, Qiu W, Chen X, Yang L, Jiang X, Wang M, Chen H (2011) Large-scale fabrication of CdS nanorod arrays on transparent conductive substrates from aqueous solutions. Sol Energy 85:2122–2129CrossRef Chen F, Qiu W, Chen X, Yang L, Jiang X, Wang M, Chen H (2011) Large-scale fabrication of CdS nanorod arrays on transparent conductive substrates from aqueous solutions. Sol Energy 85:2122–2129CrossRef
145.
Zurück zum Zitat Mohamed NBH, Haouari M, Ebdelli R, Zaaboud Z, Habchi MM, Hassen F, Maaref H, Ouada HB (2015) Role of surface modification of CdS nanoparticles on the performance of hybrid photovoltaic devices based on p-phenylenevinylene derivative. Phys E 69:145–152CrossRef Mohamed NBH, Haouari M, Ebdelli R, Zaaboud Z, Habchi MM, Hassen F, Maaref H, Ouada HB (2015) Role of surface modification of CdS nanoparticles on the performance of hybrid photovoltaic devices based on p-phenylenevinylene derivative. Phys E 69:145–152CrossRef
146.
Zurück zum Zitat Zhou YF, Riehle FS, Yuan Y, Schleiermacher H-F, Niggemann M, Urban GA, Krüger M (2010) Improved efficiency of hybrid solar cells based on non-ligand-exchanged CdSe quantum dots and poly(3-hexylthiophene). Appl Phys Lett 96:013304-1–013304-3 Zhou YF, Riehle FS, Yuan Y, Schleiermacher H-F, Niggemann M, Urban GA, Krüger M (2010) Improved efficiency of hybrid solar cells based on non-ligand-exchanged CdSe quantum dots and poly(3-hexylthiophene). Appl Phys Lett 96:013304-1–013304-3
147.
Zurück zum Zitat Zhou Y, Eck M, Veit C, Zimmermann B, Rauscher F, Niyamakom P, Yilmaz S, Dumsch I, Allard S, Scherf U, Kruger M (2011) Efficiency enhancement for bulk-heterojunction hybrid solar cells based on acid treated CdSe quantum dots and low bandgap polymer PCPDTBT. Sol Energy Mater Sol Cells 95:1232–1237CrossRef Zhou Y, Eck M, Veit C, Zimmermann B, Rauscher F, Niyamakom P, Yilmaz S, Dumsch I, Allard S, Scherf U, Kruger M (2011) Efficiency enhancement for bulk-heterojunction hybrid solar cells based on acid treated CdSe quantum dots and low bandgap polymer PCPDTBT. Sol Energy Mater Sol Cells 95:1232–1237CrossRef
148.
Zurück zum Zitat Zhou Y, Eck M, Men C, Rauscher F, Niyamakom P, Yilmaz S, Dumsch I, Allard S, Scherf U, Krüger M (2011) Efficient polymer nanocrystal hybrid solar cells by improved nanocrystal composition. Sol Energy Mater Sol Cells 95:3227–3232CrossRef Zhou Y, Eck M, Men C, Rauscher F, Niyamakom P, Yilmaz S, Dumsch I, Allard S, Scherf U, Krüger M (2011) Efficient polymer nanocrystal hybrid solar cells by improved nanocrystal composition. Sol Energy Mater Sol Cells 95:3227–3232CrossRef
149.
Zurück zum Zitat Fu W-F, Shi Y, Qiu WM, Wang L, Nan YX, Shi M-M, Li H-Y, Chen H-Z (2012) High efficiency hybrid solar cells using post-deposition ligand exchange by monothiols. Phys Chem Chem Phys 14:12094–12098CrossRef Fu W-F, Shi Y, Qiu WM, Wang L, Nan YX, Shi M-M, Li H-Y, Chen H-Z (2012) High efficiency hybrid solar cells using post-deposition ligand exchange by monothiols. Phys Chem Chem Phys 14:12094–12098CrossRef
150.
Zurück zum Zitat Fu W-F, Shi Y, Wang L, Shi M-M, Li H-Y, Chen H-Z (2013) A geen, low-cost, and highly effective strategy to enhance the performance of hybrid solar cells: post-deposition ligand exchange by acetic acid. Sol Energy Mater Sol Cells 117:329–335CrossRef Fu W-F, Shi Y, Wang L, Shi M-M, Li H-Y, Chen H-Z (2013) A geen, low-cost, and highly effective strategy to enhance the performance of hybrid solar cells: post-deposition ligand exchange by acetic acid. Sol Energy Mater Sol Cells 117:329–335CrossRef
151.
Zurück zum Zitat Ren S, Chang L-Y, Lim S-K, Zhao J, Smith M, Zhao N, Bulovic V, Bawendi M, Gradecak S (2011) Inorganic-organic hybrid solar cell: bridging quantum dots to conjugated polymer nanowires. Nano Lett 11:3998–4002CrossRef Ren S, Chang L-Y, Lim S-K, Zhao J, Smith M, Zhao N, Bulovic V, Bawendi M, Gradecak S (2011) Inorganic-organic hybrid solar cell: bridging quantum dots to conjugated polymer nanowires. Nano Lett 11:3998–4002CrossRef
152.
Zurück zum Zitat Dixit SK, Madan S, Madhwal D, Kumar J, Sihgh I, Bhatia CS, Bhatnagar PK, Mathur PC (2012) Bulk heterojunction formation with induced concentration gradient from a bilayer structure of P3HT:CdSe/ZnS quantum dots using inter-diffusion process for developing high efficiency solar cell. Org Electron 13:710–714CrossRef Dixit SK, Madan S, Madhwal D, Kumar J, Sihgh I, Bhatia CS, Bhatnagar PK, Mathur PC (2012) Bulk heterojunction formation with induced concentration gradient from a bilayer structure of P3HT:CdSe/ZnS quantum dots using inter-diffusion process for developing high efficiency solar cell. Org Electron 13:710–714CrossRef
153.
Zurück zum Zitat de Freitas JN, Pivrikas A, Nowacki BF, Akcelrud LC, Sariciftci NS, Nogueira AF (2010) Investigation of new PPV-type polymeric materials containing fluorene and thiophene units and their application in organic solar cells. Synth Met 160:1654–1661CrossRef de Freitas JN, Pivrikas A, Nowacki BF, Akcelrud LC, Sariciftci NS, Nogueira AF (2010) Investigation of new PPV-type polymeric materials containing fluorene and thiophene units and their application in organic solar cells. Synth Met 160:1654–1661CrossRef
154.
Zurück zum Zitat de Freitas JN, Grova IR, Akcelrud LC, Arici E, Sariciftci NS, Nogueira AF (2010) The effects of CdSe incorporation into bulk heterojunction solar cells. J Mater Chem 20:4845–4853CrossRef de Freitas JN, Grova IR, Akcelrud LC, Arici E, Sariciftci NS, Nogueira AF (2010) The effects of CdSe incorporation into bulk heterojunction solar cells. J Mater Chem 20:4845–4853CrossRef
155.
Zurück zum Zitat Huynh WU, Dittmer JJ, Teclemariam N, Milliron DJ, Alivisatos AP, Barnham KWJ (2003) Charge transport in hybrid nanorod-polymer composite photovoltaic cells. Phys Rev B 67:115326-1–115326-12CrossRef Huynh WU, Dittmer JJ, Teclemariam N, Milliron DJ, Alivisatos AP, Barnham KWJ (2003) Charge transport in hybrid nanorod-polymer composite photovoltaic cells. Phys Rev B 67:115326-1–115326-12CrossRef
156.
Zurück zum Zitat Lin Y-Y, Chen C-W, Chang J, Lin TY, Liu IS, Su W-F (2006) Exciton dissociation and migration in enhanced order conjugated polymer/nanoparticle hybrid materials. Nanotechnology 17:1260–1263CrossRef Lin Y-Y, Chen C-W, Chang J, Lin TY, Liu IS, Su W-F (2006) Exciton dissociation and migration in enhanced order conjugated polymer/nanoparticle hybrid materials. Nanotechnology 17:1260–1263CrossRef
157.
Zurück zum Zitat Wang P, Abrusci A, Wong HMP, Svensson M, Andersson MR, Greenham NC (2006) Photoinduced charge transfer and efficient solar energy conversion in a blend of a red polyfluorene copolymer with CdSe nanoparticles. Nano Lett 6:1789–1793CrossRef Wang P, Abrusci A, Wong HMP, Svensson M, Andersson MR, Greenham NC (2006) Photoinduced charge transfer and efficient solar energy conversion in a blend of a red polyfluorene copolymer with CdSe nanoparticles. Nano Lett 6:1789–1793CrossRef
158.
Zurück zum Zitat Ginger DS, Greenham NC (1999) Charge separation in conjugated-polymer/nanocrystal blends. Synth Met 101:425–428CrossRef Ginger DS, Greenham NC (1999) Charge separation in conjugated-polymer/nanocrystal blends. Synth Met 101:425–428CrossRef
159.
Zurück zum Zitat Ginger DS, Greenham NC (1999) Photoinduced electron transfer from conjugated polymers to CdSe nanocrystals. Phys Rev B 59:10622–10629CrossRef Ginger DS, Greenham NC (1999) Photoinduced electron transfer from conjugated polymers to CdSe nanocrystals. Phys Rev B 59:10622–10629CrossRef
160.
Zurück zum Zitat Kucur E, Riegler J, Urban G, Nann T (2004) Charge transfer efficiency in hybrid bulk heterojunction composites. J Chem Phys 121:1074–1079CrossRef Kucur E, Riegler J, Urban G, Nann T (2004) Charge transfer efficiency in hybrid bulk heterojunction composites. J Chem Phys 121:1074–1079CrossRef
161.
Zurück zum Zitat Greenham NC, Peng XG, Alivisatos AP (1996) Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Phys Rev B 54:17628–17637CrossRef Greenham NC, Peng XG, Alivisatos AP (1996) Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Phys Rev B 54:17628–17637CrossRef
162.
Zurück zum Zitat Ginger DS, Greenham NC (2000) Charge injection and transport in films of CdSe nanocrystals. J Appl Phys 87:1361–1368CrossRef Ginger DS, Greenham NC (2000) Charge injection and transport in films of CdSe nanocrystals. J Appl Phys 87:1361–1368CrossRef
163.
Zurück zum Zitat Baker DR, Kamat PV (2010) Tuning the emission of CdSe quantum dots by controlled trap enhancement. Langmuir 13:11272–11276CrossRef Baker DR, Kamat PV (2010) Tuning the emission of CdSe quantum dots by controlled trap enhancement. Langmuir 13:11272–11276CrossRef
164.
Zurück zum Zitat Talforn E, Moysidou E, Abellon RD, Savenije TJ, Goossens A, Houtepen AJ, Siebbeles LDA (2010) Highly photoconductive CdSe quantum-dot films: influence of capping molecules and film preparation procedure. J Phys Chem C 114:3441–3447CrossRef Talforn E, Moysidou E, Abellon RD, Savenije TJ, Goossens A, Houtepen AJ, Siebbeles LDA (2010) Highly photoconductive CdSe quantum-dot films: influence of capping molecules and film preparation procedure. J Phys Chem C 114:3441–3447CrossRef
165.
Zurück zum Zitat Lokteva I, Radychev N, Witt F, Borchert H, Parisi J, Kolny-Olesiak J (2010) Surface treatment of CdSe nanoparticles for application in hybrid solar cells: the effect of multiple ligand exchange with pyridine. J Phys Chem C 114:12784–12791CrossRef Lokteva I, Radychev N, Witt F, Borchert H, Parisi J, Kolny-Olesiak J (2010) Surface treatment of CdSe nanoparticles for application in hybrid solar cells: the effect of multiple ligand exchange with pyridine. J Phys Chem C 114:12784–12791CrossRef
166.
Zurück zum Zitat Dasgupta U, Bera A, Pal AJ (2015) pn-Junction nanorods in a polymer matrix: a paradigm shift from conventional hybrid bulk-heterojunction solar cells. Sol Energy Mater Sol Cells 143:319–325CrossRef Dasgupta U, Bera A, Pal AJ (2015) pn-Junction nanorods in a polymer matrix: a paradigm shift from conventional hybrid bulk-heterojunction solar cells. Sol Energy Mater Sol Cells 143:319–325CrossRef
167.
Zurück zum Zitat Cappel UB, Dowland SA, Reynolds LX, Dimitrov S, Haque SA (2013) Charge generation dynamics in CdS:P3HT blends for hybrid solar cells. J Phys Chem Lett 4:4253–4257CrossRef Cappel UB, Dowland SA, Reynolds LX, Dimitrov S, Haque SA (2013) Charge generation dynamics in CdS:P3HT blends for hybrid solar cells. J Phys Chem Lett 4:4253–4257CrossRef
168.
Zurück zum Zitat Wood K, Garnett O, Tokmoldin N, Tsoi WC, Haque SA, Kim J-S (2014) In situ formation of organic-inorganic hybrid nanostructures for photovoltaic applications. Faraday Discuss 174:267–279 Wood K, Garnett O, Tokmoldin N, Tsoi WC, Haque SA, Kim J-S (2014) In situ formation of organic-inorganic hybrid nanostructures for photovoltaic applications. Faraday Discuss 174:267–279
169.
Zurück zum Zitat Wengeler L, Schmitt M, Peters K, Scharfer P, Schabel W (2013) Comparison of large scale coating techniques for organic and hybrid films in polymer based solar cells. Chem Eng Process 68:38–44CrossRef Wengeler L, Schmitt M, Peters K, Scharfer P, Schabel W (2013) Comparison of large scale coating techniques for organic and hybrid films in polymer based solar cells. Chem Eng Process 68:38–44CrossRef
170.
Zurück zum Zitat Kumar N, Dutta V (2014) Fabrication of polymer/cadmium sulfide hybrid solar cells [P3HT:CdS and PCPDTBT:CdS] by spray deposition. J Colloid Interface Sci 434:181–187CrossRef Kumar N, Dutta V (2014) Fabrication of polymer/cadmium sulfide hybrid solar cells [P3HT:CdS and PCPDTBT:CdS] by spray deposition. J Colloid Interface Sci 434:181–187CrossRef
171.
Zurück zum Zitat Liu JS, Tanaka T, Sivula K, Alivisatos AP, Fréchet JMJ (2004) Employing end-functional polythiophene to control the morphology of nanocrystal-polymer composites in hybrid solar cells. J Am Chem Soc 126:6550–6551CrossRef Liu JS, Tanaka T, Sivula K, Alivisatos AP, Fréchet JMJ (2004) Employing end-functional polythiophene to control the morphology of nanocrystal-polymer composites in hybrid solar cells. J Am Chem Soc 126:6550–6551CrossRef
172.
Zurück zum Zitat Albero J, Martınez-Ferrero E, Ajuria J, Waldauf C, Paciosc R, Palomares E (2009) Photo-induced eléctron recombination dynamics in CdSe/P3HT hybrid heterojunctions. Phys Chem Chem Phys 11:9644–9647CrossRef Albero J, Martınez-Ferrero E, Ajuria J, Waldauf C, Paciosc R, Palomares E (2009) Photo-induced eléctron recombination dynamics in CdSe/P3HT hybrid heterojunctions. Phys Chem Chem Phys 11:9644–9647CrossRef
173.
Zurück zum Zitat Truong NTN, Kim WK, Park C (2011) Effect of CdSe/P3HT composition on electrical and structural properties of bulk heterojunction solar cell active layer. Sol Energy Mater Sol Cells 95:167–170CrossRef Truong NTN, Kim WK, Park C (2011) Effect of CdSe/P3HT composition on electrical and structural properties of bulk heterojunction solar cell active layer. Sol Energy Mater Sol Cells 95:167–170CrossRef
174.
Zurück zum Zitat Dowland SA, Reynolds LX, McLachlan A, Cappel UB, Haque SA (2013) Photoinduced electron and hole transfer in CdS:P3HT nanocomposite films: effect of nanomorphology on charge separation yield and solar cell performance. J Mater Chem A 1:13896–13901CrossRef Dowland SA, Reynolds LX, McLachlan A, Cappel UB, Haque SA (2013) Photoinduced electron and hole transfer in CdS:P3HT nanocomposite films: effect of nanomorphology on charge separation yield and solar cell performance. J Mater Chem A 1:13896–13901CrossRef
175.
Zurück zum Zitat Querner C, Reiss P, Bleuse J, Pron A (2004) Chelating ligands for nanocrystals’ surface functionalization. J Am Chem Soc 126:11574–11582CrossRef Querner C, Reiss P, Bleuse J, Pron A (2004) Chelating ligands for nanocrystals’ surface functionalization. J Am Chem Soc 126:11574–11582CrossRef
176.
Zurück zum Zitat Milliron DJ, Gur L, Alivisatos AP (2005) Hybrid organic: nanocrystal solar cells. MRS Bull 30:41–44CrossRef Milliron DJ, Gur L, Alivisatos AP (2005) Hybrid organic: nanocrystal solar cells. MRS Bull 30:41–44CrossRef
177.
Zurück zum Zitat Advincula RC (2006) Hybrid organic-inorganic nanomaterials based on polythiophene dendronized nanoparticles. Dalton Trans 23:2778–2784CrossRef Advincula RC (2006) Hybrid organic-inorganic nanomaterials based on polythiophene dendronized nanoparticles. Dalton Trans 23:2778–2784CrossRef
178.
Zurück zum Zitat Sih BC, Wolf M (2007) CdSe nanorods functionalized with thiol-anchored oligothiophenes. J Phys Chem C 111:17184–17192CrossRef Sih BC, Wolf M (2007) CdSe nanorods functionalized with thiol-anchored oligothiophenes. J Phys Chem C 111:17184–17192CrossRef
179.
Zurück zum Zitat Aldakov D, Querner C, Kervella Y, Jousselme B, Demadrille R, Rossitto E, Reiss P, Pron A (2008) Oligothiophene-functionalized CdSe nanocrystals: preparation and electrochemical properties. Microchim Acta 160:335–344CrossRef Aldakov D, Querner C, Kervella Y, Jousselme B, Demadrille R, Rossitto E, Reiss P, Pron A (2008) Oligothiophene-functionalized CdSe nanocrystals: preparation and electrochemical properties. Microchim Acta 160:335–344CrossRef
180.
Zurück zum Zitat Skaff H, Sill K, Emrick T (2004) Quantum dots tailored with poly(para-phenylene vinylene). J Am Chem Soc 126:11322–11352CrossRef Skaff H, Sill K, Emrick T (2004) Quantum dots tailored with poly(para-phenylene vinylene). J Am Chem Soc 126:11322–11352CrossRef
181.
Zurück zum Zitat Odoi MY, Hammer NI, Sill K, Emrick T, Barnes MD (2006) Observation of enhanced energy transfer in individual quantum dot-oligophenylene vinylene nanostructures. J Am Chem Soc 128:3506–3507CrossRef Odoi MY, Hammer NI, Sill K, Emrick T, Barnes MD (2006) Observation of enhanced energy transfer in individual quantum dot-oligophenylene vinylene nanostructures. J Am Chem Soc 128:3506–3507CrossRef
182.
Zurück zum Zitat Pokrop R, Pamula K, Deja-Drogomirecka S, Zagorska M, Reiss P, Louarn G, Chandezon F, Pron A (2010) Molecular hybrids of CdSe semiconductor nanocrystals with terthiophene carboxylic acid or its polymeric analogue. Mater Chem Phys 123:756–760CrossRef Pokrop R, Pamula K, Deja-Drogomirecka S, Zagorska M, Reiss P, Louarn G, Chandezon F, Pron A (2010) Molecular hybrids of CdSe semiconductor nanocrystals with terthiophene carboxylic acid or its polymeric analogue. Mater Chem Phys 123:756–760CrossRef
183.
Zurück zum Zitat Shallcross RC, D’Ambruoso GD, Pyun J, Armstrong NR (2010) Photoelectrochemical processes in polymer-tethered CdSe nanocrystals. J Am Chem Soc 132:2622–2632CrossRef Shallcross RC, D’Ambruoso GD, Pyun J, Armstrong NR (2010) Photoelectrochemical processes in polymer-tethered CdSe nanocrystals. J Am Chem Soc 132:2622–2632CrossRef
184.
Zurück zum Zitat Zhang QL, Russel TP, Emrick T (2007) Synthesis and characterization of CdSe nanorods functionalized with regioregular poly(3-hexylthiophene). Chem Mater 19:3712–3716CrossRef Zhang QL, Russel TP, Emrick T (2007) Synthesis and characterization of CdSe nanorods functionalized with regioregular poly(3-hexylthiophene). Chem Mater 19:3712–3716CrossRef
185.
Zurück zum Zitat Xu J, Wang J, Mitchell M, Mukherjee P, Jeffries-EL M, Petrich JW, Lin Z (2007) Organic-inorganic nanocomposites via directly grafting conjugated polymers onto quantum dots. J Am Chem Soc 129:12828–12833CrossRef Xu J, Wang J, Mitchell M, Mukherjee P, Jeffries-EL M, Petrich JW, Lin Z (2007) Organic-inorganic nanocomposites via directly grafting conjugated polymers onto quantum dots. J Am Chem Soc 129:12828–12833CrossRef
186.
Zurück zum Zitat Wang T-L, Yang C-H, Shieh Y-T, Yeh A-C, Juan L-W, Zeng HC (2010) Synthesis of new nanocrystal-polymer nanocomposite as the electron acceptor in polymer bulk jeterojunction solar cells. Eur Polym J 46:634–642CrossRef Wang T-L, Yang C-H, Shieh Y-T, Yeh A-C, Juan L-W, Zeng HC (2010) Synthesis of new nanocrystal-polymer nanocomposite as the electron acceptor in polymer bulk jeterojunction solar cells. Eur Polym J 46:634–642CrossRef
187.
Zurück zum Zitat Robel J, Kuno M, Kamat PV (2007) Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. J Am Chem Soc 129:4136–4137CrossRef Robel J, Kuno M, Kamat PV (2007) Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. J Am Chem Soc 129:4136–4137CrossRef
188.
Zurück zum Zitat Kongkanand A, Tvrdy K, Takechi K, Kuno M, Kamat PV (2008) Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture. J Am Chem Soc 130:4007–4015CrossRef Kongkanand A, Tvrdy K, Takechi K, Kuno M, Kamat PV (2008) Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture. J Am Chem Soc 130:4007–4015CrossRef
189.
Zurück zum Zitat Kamat PV (2008) Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J Phys Chem C 112:18737–18753CrossRef Kamat PV (2008) Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J Phys Chem C 112:18737–18753CrossRef
190.
Zurück zum Zitat Baker DR, Kamat PV (2009) Photosensitization of TiO2 nanostructures with CdS quantum dots: particulate versus tubular support architectures. Adv Funct Mater 19:805–811CrossRef Baker DR, Kamat PV (2009) Photosensitization of TiO2 nanostructures with CdS quantum dots: particulate versus tubular support architectures. Adv Funct Mater 19:805–811CrossRef
191.
Zurück zum Zitat Bang JH, Kamat PV (2010) Solar cells by design: photoelectrochemistry of TiO2 nanorod arrays decorated with CdSe. Adv Funct Mater 20:1970–1976CrossRef Bang JH, Kamat PV (2010) Solar cells by design: photoelectrochemistry of TiO2 nanorod arrays decorated with CdSe. Adv Funct Mater 20:1970–1976CrossRef
192.
Zurück zum Zitat Sambur JB, Riha SC, Choi D, Parkinson BA (2010) Influence of surface chemistry on the binding and electronic coupling of CdSe quantum dots to single crystal TiO2 surfaces. Langmuir 26:4839–4847CrossRef Sambur JB, Riha SC, Choi D, Parkinson BA (2010) Influence of surface chemistry on the binding and electronic coupling of CdSe quantum dots to single crystal TiO2 surfaces. Langmuir 26:4839–4847CrossRef
193.
Zurück zum Zitat Shin K, Seok SI, Im SH, Park JH (2010) CdS or CdSe decorated TiO2 nanotube arrays from spray pyrolysis deposition: use in photoelectrochemical cells. Chem Commun 46:2385–2387CrossRef Shin K, Seok SI, Im SH, Park JH (2010) CdS or CdSe decorated TiO2 nanotube arrays from spray pyrolysis deposition: use in photoelectrochemical cells. Chem Commun 46:2385–2387CrossRef
194.
Zurück zum Zitat Mora-Seró I, Likodimos V, Gimenez S, Martínez-Ferrero E, Albero J, Palomares E, Kontos AG, Falaras P, Bisquert J (2010) Fast regeneration of CdSe quantum dots by Ru dye in sensitized TiO2 electrodes. J Phys Chem C 114:6755–6761CrossRef Mora-Seró I, Likodimos V, Gimenez S, Martínez-Ferrero E, Albero J, Palomares E, Kontos AG, Falaras P, Bisquert J (2010) Fast regeneration of CdSe quantum dots by Ru dye in sensitized TiO2 electrodes. J Phys Chem C 114:6755–6761CrossRef
195.
Zurück zum Zitat Shalom M, Albero J, Tachan Z, Martinez-Ferrero E, Zaban A, Palomares E (2010) Quantum dot-bilayer-sensitized solar cells: breakng the limits imposed by the low absorbance of dye monolayers. J Phys Chem Lett 1:1134–1138CrossRef Shalom M, Albero J, Tachan Z, Martinez-Ferrero E, Zaban A, Palomares E (2010) Quantum dot-bilayer-sensitized solar cells: breakng the limits imposed by the low absorbance of dye monolayers. J Phys Chem Lett 1:1134–1138CrossRef
196.
Zurück zum Zitat Gao X-F, Sun W-T, Ai G, Peng L-M (2004) Photoelectric performance of TiO2 nanotube array photoelectrodes cosensitized with CdS/CdSe quantum dots. Appl Phys Lett 96:153104-1–153104-3 Gao X-F, Sun W-T, Ai G, Peng L-M (2004) Photoelectric performance of TiO2 nanotube array photoelectrodes cosensitized with CdS/CdSe quantum dots. Appl Phys Lett 96:153104-1–153104-3
197.
Zurück zum Zitat Huang S, Zhang Q, Huang X, Guo X, Deng M, Li D, Luo Y, Shen Q, Toyoda T, Meng Q (2010) Fibrous CdS/CdSe quantum dot co-sensitized solar cells based on ordered TiO2 nanotube arrays. Nanotechnology 21:375201-1–375201-7 Huang S, Zhang Q, Huang X, Guo X, Deng M, Li D, Luo Y, Shen Q, Toyoda T, Meng Q (2010) Fibrous CdS/CdSe quantum dot co-sensitized solar cells based on ordered TiO2 nanotube arrays. Nanotechnology 21:375201-1–375201-7
198.
Zurück zum Zitat Talgorn E, Abellon RD, Kooyman PJ, Piris J, Savenije TJ, Goossens A, Houtepen AJ, Siebbeles LDA (2010) Supercrystals of CdSe quantum dots with high charge mobility and efficient electron transfer to TiO2. ACS Nano 4:1723–1731CrossRef Talgorn E, Abellon RD, Kooyman PJ, Piris J, Savenije TJ, Goossens A, Houtepen AJ, Siebbeles LDA (2010) Supercrystals of CdSe quantum dots with high charge mobility and efficient electron transfer to TiO2. ACS Nano 4:1723–1731CrossRef
199.
Zurück zum Zitat Kniprath R, Rabe JP, McLeskey JT Jr, Wang D, Kirstein S (2009) Hybrid photovoltaic cells with II–VI quantum dot sensitizers fabricated by layer-by-layer deposition of water-soluble components. Thin Solid Films 518:295–298CrossRef Kniprath R, Rabe JP, McLeskey JT Jr, Wang D, Kirstein S (2009) Hybrid photovoltaic cells with II–VI quantum dot sensitizers fabricated by layer-by-layer deposition of water-soluble components. Thin Solid Films 518:295–298CrossRef
200.
Zurück zum Zitat Hamada M, Nakanishi S, Itoh T, Ishikawa M, Biju V (2010) Blinking suppression in CdSeCdSe/ZnS single quantum dots by TiO2 nanoparticles. ACS Nano 4:4445–4454CrossRef Hamada M, Nakanishi S, Itoh T, Ishikawa M, Biju V (2010) Blinking suppression in CdSeCdSe/ZnS single quantum dots by TiO2 nanoparticles. ACS Nano 4:4445–4454CrossRef
201.
Zurück zum Zitat Liu Z, Miyauchi M, Uemura Y, Cui Y, Hara K, Zhao Z, Sunahara K, Furube A (2010) Enhancing the performance of quantum dots sensitized solar cell by SiO2 surface coating. Appl Phys Lett 96:233107-1–233107-3 Liu Z, Miyauchi M, Uemura Y, Cui Y, Hara K, Zhao Z, Sunahara K, Furube A (2010) Enhancing the performance of quantum dots sensitized solar cell by SiO2 surface coating. Appl Phys Lett 96:233107-1–233107-3
202.
Zurück zum Zitat Luo L, Lv G, Li B, Hu X, Jin L, Wang J, Tang Y (2010) Formation of aligned ZnO nanotube arrays by chemical etching and coupling with CdSe for photovoltaic application. Thin Solid Films 518:5146–5152CrossRef Luo L, Lv G, Li B, Hu X, Jin L, Wang J, Tang Y (2010) Formation of aligned ZnO nanotube arrays by chemical etching and coupling with CdSe for photovoltaic application. Thin Solid Films 518:5146–5152CrossRef
203.
Zurück zum Zitat Timp BA, Zhu X-Y (2010) Electronic energy alignment at the PbSe quantum dots/ZnO (1010) interface. Surf Sci 604:1335–1341CrossRef Timp BA, Zhu X-Y (2010) Electronic energy alignment at the PbSe quantum dots/ZnO (1010) interface. Surf Sci 604:1335–1341CrossRef
204.
Zurück zum Zitat Huang J, Huang Z, Yang Y, Zhu H, Lian T (2010) Multiple exciton dissociation in CdSe quantum dots by ultrafast electron transfer to adsorbed methylene blue. J Am Chem Soc 132:4858–4864CrossRef Huang J, Huang Z, Yang Y, Zhu H, Lian T (2010) Multiple exciton dissociation in CdSe quantum dots by ultrafast electron transfer to adsorbed methylene blue. J Am Chem Soc 132:4858–4864CrossRef
205.
Zurück zum Zitat Guchhait A, Rath AK, Pal AJ (2009) Hybrid core-shell nanoparticles: photoinduced electron-transfer for charge separation and solar cell applications. Chem Mater 21:5292–5299CrossRef Guchhait A, Rath AK, Pal AJ (2009) Hybrid core-shell nanoparticles: photoinduced electron-transfer for charge separation and solar cell applications. Chem Mater 21:5292–5299CrossRef
206.
Zurück zum Zitat Narayanan SS, Sinhá SS, Verma PK, Pal SK (2008) Ultrafast energy transfer from 3-mercaptopropionic acid capped CdSe/ZnS QDs to dye-labelled DNA. Chem Phys Lett 463:160–165CrossRef Narayanan SS, Sinhá SS, Verma PK, Pal SK (2008) Ultrafast energy transfer from 3-mercaptopropionic acid capped CdSe/ZnS QDs to dye-labelled DNA. Chem Phys Lett 463:160–165CrossRef
207.
Zurück zum Zitat Deepa M, Gakhar R, Joshi AG, Singh BP, Srivastava AK (2010) Enhanced photoelectrochemistry and interactions in cadmium selenide-functionalized multiwalled carbon nanotube composite films. Electrochim Acta 55:6731–6742CrossRef Deepa M, Gakhar R, Joshi AG, Singh BP, Srivastava AK (2010) Enhanced photoelectrochemistry and interactions in cadmium selenide-functionalized multiwalled carbon nanotube composite films. Electrochim Acta 55:6731–6742CrossRef
208.
Zurück zum Zitat Zhang L, Jia Y, Wang S, Li Z, Ji C, Wei J, Zhu H, Wang K, Wu D, Shi W, Fang Y, Cao A (2010) Carbon nanotube and CdSe nanobelt Schottky junction solar cells. Nano Lett 10:3583–3589CrossRef Zhang L, Jia Y, Wang S, Li Z, Ji C, Wei J, Zhu H, Wang K, Wu D, Shi W, Fang Y, Cao A (2010) Carbon nanotube and CdSe nanobelt Schottky junction solar cells. Nano Lett 10:3583–3589CrossRef
209.
Zurück zum Zitat Schulz-Drost C, Sgobba V, Gerhardsm C, Leubner S, Calderon RMK, Ruland A, Guldi DM (2010) Innovative inorganic-organic nanohybrid materials: coupling quantum dots to carbon nanotubes. Angew Chem Int Ed 49:6425–6429CrossRef Schulz-Drost C, Sgobba V, Gerhardsm C, Leubner S, Calderon RMK, Ruland A, Guldi DM (2010) Innovative inorganic-organic nanohybrid materials: coupling quantum dots to carbon nanotubes. Angew Chem Int Ed 49:6425–6429CrossRef
210.
Zurück zum Zitat Chen Z, Berciaud S, Nukolls C, Heinz TF, Brus LE (2010) Energy transfer from individual semiconductor nanocrystals to graphene. ACS Nano 4:2964–2968CrossRef Chen Z, Berciaud S, Nukolls C, Heinz TF, Brus LE (2010) Energy transfer from individual semiconductor nanocrystals to graphene. ACS Nano 4:2964–2968CrossRef
211.
Zurück zum Zitat Biebersdorf A, Dietmuller R, Susha AS, Rogach AL, Poznyak SK, Talapin DV, Weller H, Klar TA, Feldmann J (2006) Semiconductor nanocrystals photosensitize C-60 crystals. Nano Lett 6:1559–1563CrossRef Biebersdorf A, Dietmuller R, Susha AS, Rogach AL, Poznyak SK, Talapin DV, Weller H, Klar TA, Feldmann J (2006) Semiconductor nanocrystals photosensitize C-60 crystals. Nano Lett 6:1559–1563CrossRef
212.
Zurück zum Zitat Chen H-Y, Lo MKF, Yang G, Monbouquette HG, Yang Y (2008) Nanoparticle-assisted high photoconductive gain in composites of polymer and fullerene. Nat Nanotechnol 3:543–547CrossRef Chen H-Y, Lo MKF, Yang G, Monbouquette HG, Yang Y (2008) Nanoparticle-assisted high photoconductive gain in composites of polymer and fullerene. Nat Nanotechnol 3:543–547CrossRef
213.
Zurück zum Zitat de Freitas JN, Nogueira AF (2010) Hybrid nanostructured solar cells based on the incorporation of inorganic nanoparticles in polymer-fullerene mixtures. Proc SPIE Int Soc Opt Eng 7772:77721K. doi:10.1117/12.862510 de Freitas JN, Nogueira AF (2010) Hybrid nanostructured solar cells based on the incorporation of inorganic nanoparticles in polymer-fullerene mixtures. Proc SPIE Int Soc Opt Eng 7772:77721K. doi:10.​1117/​12.​862510
214.
Zurück zum Zitat Xue B, Vaughan B, Poh C-H, Burke KB, Thomsen L, Stapleton A, Zhou X, Bryant GW, Belcher W, Dastoor PC (2010) Vertical stratification and interfacial structure in P3HT:PCBM organic solar cells. J Phys Chem C 114:15797–15805CrossRef Xue B, Vaughan B, Poh C-H, Burke KB, Thomsen L, Stapleton A, Zhou X, Bryant GW, Belcher W, Dastoor PC (2010) Vertical stratification and interfacial structure in P3HT:PCBM organic solar cells. J Phys Chem C 114:15797–15805CrossRef
215.
Zurück zum Zitat Huang Y-C, Liao Y-C, Li S-S, Wu M-C, Chen C-W, Su W-F (2009) Study of the effect of annealing process on the performance of P3HT/PCBM photovoltaic devices using scanning-probe microscopy. Sol Energy Mater Sol Cells 93:888–892CrossRef Huang Y-C, Liao Y-C, Li S-S, Wu M-C, Chen C-W, Su W-F (2009) Study of the effect of annealing process on the performance of P3HT/PCBM photovoltaic devices using scanning-probe microscopy. Sol Energy Mater Sol Cells 93:888–892CrossRef
216.
Zurück zum Zitat Dante M, Peet J, Nguyen T-Q (2008) Nanoscale charge transport and internal structure of bulk heterojunction conjugated polymer/fullerene solar cells by scanning probe microscopy. J Phys Chem C 112:7241–7249CrossRef Dante M, Peet J, Nguyen T-Q (2008) Nanoscale charge transport and internal structure of bulk heterojunction conjugated polymer/fullerene solar cells by scanning probe microscopy. J Phys Chem C 112:7241–7249CrossRef
217.
Zurück zum Zitat Zhao Y, Xie Z, Qu Y, Geng Y, Wang L (2007) Solvent-vapor treatment induced performance enhancement of poly(3-hexylthiophene):methanofullerene bulk heterojunction photovoltaic cells. Appl Phys Lett 90:043504-1–043504-3 Zhao Y, Xie Z, Qu Y, Geng Y, Wang L (2007) Solvent-vapor treatment induced performance enhancement of poly(3-hexylthiophene):methanofullerene bulk heterojunction photovoltaic cells. Appl Phys Lett 90:043504-1–043504-3
218.
Zurück zum Zitat Watts B, Belcher WJ, Thomsen L, Ade H, Dastoor PC (2009) A quantitative study of PCBM diffusion during annealing of P3HT:PCBM blend films. Macromolecules 42:8392–8397CrossRef Watts B, Belcher WJ, Thomsen L, Ade H, Dastoor PC (2009) A quantitative study of PCBM diffusion during annealing of P3HT:PCBM blend films. Macromolecules 42:8392–8397CrossRef
219.
Zurück zum Zitat Alves JPD, de Freitas JN, Atvars TDZ, Nogueira AF (2013) Photophysical and photovoltaic properties of a polymer-fullerene system containing CdSe nanoparticles. Synth Met 164:69–77CrossRef Alves JPD, de Freitas JN, Atvars TDZ, Nogueira AF (2013) Photophysical and photovoltaic properties of a polymer-fullerene system containing CdSe nanoparticles. Synth Met 164:69–77CrossRef
220.
Zurück zum Zitat Cao F, Wang H, Xia Z, Dai X, Cong S, Dong C, Sun B, Lou Y, Sun Y, Zhao J, Zou G (2015) An alternative route towards monodisperse CdS quantum dots for hybrid solar cells. Mater Chem Phys 149–150:124–128CrossRef Cao F, Wang H, Xia Z, Dai X, Cong S, Dong C, Sun B, Lou Y, Sun Y, Zhao J, Zou G (2015) An alternative route towards monodisperse CdS quantum dots for hybrid solar cells. Mater Chem Phys 149–150:124–128CrossRef
221.
Zurück zum Zitat Sharma |R, Bhalerao S, Gupta D (2016) Effect of incorporation of CdS NPs on performance of PTB7: PCBM organic solar cells. Org Electron 33:274–280CrossRef Sharma |R, Bhalerao S, Gupta D (2016) Effect of incorporation of CdS NPs on performance of PTB7: PCBM organic solar cells. Org Electron 33:274–280CrossRef
222.
Zurück zum Zitat Leventis HC, King SP, Sudlow A, Hill MS, Molloy KC, Haque SA (2010) Nanostructured hybrid polymer-inorganic solar cell active layers formed by controllable in situ growth of semiconducting sulfide networks. Nano Lett 10:1253–1258CrossRef Leventis HC, King SP, Sudlow A, Hill MS, Molloy KC, Haque SA (2010) Nanostructured hybrid polymer-inorganic solar cell active layers formed by controllable in situ growth of semiconducting sulfide networks. Nano Lett 10:1253–1258CrossRef
223.
Zurück zum Zitat Xi DJ, Zhang H, Furst S, Chen B, Pei Q (2008) Electrochemical synthesis and photovoltaic property of cadmium sulfide-polybithiophene interdigitated nanohybrid thin films. J Phys Chem C 112:19765–19769CrossRef Xi DJ, Zhang H, Furst S, Chen B, Pei Q (2008) Electrochemical synthesis and photovoltaic property of cadmium sulfide-polybithiophene interdigitated nanohybrid thin films. J Phys Chem C 112:19765–19769CrossRef
224.
Zurück zum Zitat Aldakov D, Jiu T, Zagorska M, de Bettignies R, Jouneau P-H, Pron A, Chandezon F (2010) Hybrid nanocomposites of CdSe nanocrystals distributed in complexing thiophene-based copolymers. Phys Chem Chem Phys 12:7497–7505CrossRef Aldakov D, Jiu T, Zagorska M, de Bettignies R, Jouneau P-H, Pron A, Chandezon F (2010) Hybrid nanocomposites of CdSe nanocrystals distributed in complexing thiophene-based copolymers. Phys Chem Chem Phys 12:7497–7505CrossRef
225.
Zurück zum Zitat Wise F (2000) Lead salt quantum dots: the limit of strong quantum confinement. Acc Chem Res 33:773–780CrossRef Wise F (2000) Lead salt quantum dots: the limit of strong quantum confinement. Acc Chem Res 33:773–780CrossRef
226.
Zurück zum Zitat Ma W, Swisher SL, Ewers T, Engel J, Ferry VE, Atwater HA, Alivisatos AP (2011) Photovoltaic performance of ultrasmall PbSe quantum dots. ACS Nano 5:8140–8147CrossRef Ma W, Swisher SL, Ewers T, Engel J, Ferry VE, Atwater HA, Alivisatos AP (2011) Photovoltaic performance of ultrasmall PbSe quantum dots. ACS Nano 5:8140–8147CrossRef
227.
Zurück zum Zitat Scholes GD, Rumbles G (2006) Exciton in nanoscales systems. ACS Nano 5:683–693 Scholes GD, Rumbles G (2006) Exciton in nanoscales systems. ACS Nano 5:683–693
228.
Zurück zum Zitat Morrels I, Lambert K, Smeets D, De Muynck D, Nollet T, Martins JC, Vanhaecke F, Vantomme A, Delerue C, Allan G, Hens Z (2009) Size-dependent optical properties of colloidal PbS quantum dots. ACS Nano 3:3023–3030CrossRef Morrels I, Lambert K, Smeets D, De Muynck D, Nollet T, Martins JC, Vanhaecke F, Vantomme A, Delerue C, Allan G, Hens Z (2009) Size-dependent optical properties of colloidal PbS quantum dots. ACS Nano 3:3023–3030CrossRef
229.
Zurück zum Zitat Hines MA, Scholes D (2003) Colloidal PbS nanocrystal with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution. Adv Mater 15:1844–1849CrossRef Hines MA, Scholes D (2003) Colloidal PbS nanocrystal with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution. Adv Mater 15:1844–1849CrossRef
230.
Zurück zum Zitat Watt AAR, Blake D, Warner JH, Thomsen EA, Tavenner AL, Rubinsztein-Dunlop H (2005) Lead sulphide nanocrystal: conducting polymer solar cells. J Phys D Appl Phys 38:2006–2012CrossRef Watt AAR, Blake D, Warner JH, Thomsen EA, Tavenner AL, Rubinsztein-Dunlop H (2005) Lead sulphide nanocrystal: conducting polymer solar cells. J Phys D Appl Phys 38:2006–2012CrossRef
231.
Zurück zum Zitat Cui D, Xu J, Zhu T, Paradee G, Ashok S, Gerhold M (2006) Harvest of near infrared light in PbSe nanocrystal-polymer hybrid photovoltaic solar cells. Appl Phys Lett 88:183111-1–183111-3CrossRef Cui D, Xu J, Zhu T, Paradee G, Ashok S, Gerhold M (2006) Harvest of near infrared light in PbSe nanocrystal-polymer hybrid photovoltaic solar cells. Appl Phys Lett 88:183111-1–183111-3CrossRef
232.
Zurück zum Zitat Jiang X, Schaller RD, Lee SB, Pietryga JM, Klimov VI, Zakhidov AA (2007) PbSe nanocrystal/conducting polymer solar cells with an infrared response to 2 micron. J Mater Res 22:2204–2210CrossRef Jiang X, Schaller RD, Lee SB, Pietryga JM, Klimov VI, Zakhidov AA (2007) PbSe nanocrystal/conducting polymer solar cells with an infrared response to 2 micron. J Mater Res 22:2204–2210CrossRef
233.
Zurück zum Zitat Thapa R, Choudhury KR, Kim WJ, Sahoo Y, Cartwright AN, Prasad PN (2007) Polymeric nanocomposite infrared photovoltaics enhanced by pentacene. Appl Phys Lett 90:252112-1–252112-3CrossRef Thapa R, Choudhury KR, Kim WJ, Sahoo Y, Cartwright AN, Prasad PN (2007) Polymeric nanocomposite infrared photovoltaics enhanced by pentacene. Appl Phys Lett 90:252112-1–252112-3CrossRef
234.
Zurück zum Zitat McDonald SA, Konstantatos G, Zhang S, Cyr PW, Klem EJD, Levina L, Sargent EH (2005) Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat Mater 4:138–142CrossRef McDonald SA, Konstantatos G, Zhang S, Cyr PW, Klem EJD, Levina L, Sargent EH (2005) Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat Mater 4:138–142CrossRef
235.
Zurück zum Zitat Maria A, Cyr PW, Klem EJD, Levina L, Sargent EH (2005) Solution-processed infrared photovoltaic devices with >10% momochomatic internal quantum efficiency. Appl Phys Lett 87:213112–213113CrossRef Maria A, Cyr PW, Klem EJD, Levina L, Sargent EH (2005) Solution-processed infrared photovoltaic devices with >10% momochomatic internal quantum efficiency. Appl Phys Lett 87:213112–213113CrossRef
236.
Zurück zum Zitat Seo J, Kim SJ, Kim WJ, Singh R, Samoc M, Cartweight AN, Prasad PN (2009) Enchancement of the photovoltaic performance in PbS nanocrystal:P3HT hybrid composite devices by post-treatment-driven ligand exchange. Nanotechnology 20:095202-1–095202-6CrossRef Seo J, Kim SJ, Kim WJ, Singh R, Samoc M, Cartweight AN, Prasad PN (2009) Enchancement of the photovoltaic performance in PbS nanocrystal:P3HT hybrid composite devices by post-treatment-driven ligand exchange. Nanotechnology 20:095202-1–095202-6CrossRef
237.
Zurück zum Zitat de Freitas JN, Gonçalves AS, Nogueira AF (2014) A comprehensive review of the application of chalcogenide nanoparticles in polymer solar cells. Nanoscale 6:6371–6397CrossRef de Freitas JN, Gonçalves AS, Nogueira AF (2014) A comprehensive review of the application of chalcogenide nanoparticles in polymer solar cells. Nanoscale 6:6371–6397CrossRef
238.
Zurück zum Zitat Noone KM, Strein E, Anderson NC, Wu P-T, Jenekhe SA, Ginger DS (2010) Broadband absorbing bulk heterojunction photovoltaics using low-bandgap solution-processed quantum dots. Nano Lett 10:2635–2639CrossRef Noone KM, Strein E, Anderson NC, Wu P-T, Jenekhe SA, Ginger DS (2010) Broadband absorbing bulk heterojunction photovoltaics using low-bandgap solution-processed quantum dots. Nano Lett 10:2635–2639CrossRef
239.
Zurück zum Zitat Klem EJD, MacNeil DD, Cyr PW, Levina L, Sargent EH (2007) Efficient solution-processed infrared photovoltaic cells: planarized all-inorganic bulk heterojunction devices via inter-quantum-dot bridging during growth from solution. Appl Phys Lett 90:183113-1–183113-3CrossRef Klem EJD, MacNeil DD, Cyr PW, Levina L, Sargent EH (2007) Efficient solution-processed infrared photovoltaic cells: planarized all-inorganic bulk heterojunction devices via inter-quantum-dot bridging during growth from solution. Appl Phys Lett 90:183113-1–183113-3CrossRef
240.
Zurück zum Zitat Luther JM, Law M, Beard MC, Song Q, Reese MO, Ellingson RJ, Nozik AJ (2008) Schottky solar cells based on colloidal nanocrystal films. Nano Lett 8:3488–3492CrossRef Luther JM, Law M, Beard MC, Song Q, Reese MO, Ellingson RJ, Nozik AJ (2008) Schottky solar cells based on colloidal nanocrystal films. Nano Lett 8:3488–3492CrossRef
241.
Zurück zum Zitat Greaney MJ, Brutchey RL (2015) Ligand engineering in hybrid polymer:nanocrystal solar cells. Mater Today 18:31–38CrossRef Greaney MJ, Brutchey RL (2015) Ligand engineering in hybrid polymer:nanocrystal solar cells. Mater Today 18:31–38CrossRef
242.
Zurück zum Zitat Seo J, Cho MJ, Lee D, Cartwright Prasad PN (2011) Efficient heterojunction photovoltaic cell utilizing nanocomposites of lead sulphide nanocrystals and a low-bandgap polymer. Adv Mater 8:3984–3988CrossRef Seo J, Cho MJ, Lee D, Cartwright Prasad PN (2011) Efficient heterojunction photovoltaic cell utilizing nanocomposites of lead sulphide nanocrystals and a low-bandgap polymer. Adv Mater 8:3984–3988CrossRef
243.
Zurück zum Zitat Zhang Y, Li Z, Ouyang J, Tsang S-W, Lu J, Yu K, Ding J, Tao Y (2012) Hole transfer from PbS nanocrystal quantum dots to polymers and efficient hybrid solar cells utilizing infrared photons. Org Electron 13:2773–2780CrossRef Zhang Y, Li Z, Ouyang J, Tsang S-W, Lu J, Yu K, Ding J, Tao Y (2012) Hole transfer from PbS nanocrystal quantum dots to polymers and efficient hybrid solar cells utilizing infrared photons. Org Electron 13:2773–2780CrossRef
244.
Zurück zum Zitat Pilliego C, Manca M, Kroon R, Yarema M, Szendrei K, Andersson MR, Heiss W, Loi MA (2012) Charge separation dynamics in a narrow band gap polymer-PbS nanocrystal blend for efficient hybrid solar cells. J Mater Chem 22:24411–24416CrossRef Pilliego C, Manca M, Kroon R, Yarema M, Szendrei K, Andersson MR, Heiss W, Loi MA (2012) Charge separation dynamics in a narrow band gap polymer-PbS nanocrystal blend for efficient hybrid solar cells. J Mater Chem 22:24411–24416CrossRef
245.
Zurück zum Zitat Liu Z, Sun Y, Yuan J, Wei H, Huang X, Han L, Wang W, Wang H, Ma W (2013) High-efficiency hybrid solar cells based on polymer/PbS x Se1−x nanocrystals benefiting from vertical phase segregation. Adv Mater 25:5772–5778CrossRef Liu Z, Sun Y, Yuan J, Wei H, Huang X, Han L, Wang W, Wang H, Ma W (2013) High-efficiency hybrid solar cells based on polymer/PbS x Se1−x nanocrystals benefiting from vertical phase segregation. Adv Mater 25:5772–5778CrossRef
246.
Zurück zum Zitat Nam M, Kim S, Kim S, Kim S-W, Lee K (2013) Efficient hybrid solar cells using PbS x Se1−x quantum dots and nanorods for broad-range photon absorption and well-assembled charge transfer networks. Nanoscale 5:8202–8209CrossRef Nam M, Kim S, Kim S, Kim S-W, Lee K (2013) Efficient hybrid solar cells using PbS x Se1−x quantum dots and nanorods for broad-range photon absorption and well-assembled charge transfer networks. Nanoscale 5:8202–8209CrossRef
247.
Zurück zum Zitat Colbert AE, Janke EM, Hsieh ST, Subramaniyan S, Schlenker CW, Jenekhe SA, Ginger DS (2013) Hole transfer from low band gap quantum dots to conjugated polymers in organic/inorganic hybrid photovoltaics. J Phys Chem Lett 4:280–284CrossRef Colbert AE, Janke EM, Hsieh ST, Subramaniyan S, Schlenker CW, Jenekhe SA, Ginger DS (2013) Hole transfer from low band gap quantum dots to conjugated polymers in organic/inorganic hybrid photovoltaics. J Phys Chem Lett 4:280–284CrossRef
248.
Zurück zum Zitat Nam M, Park J, Kim S-W, Lee K (2014) Broadband-absorbing hybrid solar cells with efficiency greater than 3% based on a bulk heterojunction of PbS quantum dots and a low-bandgap polymer. J Mater Chem A 2:3978–3985CrossRef Nam M, Park J, Kim S-W, Lee K (2014) Broadband-absorbing hybrid solar cells with efficiency greater than 3% based on a bulk heterojunction of PbS quantum dots and a low-bandgap polymer. J Mater Chem A 2:3978–3985CrossRef
249.
Zurück zum Zitat Yuan J, Gallagher A, Liu Z, Sun Y, Ma W (2015) High-efficiency polymer-PbS hybrid solar cells via molecular engineering. J Mater Chem A 3:2572–2579CrossRef Yuan J, Gallagher A, Liu Z, Sun Y, Ma W (2015) High-efficiency polymer-PbS hybrid solar cells via molecular engineering. J Mater Chem A 3:2572–2579CrossRef
250.
Zurück zum Zitat Firdaus Y, Vandenplas E, Justo Y, Gehlhaar R, Cheyns D, Hens Z, Van der Aueraer M (2014) Enhancement of the photovoltaic performance in P3HT:PbS hybrid solar cells using small size PbS quantum dots. J Appl Phys 118:094305-1–094305-7 Firdaus Y, Vandenplas E, Justo Y, Gehlhaar R, Cheyns D, Hens Z, Van der Aueraer M (2014) Enhancement of the photovoltaic performance in P3HT:PbS hybrid solar cells using small size PbS quantum dots. J Appl Phys 118:094305-1–094305-7
251.
Zurück zum Zitat Firdaus Y, Miranti R, Fron E, Khetubol A, Vandenplas E, Cheyns D, Borchert H, Parisi J, Van der Aueraer M (2015) Charge separation dynamics at bulk heterojunctions between poly(3-hexylthiophene) and PbS quantum dots. J Appl Phys 118:055502-1–055502-16CrossRef Firdaus Y, Miranti R, Fron E, Khetubol A, Vandenplas E, Cheyns D, Borchert H, Parisi J, Van der Aueraer M (2015) Charge separation dynamics at bulk heterojunctions between poly(3-hexylthiophene) and PbS quantum dots. J Appl Phys 118:055502-1–055502-16CrossRef
252.
Zurück zum Zitat Borrielo C, Bruno A, Diana R, Di Luccio T, Morvillo P, Ricciardi R, Villani F, Minarini C (2015) PbS nanocrystals in hybrid systems for solar cell applications. Phys Status Solidi A 212:245–251CrossRef Borrielo C, Bruno A, Diana R, Di Luccio T, Morvillo P, Ricciardi R, Villani F, Minarini C (2015) PbS nanocrystals in hybrid systems for solar cell applications. Phys Status Solidi A 212:245–251CrossRef
253.
Zurück zum Zitat Giansante C, Mastria R, Lerario G, Moretti L, Kriegel I, Scotognella F, Lanzini G, Carallo S, Esposito M, Biasiucci M, Rizzo A, Gigli G (2015) Molecular-level switching of polymer/nanocrystal non-covalent interactions and application in hybrid solar cells. Adv Funct Mater 25:111–119CrossRef Giansante C, Mastria R, Lerario G, Moretti L, Kriegel I, Scotognella F, Lanzini G, Carallo S, Esposito M, Biasiucci M, Rizzo A, Gigli G (2015) Molecular-level switching of polymer/nanocrystal non-covalent interactions and application in hybrid solar cells. Adv Funct Mater 25:111–119CrossRef
254.
Zurück zum Zitat Alves JPC (2017) Troca de ligantes em nanopartículas de PbS: influência sobre as propriedades fotofísicas, morfológicas e fotovoltaicas de filmes híbridos. PhD thesis. Universidade Estadual de Campinas Alves JPC (2017) Troca de ligantes em nanopartículas de PbS: influência sobre as propriedades fotofísicas, morfológicas e fotovoltaicas de filmes híbridos. PhD thesis. Universidade Estadual de Campinas
255.
Zurück zum Zitat Kahmann S, Mura A, Protesescu L, Kovalenko MV, Brabec CJ, Loi MA (2015) Opto-electronics of PbS quantum dot and a narrow bandgap polymer blens. J Mater Chem C 5:5499–5505CrossRef Kahmann S, Mura A, Protesescu L, Kovalenko MV, Brabec CJ, Loi MA (2015) Opto-electronics of PbS quantum dot and a narrow bandgap polymer blens. J Mater Chem C 5:5499–5505CrossRef
256.
Zurück zum Zitat Choi JJ, Luria J, Hyun B-R, Bartnik AC, Sun L, Lim Y-F, Marohn JA, Wise FW, Hanrath T (2010) Photogenerated exciton dissociation in highly coupled lead salt nanocrystal assemblies. Nano Lett 10:1805–1811CrossRef Choi JJ, Luria J, Hyun B-R, Bartnik AC, Sun L, Lim Y-F, Marohn JA, Wise FW, Hanrath T (2010) Photogenerated exciton dissociation in highly coupled lead salt nanocrystal assemblies. Nano Lett 10:1805–1811CrossRef
257.
Zurück zum Zitat Mastria R, Rizzo A, Giansante C, Ballarini D, Dominici L, Igañas O, Gigli G (2015) Role of polymer in hybrid polymer/PbS quantum dot solar cells. J Phys Chem C 119:14972–14979CrossRef Mastria R, Rizzo A, Giansante C, Ballarini D, Dominici L, Igañas O, Gigli G (2015) Role of polymer in hybrid polymer/PbS quantum dot solar cells. J Phys Chem C 119:14972–14979CrossRef
258.
Zurück zum Zitat Colbert AE, Wu W, Janke EM, Ma F, Ginger DS (2015) Effects of ligands on charge generation and recombination in hybrid polymer/quantum dots solar cells. J Phys Chem C 119:24733–24739CrossRef Colbert AE, Wu W, Janke EM, Ma F, Ginger DS (2015) Effects of ligands on charge generation and recombination in hybrid polymer/quantum dots solar cells. J Phys Chem C 119:24733–24739CrossRef
259.
Zurück zum Zitat Lu H, Joy J, Gaspar RL, Bradforth SE, Brutchey RL (2016) Iodide-passivated colloidal PbS nanocrystals leading to highly efficient polymer:nanocrystal hybrid solar cells. Chem Mater 28:1897–1906CrossRef Lu H, Joy J, Gaspar RL, Bradforth SE, Brutchey RL (2016) Iodide-passivated colloidal PbS nanocrystals leading to highly efficient polymer:nanocrystal hybrid solar cells. Chem Mater 28:1897–1906CrossRef
260.
Zurück zum Zitat Kisslinger R, Hua W, Shankar K (2017) Bulk heterojunction solar cells based on blends of conjugated polymers with II–IV and IV–VI inorganic semiconductor quantum dots. Polymers 9:35-1–35-29CrossRef Kisslinger R, Hua W, Shankar K (2017) Bulk heterojunction solar cells based on blends of conjugated polymers with II–IV and IV–VI inorganic semiconductor quantum dots. Polymers 9:35-1–35-29CrossRef
261.
Zurück zum Zitat Lan X, Voznyy O, de Arquer FPG, Liu M, Xu J, Proppe AH, Walters G, Fan F, Tan H, Liu M, Yang Z, Hoogland S, Sargent EH (2016) 10.6% certified colloidal quantum dot solar cells via solvent-polarity-engineered halide passivation. Nano Lett 16:4630–4634CrossRef Lan X, Voznyy O, de Arquer FPG, Liu M, Xu J, Proppe AH, Walters G, Fan F, Tan H, Liu M, Yang Z, Hoogland S, Sargent EH (2016) 10.6% certified colloidal quantum dot solar cells via solvent-polarity-engineered halide passivation. Nano Lett 16:4630–4634CrossRef
263.
Zurück zum Zitat Henglein A (1993) Physical properties of small metal particles in solution—microelectrode reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J Phys Chem 97:5457–5471CrossRef Henglein A (1993) Physical properties of small metal particles in solution—microelectrode reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J Phys Chem 97:5457–5471CrossRef
264.
Zurück zum Zitat Kreibig U, Vollmer M (1996) Optical Properties of Metal Clusters. Springer, Berlin Kreibig U, Vollmer M (1996) Optical Properties of Metal Clusters. Springer, Berlin
265.
Zurück zum Zitat Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677CrossRef Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677CrossRef
266.
Zurück zum Zitat Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788–800CrossRef Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788–800CrossRef
267.
Zurück zum Zitat Underwood S, Mulvaney P (1994) Effect of the solution refractive-index on the color of gold colloids. Langmuir 10:3427–3430CrossRef Underwood S, Mulvaney P (1994) Effect of the solution refractive-index on the color of gold colloids. Langmuir 10:3427–3430CrossRef
268.
Zurück zum Zitat Ung T, Liz-Marzan LM, Mulvaney P (2001) Optical properties of thin films of Au@SiO2 particles. J Phys Chem B 105:3441–3452CrossRef Ung T, Liz-Marzan LM, Mulvaney P (2001) Optical properties of thin films of Au@SiO2 particles. J Phys Chem B 105:3441–3452CrossRef
269.
Zurück zum Zitat Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103:8410–8426CrossRef Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103:8410–8426CrossRef
270.
Zurück zum Zitat Alvarez MM, Khoury JT, Schaaff TG, Shafigullin MN, Vezmar I, Whetten RL (1997) Optical absorption spectra of nanocrystal gold molecules. J Phys Chem B 101:3706–3712CrossRef Alvarez MM, Khoury JT, Schaaff TG, Shafigullin MN, Vezmar I, Whetten RL (1997) Optical absorption spectra of nanocrystal gold molecules. J Phys Chem B 101:3706–3712CrossRef
271.
Zurück zum Zitat Kreibig U, Genzel L (1985) Optical-absorption of small metallic particles. Surf Sci 156:678–700CrossRef Kreibig U, Genzel L (1985) Optical-absorption of small metallic particles. Surf Sci 156:678–700CrossRef
272.
Zurück zum Zitat Schaadt DM, Feng B, Yu ET (2005) Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl Phys Lett 86:063106-1–063106-3CrossRef Schaadt DM, Feng B, Yu ET (2005) Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl Phys Lett 86:063106-1–063106-3CrossRef
273.
Zurück zum Zitat Catchpole KR, Polman A (2008) Plasmonic solar cells. Opt Express 16:21739–21800CrossRef Catchpole KR, Polman A (2008) Plasmonic solar cells. Opt Express 16:21739–21800CrossRef
274.
Zurück zum Zitat Akimov YA, Koh WS (2010) Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells. Nanotechnology 21:235201-1–235201-6CrossRef Akimov YA, Koh WS (2010) Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells. Nanotechnology 21:235201-1–235201-6CrossRef
275.
Zurück zum Zitat Pillai S, Catchpole KR, Trupke T, Green MA (2007) Surface plasmon enhanced silicon solar cells. J Appl Phys 101:093105–1–093105-8CrossRef Pillai S, Catchpole KR, Trupke T, Green MA (2007) Surface plasmon enhanced silicon solar cells. J Appl Phys 101:093105–1–093105-8CrossRef
276.
Zurück zum Zitat Hägglund C, Zäch M, Petersson G, Kasemo B (2008) Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons. Appl Phys Lett 92:053110–1–053110-3 Hägglund C, Zäch M, Petersson G, Kasemo B (2008) Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons. Appl Phys Lett 92:053110–1–053110-3
277.
Zurück zum Zitat Akimov YA, Koh WS, Ostrikov K (2009) Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes. Opt Express 17:10195–10205CrossRef Akimov YA, Koh WS, Ostrikov K (2009) Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes. Opt Express 17:10195–10205CrossRef
278.
Zurück zum Zitat Temple TL, Mehanama GDK, Reehal HS, Bagnall DM (2009) Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells. Sol Energy Mater Sol Cells 93:1978–1985CrossRef Temple TL, Mehanama GDK, Reehal HS, Bagnall DM (2009) Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells. Sol Energy Mater Sol Cells 93:1978–1985CrossRef
279.
Zurück zum Zitat Akimov YA, Ostrikov K, Li EP (2009) Surface plasmon enhancement of optical absorption in thin-film silicon solar cells. Plasmonics 4:107–113CrossRef Akimov YA, Ostrikov K, Li EP (2009) Surface plasmon enhancement of optical absorption in thin-film silicon solar cells. Plasmonics 4:107–113CrossRef
280.
Zurück zum Zitat Ferry VE, Verschuuren MA, Li HBT, Verhagen E, Walters RJ, Schropp REI, Atwater HA, Polman A (2010) Light trapping in ultrathin plasmonic solar cells. Opt Express 18:A237–A245CrossRef Ferry VE, Verschuuren MA, Li HBT, Verhagen E, Walters RJ, Schropp REI, Atwater HA, Polman A (2010) Light trapping in ultrathin plasmonic solar cells. Opt Express 18:A237–A245CrossRef
281.
Zurück zum Zitat Pala RA, White J, Barnard E, Liu J, Brongersma ML (2009) Design of plasmonic thin-film solar cells with broadband absorption enhancements. Adv Mater 21:3504–3509CrossRef Pala RA, White J, Barnard E, Liu J, Brongersma ML (2009) Design of plasmonic thin-film solar cells with broadband absorption enhancements. Adv Mater 21:3504–3509CrossRef
282.
Zurück zum Zitat Catchpole KR, Polman A (2008) Design principles for particle plasmon enhanced solar cells. Appl Phys Lett 93:191113-1–191113-3CrossRef Catchpole KR, Polman A (2008) Design principles for particle plasmon enhanced solar cells. Appl Phys Lett 93:191113-1–191113-3CrossRef
283.
Zurück zum Zitat Nakayama K, Tanabe K, Atwater HA (2008) Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Appl Phys Lett 93:121904-1–121904-3 Nakayama K, Tanabe K, Atwater HA (2008) Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Appl Phys Lett 93:121904-1–121904-3
284.
Zurück zum Zitat Pryce IM, Koleske DD, Fischer AJ, Atwater HA (2010) Plasmonic nanoparticle enhanced photocurrent in GaN/InGaN/GaN quantum well solar cells. Appl Phys Lett 96:153501-1–153501-3CrossRef Pryce IM, Koleske DD, Fischer AJ, Atwater HA (2010) Plasmonic nanoparticle enhanced photocurrent in GaN/InGaN/GaN quantum well solar cells. Appl Phys Lett 96:153501-1–153501-3CrossRef
285.
Zurück zum Zitat Hägglund C, Zach M, Kasemo B (2008) Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons. Appl Phys Lett 92:013113-1–013113-3 Hägglund C, Zach M, Kasemo B (2008) Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons. Appl Phys Lett 92:013113-1–013113-3
286.
Zurück zum Zitat Standridge SD, Schatz GC, Hupp JT (2009) Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells. J Am Chem Soc 131:8407–8409CrossRef Standridge SD, Schatz GC, Hupp JT (2009) Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells. J Am Chem Soc 131:8407–8409CrossRef
287.
Zurück zum Zitat Du L, Furube A, Yamamoto K, Hara K, Katoh R, Tachiya M (2009) Plasmon-induced charge separation and recombination dynamics in gold-TiO2 nanoparticle systems: dependence on TiO2 particle size. J Phys Chem C 113:6454–6462CrossRef Du L, Furube A, Yamamoto K, Hara K, Katoh R, Tachiya M (2009) Plasmon-induced charge separation and recombination dynamics in gold-TiO2 nanoparticle systems: dependence on TiO2 particle size. J Phys Chem C 113:6454–6462CrossRef
288.
Zurück zum Zitat Sudeep PK, Takechi K, Kamat PV (2007) Harvesting photons in the infrared. Electron injection from excited tricarbocyanine dye (IR-125) into TiO2 and Ag@TiO2 core-shell nanoparticles. J Phys Chem C 111:488–494CrossRef Sudeep PK, Takechi K, Kamat PV (2007) Harvesting photons in the infrared. Electron injection from excited tricarbocyanine dye (IR-125) into TiO2 and Ag@TiO2 core-shell nanoparticles. J Phys Chem C 111:488–494CrossRef
289.
Zurück zum Zitat Kathiravan A, Kumar PS, Renganathan R, Anandan S (2009) Photoinduced electron transfer reactions between meso-tetrakis(4-sulfonatophenyl)porphyrin and colloidal metal-semiconductor nanoparticles. Colloids Surf A 333:175–181CrossRef Kathiravan A, Kumar PS, Renganathan R, Anandan S (2009) Photoinduced electron transfer reactions between meso-tetrakis(4-sulfonatophenyl)porphyrin and colloidal metal-semiconductor nanoparticles. Colloids Surf A 333:175–181CrossRef
290.
291.
Zurück zum Zitat McFarland EW, Tang J (2003) A photovoltaic device structure based on internal electron emission. Nature 421:616–618CrossRef McFarland EW, Tang J (2003) A photovoltaic device structure based on internal electron emission. Nature 421:616–618CrossRef
292.
Zurück zum Zitat Hussain AM, Neppolian B, Kim SH, Kim JY, Choi H-C, Lee K, Park S-J, Heeger AJ (2009) Improved performance of polymer light-emitting diodes with nanocomposites. Appl Phys Lett 94:073306-1–073306-3CrossRef Hussain AM, Neppolian B, Kim SH, Kim JY, Choi H-C, Lee K, Park S-J, Heeger AJ (2009) Improved performance of polymer light-emitting diodes with nanocomposites. Appl Phys Lett 94:073306-1–073306-3CrossRef
293.
Zurück zum Zitat Dhas V, Muduli S, Lee W, Han S-H, Ogale S (2008) Enhanced conversion efficiency in dye-sensitized solar cells based on ZnO bifunctional nanoflowers loaded with gold nanoparticles. Appl Phys Lett 93:243108-1–243108-3CrossRef Dhas V, Muduli S, Lee W, Han S-H, Ogale S (2008) Enhanced conversion efficiency in dye-sensitized solar cells based on ZnO bifunctional nanoflowers loaded with gold nanoparticles. Appl Phys Lett 93:243108-1–243108-3CrossRef
294.
Zurück zum Zitat Chen ZH, Tang YB, Liu CP, Leung YH, Yun GD, Chen LM, Wang YQ, Bello I, Zapien JA, Zhang WJ, Lee CS, Lee ST (2009) Vertically aligned ZnO nanorod arrays sensitized with gold nanoparticles for Schottky barrier photovoltaic cells. J Phys Chem C 113:13433–13437CrossRef Chen ZH, Tang YB, Liu CP, Leung YH, Yun GD, Chen LM, Wang YQ, Bello I, Zapien JA, Zhang WJ, Lee CS, Lee ST (2009) Vertically aligned ZnO nanorod arrays sensitized with gold nanoparticles for Schottky barrier photovoltaic cells. J Phys Chem C 113:13433–13437CrossRef
295.
Zurück zum Zitat Peh CKN, Ke L, Ho GW (2010) Modification of ZnO nanorods through Au nanoparticles surface coating for dye-sensitized solar cells applications. Mater Lett 64:1372–1375CrossRef Peh CKN, Ke L, Ho GW (2010) Modification of ZnO nanorods through Au nanoparticles surface coating for dye-sensitized solar cells applications. Mater Lett 64:1372–1375CrossRef
296.
Zurück zum Zitat Jakob M, Levanon H, Kamat PV (2003) Charge distribution between UV-irradiated TiO2 and gold nanoparticles: determination of shift in the Fermi level. Nano Lett 3:353–358CrossRef Jakob M, Levanon H, Kamat PV (2003) Charge distribution between UV-irradiated TiO2 and gold nanoparticles: determination of shift in the Fermi level. Nano Lett 3:353–358CrossRef
297.
Zurück zum Zitat Furube A, Du L, Hara K, Katoh R, Tachiya M (2007) Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. J Am Chem Soc 129:14852–14853CrossRef Furube A, Du L, Hara K, Katoh R, Tachiya M (2007) Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. J Am Chem Soc 129:14852–14853CrossRef
298.
Zurück zum Zitat Guduru S, Singh VP, Rajaputra S, Mishra S, Mangu R, St. Omer I (2010) Characteristics of gold/cadmium sulfide nanowire Schottky diodes. Thin Solid Films 518:1809–1814CrossRef Guduru S, Singh VP, Rajaputra S, Mishra S, Mangu R, St. Omer I (2010) Characteristics of gold/cadmium sulfide nanowire Schottky diodes. Thin Solid Films 518:1809–1814CrossRef
299.
Zurück zum Zitat Haberer ED, Joo JH, Hodelin JF, Hu EL (2009) Enhanced photogenerated carrier collection in hybrid films of bio-templated gold nanowires and nanocrystalline CdSe. Nanotechnology 29:415206-1–415206-7 Haberer ED, Joo JH, Hodelin JF, Hu EL (2009) Enhanced photogenerated carrier collection in hybrid films of bio-templated gold nanowires and nanocrystalline CdSe. Nanotechnology 29:415206-1–415206-7
300.
Zurück zum Zitat Yang T-T, Chen W-T, Hsu Y-J, Wei KH, Lin TY, Lin TW (2010) Interfacial charge carrier dynamics in core-shell Au-CdS nanocrystals. J Phys Chem C 114:11414–11420CrossRef Yang T-T, Chen W-T, Hsu Y-J, Wei KH, Lin TY, Lin TW (2010) Interfacial charge carrier dynamics in core-shell Au-CdS nanocrystals. J Phys Chem C 114:11414–11420CrossRef
301.
Zurück zum Zitat Arakawa T, Munaoka T, Akiyama T, Yamada S (2009) Effects of silver nanoparticles on photoelectrochemical responses of organic dyes. J Phys Chem C 113:11830–11835CrossRef Arakawa T, Munaoka T, Akiyama T, Yamada S (2009) Effects of silver nanoparticles on photoelectrochemical responses of organic dyes. J Phys Chem C 113:11830–11835CrossRef
302.
Zurück zum Zitat Nicholson PG, Ruiz V, Macpherson JV, Unwin PR (2005) Enhanced visible photoluminescence in ultrathin poly(3-hexylthiophene) films by incorporation of Au nanoparticles. Chem Commun 12:1052–1054CrossRef Nicholson PG, Ruiz V, Macpherson JV, Unwin PR (2005) Enhanced visible photoluminescence in ultrathin poly(3-hexylthiophene) films by incorporation of Au nanoparticles. Chem Commun 12:1052–1054CrossRef
303.
Zurück zum Zitat Park JH, Lim YT, Park OO, Kim JK, Yu J-W, Kim YC (2004) Polymer/gold nanoparticle nanocomposite light-emitting diodes: enhancement of electroluminescence stability and quantum efficiency of blue-light-emitting polymers. Chem Mater 16:688–692CrossRef Park JH, Lim YT, Park OO, Kim JK, Yu J-W, Kim YC (2004) Polymer/gold nanoparticle nanocomposite light-emitting diodes: enhancement of electroluminescence stability and quantum efficiency of blue-light-emitting polymers. Chem Mater 16:688–692CrossRef
304.
Zurück zum Zitat Parfenov A, Gryczynski I, Malicka J, Geddes CD, Lakowicz JR (2003) Enhanced fluorescence from fluorophores on fractal silver surfaces. J Phys Chem B 107:8829–8833CrossRef Parfenov A, Gryczynski I, Malicka J, Geddes CD, Lakowicz JR (2003) Enhanced fluorescence from fluorophores on fractal silver surfaces. J Phys Chem B 107:8829–8833CrossRef
305.
Zurück zum Zitat Saranthy KV, Narayan KS, Kim J, White JO (2000) Novel fluorescence and morphological structures in gold nanoparticle-polyoctylthiophene based thin films. Chem Phys Lett 318:543–548CrossRef Saranthy KV, Narayan KS, Kim J, White JO (2000) Novel fluorescence and morphological structures in gold nanoparticle-polyoctylthiophene based thin films. Chem Phys Lett 318:543–548CrossRef
306.
Zurück zum Zitat Chen XC, Green PF (2010) Control of morphology and its effects on the optical properties of polymer nanocomposites. Langmuir 26:3659–3665CrossRef Chen XC, Green PF (2010) Control of morphology and its effects on the optical properties of polymer nanocomposites. Langmuir 26:3659–3665CrossRef
307.
Zurück zum Zitat Li F, Zhou Y, Zhang F, Liu X, Zhan Y, Fahlman M (2009) Tuning work function of noble metals as promising cathodes in organic electronic devices. Chem Mater 21:2798–2802CrossRef Li F, Zhou Y, Zhang F, Liu X, Zhan Y, Fahlman M (2009) Tuning work function of noble metals as promising cathodes in organic electronic devices. Chem Mater 21:2798–2802CrossRef
308.
Zurück zum Zitat Nakamura M, Yang C, Tajima K, Hashimoto K (2009) High-performance polymer photovoltaic devices with inverted structure prepared by thermal lamination. Sol Energy Mater Sol Cells 93:1681–1684CrossRef Nakamura M, Yang C, Tajima K, Hashimoto K (2009) High-performance polymer photovoltaic devices with inverted structure prepared by thermal lamination. Sol Energy Mater Sol Cells 93:1681–1684CrossRef
309.
Zurück zum Zitat Chen X, Zhao C, Rothberg L, Ng MK (2008) Plasmon enhancement of bulk heterojunction organic photovoltaic devices by electrode modification. Appl Phys Lett 93:123302-1–123302-3 Chen X, Zhao C, Rothberg L, Ng MK (2008) Plasmon enhancement of bulk heterojunction organic photovoltaic devices by electrode modification. Appl Phys Lett 93:123302-1–123302-3
310.
Zurück zum Zitat Tjeng LH, Hesper R, Heessels ACL, Heers A, Jonkman HT, Sawatzky GA (1997) Development of the electronic structure in a K-doped C-60 monolayer on a Ag(111) surface. Solid State Commun 103:31–35CrossRef Tjeng LH, Hesper R, Heessels ACL, Heers A, Jonkman HT, Sawatzky GA (1997) Development of the electronic structure in a K-doped C-60 monolayer on a Ag(111) surface. Solid State Commun 103:31–35CrossRef
311.
Zurück zum Zitat Hunt MRC, Modesti S, Rudolf P, Palmer RE (1995) Charge-transfer and structure in C60 adsorption on metal-sufaces. Phys Rev B 51:10039–10047CrossRef Hunt MRC, Modesti S, Rudolf P, Palmer RE (1995) Charge-transfer and structure in C60 adsorption on metal-sufaces. Phys Rev B 51:10039–10047CrossRef
312.
Zurück zum Zitat Chase SJ, Bacsa WS, Mitch MG, Pilione LJ, Lannin JS (1992) Surface-enhanced Raman-scattering and photoemission of C60 on noble-metal surfaces. Phys Rev B 46:7873–7877CrossRef Chase SJ, Bacsa WS, Mitch MG, Pilione LJ, Lannin JS (1992) Surface-enhanced Raman-scattering and photoemission of C60 on noble-metal surfaces. Phys Rev B 46:7873–7877CrossRef
313.
Zurück zum Zitat Morioka R, Yasui K, Ozawa M, Odoi K, Ichikawa H, Fujita K (2010) Anode buffer layer containing Au nanoparticles for high stability organic solar cells. J Photopolym Sci Technol 23:313–316CrossRef Morioka R, Yasui K, Ozawa M, Odoi K, Ichikawa H, Fujita K (2010) Anode buffer layer containing Au nanoparticles for high stability organic solar cells. J Photopolym Sci Technol 23:313–316CrossRef
314.
Zurück zum Zitat Chen F-C, Wu J-L, Lee C-L, Hong Y, Kuo C-H, Huang MH (2009) Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles. Appl Phys Lett 95:013305-1–013305-3 Chen F-C, Wu J-L, Lee C-L, Hong Y, Kuo C-H, Huang MH (2009) Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles. Appl Phys Lett 95:013305-1–013305-3
315.
Zurück zum Zitat Lee JH, Park JH, Kim JS, Lee DY, Cho K (2009) High efficiency polymer solar cells with wet deposited plasmonic gold nanodots. Org Electron 10:413–420 Lee JH, Park JH, Kim JS, Lee DY, Cho K (2009) High efficiency polymer solar cells with wet deposited plasmonic gold nanodots. Org Electron 10:413–420
316.
Zurück zum Zitat Kim S-S, Na S-I, Jo J, Kim D-Y, Nah Y-C (2008) Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles. Appl Phys Lett 93:073307-1–073307-3 Kim S-S, Na S-I, Jo J, Kim D-Y, Nah Y-C (2008) Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles. Appl Phys Lett 93:073307-1–073307-3
317.
Zurück zum Zitat Morfa AJ, Rowlen KL, Reilly TH III, Romero MJ, van de Lagemaat J (2008) Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics. Appl Phys Lett 92:013504-1–013504-3 Morfa AJ, Rowlen KL, Reilly TH III, Romero MJ, van de Lagemaat J (2008) Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics. Appl Phys Lett 92:013504-1–013504-3
318.
Zurück zum Zitat Tvingstedt K, Persson N-K, Inganas O, Rahachou A, Zozoulenko IV (2007) Surface plasmon increase absorption in polymer photovoltaic cells. Appl Phys Lett 91:113514CrossRef Tvingstedt K, Persson N-K, Inganas O, Rahachou A, Zozoulenko IV (2007) Surface plasmon increase absorption in polymer photovoltaic cells. Appl Phys Lett 91:113514CrossRef
319.
Zurück zum Zitat Nemes CT, Vikapurapu DK, Petoukhoff CE, Cheung GZ, O’Carroll DM (2013) Absorption and scattering effects by silver nanoparticles near the interface of organic/inorganic semiconductor tandem films. J Nanopart Res 15:1801CrossRef Nemes CT, Vikapurapu DK, Petoukhoff CE, Cheung GZ, O’Carroll DM (2013) Absorption and scattering effects by silver nanoparticles near the interface of organic/inorganic semiconductor tandem films. J Nanopart Res 15:1801CrossRef
320.
Zurück zum Zitat Chuang M-K, Lin SW, Chen FC, Chu CW, Hsu CS (2014) Gold nanoparticle-decoratd graphene oxides for plasmonic-enhanced polymer photovoltaic devices. Nanoscale 6:1573–1579CrossRef Chuang M-K, Lin SW, Chen FC, Chu CW, Hsu CS (2014) Gold nanoparticle-decoratd graphene oxides for plasmonic-enhanced polymer photovoltaic devices. Nanoscale 6:1573–1579CrossRef
321.
Zurück zum Zitat Stenzel O, Stendal A, Voigtsberger K, von Borczykowski C (1995) Enhancement of the photovoltaic conversion efficiency of copper phthalocyanine thin-film devices by incorporation of metal-clusters. Sol Energy Mater Sol Cells 37:337–348CrossRef Stenzel O, Stendal A, Voigtsberger K, von Borczykowski C (1995) Enhancement of the photovoltaic conversion efficiency of copper phthalocyanine thin-film devices by incorporation of metal-clusters. Sol Energy Mater Sol Cells 37:337–348CrossRef
322.
Zurück zum Zitat Mapel JK, Singh M, Baldo MA, Celebi K (2007) Plasmonic excitation of organic double heterostructure solar cells. Appl Phys Lett 90:121102-1–121102-3CrossRef Mapel JK, Singh M, Baldo MA, Celebi K (2007) Plasmonic excitation of organic double heterostructure solar cells. Appl Phys Lett 90:121102-1–121102-3CrossRef
323.
Zurück zum Zitat Lindquist NC, Luhman WA, Oh S-W, Holmes RJ (2008) Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells. Appl Phys Lett 93:123308-1–123308-3CrossRef Lindquist NC, Luhman WA, Oh S-W, Holmes RJ (2008) Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells. Appl Phys Lett 93:123308-1–123308-3CrossRef
324.
Zurück zum Zitat Westphalen M, Kreibig U, Rostalski J, Luth H, Meissner D (2000) Metal cluster enhanced organic solar cells. Sol Energy Mater Sol Cells 61:97–105CrossRef Westphalen M, Kreibig U, Rostalski J, Luth H, Meissner D (2000) Metal cluster enhanced organic solar cells. Sol Energy Mater Sol Cells 61:97–105CrossRef
325.
Zurück zum Zitat Yakimov A, Forrest SR (2002) High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoculsters. Appl Phys Lett 80:1667–1669CrossRef Yakimov A, Forrest SR (2002) High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoculsters. Appl Phys Lett 80:1667–1669CrossRef
326.
Zurück zum Zitat Rand BP, Peumans P, Forrest SR (2004) Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters. J Appl Phys 96:7519–7526CrossRef Rand BP, Peumans P, Forrest SR (2004) Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters. J Appl Phys 96:7519–7526CrossRef
327.
Zurück zum Zitat Kim K, Carroll DL (2005) Roles of Au and Ag nanoparticles in efficiency enhancement of poly(3-octylthiophene)/C60 bulk heterojunction photovoltaic devices. Appl Phys Lett 87:203113-1–203113-3 Kim K, Carroll DL (2005) Roles of Au and Ag nanoparticles in efficiency enhancement of poly(3-octylthiophene)/C60 bulk heterojunction photovoltaic devices. Appl Phys Lett 87:203113-1–203113-3
328.
Zurück zum Zitat Park M, Chin BD, Yu J-W, Chun M-S, Han S-H (2008) Enhanced photocurrent and efficiency of poly(3-hexylthiophene)/fullerene photovoltaic devices by the incorporation of gold nanoparticles. J Ind Eng Chem 14:382–386CrossRef Park M, Chin BD, Yu J-W, Chun M-S, Han S-H (2008) Enhanced photocurrent and efficiency of poly(3-hexylthiophene)/fullerene photovoltaic devices by the incorporation of gold nanoparticles. J Ind Eng Chem 14:382–386CrossRef
329.
Zurück zum Zitat Shen H, Bienstman P, Maes B (2009) Plasmonic absorption enhancement in organic solar cells with thin active layers. J Appl Phys 106:073109-1–073109-5 Shen H, Bienstman P, Maes B (2009) Plasmonic absorption enhancement in organic solar cells with thin active layers. J Appl Phys 106:073109-1–073109-5
330.
Zurück zum Zitat Duche D, Torchio P, Escoubas L, Monestier F, Simon J-J, Flory F, Mathian G (2009) Improving light absorption in organic solar cells by plasmonic contribution. Sol Energy Mater Sol Cells 93:1377–1382CrossRef Duche D, Torchio P, Escoubas L, Monestier F, Simon J-J, Flory F, Mathian G (2009) Improving light absorption in organic solar cells by plasmonic contribution. Sol Energy Mater Sol Cells 93:1377–1382CrossRef
331.
Zurück zum Zitat Topp K, Borchert H, Johnen F, Tunc AV, Knipper M, von Hauff E, Parisi J, Al-Shamery K (2010) Impact of the incorporation of Au nanoparticles into polymer/fullerene solar cells. J Phys Chem A 114:3981–3989CrossRef Topp K, Borchert H, Johnen F, Tunc AV, Knipper M, von Hauff E, Parisi J, Al-Shamery K (2010) Impact of the incorporation of Au nanoparticles into polymer/fullerene solar cells. J Phys Chem A 114:3981–3989CrossRef
332.
Zurück zum Zitat Wang DH, Kim DY, Choi KW, Seo JH, Im SH, Park JH, Park OO, Heeger AJ (2011) Enhancement of donor-acceptor polymer bulk heterojunction solar cell power conversion efficiencies by addition of Au nanoparticles. Angew Chem Int Ed 50:1–6CrossRef Wang DH, Kim DY, Choi KW, Seo JH, Im SH, Park JH, Park OO, Heeger AJ (2011) Enhancement of donor-acceptor polymer bulk heterojunction solar cell power conversion efficiencies by addition of Au nanoparticles. Angew Chem Int Ed 50:1–6CrossRef
333.
Zurück zum Zitat de León A, Arias E, Moggio I, Gallardo-Vega C, Ziolo R, Rodríguez O, Trigari S, Giorgetti E, Leibig C, Evans D (2015) Synthesis of mercaptopropyl-(phenylene)s-benzoates passivated gold nanoparticles: implications for plasmonic photovoltaic cells. J Colloid Interface Sci 456:182–189CrossRef de León A, Arias E, Moggio I, Gallardo-Vega C, Ziolo R, Rodríguez O, Trigari S, Giorgetti E, Leibig C, Evans D (2015) Synthesis of mercaptopropyl-(phenylene)s-benzoates passivated gold nanoparticles: implications for plasmonic photovoltaic cells. J Colloid Interface Sci 456:182–189CrossRef
334.
Zurück zum Zitat Conturbia GLC (2009) Células solares baseadas em nanotubos de carbono modificado e nanopartículas de ouro. Dissertation. Universidade Estadual de Campinas Conturbia GLC (2009) Células solares baseadas em nanotubos de carbono modificado e nanopartículas de ouro. Dissertation. Universidade Estadual de Campinas
335.
Zurück zum Zitat Reyes-Reyes M, López-Sandoval R, Arenas-Alatorre J, Garibay-Alonso R, Carroll DL, Lastras-Martinez A (2007) Methanofullerene elongated nanostructure formation for enhanced organic solar cells. Thin Solid Films 516:52–57CrossRef Reyes-Reyes M, López-Sandoval R, Arenas-Alatorre J, Garibay-Alonso R, Carroll DL, Lastras-Martinez A (2007) Methanofullerene elongated nanostructure formation for enhanced organic solar cells. Thin Solid Films 516:52–57CrossRef
336.
Zurück zum Zitat Yang X, van Duren JKK, Rispens MT, Hummelen JC, Hanssen RAJ, Michels MAJ, Loos J (2004) Crystalline organization of a methanofullerene as used for plastic solar-cell applications. Adv Mater 16:802–806CrossRef Yang X, van Duren JKK, Rispens MT, Hummelen JC, Hanssen RAJ, Michels MAJ, Loos J (2004) Crystalline organization of a methanofullerene as used for plastic solar-cell applications. Adv Mater 16:802–806CrossRef
337.
Zurück zum Zitat Hugger S, Thomann R, Heinzel T, Thurn-Albrecht T (2004) Semicrystalline morphology in thin films of poly(3-hexylthiophene). Colloid Polym Sci 282:932–938CrossRef Hugger S, Thomann R, Heinzel T, Thurn-Albrecht T (2004) Semicrystalline morphology in thin films of poly(3-hexylthiophene). Colloid Polym Sci 282:932–938CrossRef
Metadaten
Titel
Hybrid Solar Cells: Effects of the Incorporation of Inorganic Nanoparticles into Bulk Heterojunction Organic Solar Cells
verfasst von
Jilian Nei de Freitas
João Paulo de Carvalho Alves
Ana Flávia Nogueira
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-62800-4_1