Skip to main content
Erschienen in: Journal of Nanoparticle Research 8/2013

01.08.2013 | Research Paper

Absorption and scattering effects by silver nanoparticles near the interface of organic/inorganic semiconductor tandem films

verfasst von: Coleen T. Nemes, Divya K. Vijapurapu, Christopher E. Petoukhoff, Gary Z. Cheung, Deirdre M. O’Carroll

Erschienen in: Journal of Nanoparticle Research | Ausgabe 8/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We experimentally and theoretically characterize back-scattering and extinction of Ag nanoparticle (AgNP) arrays on both Si wafer substrates and optically-thick Ag substrates with and without organic poly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methyl ester (P3HT:PCBM) bulk-heterojunction thin film coatings. A strong red-shift in back-scattered light wavelength occurs from AgNP arrays on Si as a function of increasing mean nanoparticle diameter (ranging from 30 to 90 nm). Back-scattering from the AgNP array is notably quenched in the wavelength range of strong P3HT absorption when the organic layer is applied. However, back-scattering is enhanced to a degree relative to the uncoated AgNP array on Si at wavelengths greater than the absorption band edge of P3HT. For comparison, the optical properties of AgNPs on an optically-thick Ag substrate are reported with and without P3HT:PCBM thin film coatings. On the reflective Ag substrates, a significant enhancement (by a factor of 7.5) and red-shift of back-scattered light occurred upon coating of the AgNPs with the P3HT:PCBM layer. Additionally, red-edge extinction was enhanced in the P3HT:PCBM layer with the presence of the AgNPs compared to the planar case. Theoretical electromagnetic simulations were carried out to help validate and explain the scattering and extinction changes observed in experiment. Both increasing nanoparticle size and an increasing degree of contact with the Si substrate (i.e., effective index of the nanoparticle environment) are shown to play a role in increasing back- and forward-scattering intensity and wavelength, and in increasing absorption enhancements in both the organic and Si layers. AgNPs placed at the P3HT:PCBM/Si interface give rise to absorption increases in P3HT of up to 18 %, and only enhance Si absorption at wavelengths longer than the absorption band edge of P3HT (by almost 90 % in the 660–1,200 nm wavelength range). These results provide insight into how metal nanoparticles placed near an organic/inorganic interface can be employed for light management in tandem or hybrid organic/inorganic thin-film semiconductor configurations for solar energy harvesting applications or light detection applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abass A, Shen H, Bienstman P, Maes B (2011) Angle insensitive enhancement of organic solar cells using metallic gratings. J Appl Phys 109:023111CrossRef Abass A, Shen H, Bienstman P, Maes B (2011) Angle insensitive enhancement of organic solar cells using metallic gratings. J Appl Phys 109:023111CrossRef
Zurück zum Zitat Al-Kaysi RO, Ghaddar TH, Guirado G (2009) Fabrication of one-dimensional organic nanostructures using anodic aluminum oxide templates. J Nanomater 2009:1–14CrossRef Al-Kaysi RO, Ghaddar TH, Guirado G (2009) Fabrication of one-dimensional organic nanostructures using anodic aluminum oxide templates. J Nanomater 2009:1–14CrossRef
Zurück zum Zitat Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213CrossRef Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213CrossRef
Zurück zum Zitat Bai W, Gan Q, Song G, Chen L, Kafafi Z, Bartoli F (2010) Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics. Opt Express 18:A620–A630CrossRef Bai W, Gan Q, Song G, Chen L, Kafafi Z, Bartoli F (2010) Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics. Opt Express 18:A620–A630CrossRef
Zurück zum Zitat Bohren CF, Huffman DR (2004) Absorption and scattering of light by small particles. Wiley, Weinheim Bohren CF, Huffman DR (2004) Absorption and scattering of light by small particles. Wiley, Weinheim
Zurück zum Zitat Bridges CR, Dicarmine PM, Fokina A, Huesmann D, Serefos DS (2013) Synthesis of gold nanotubes with variable wall thicknesses. J Mater Chem A 1:1127–1133CrossRef Bridges CR, Dicarmine PM, Fokina A, Huesmann D, Serefos DS (2013) Synthesis of gold nanotubes with variable wall thicknesses. J Mater Chem A 1:1127–1133CrossRef
Zurück zum Zitat Brown PJ, Thomas DS, Köhler A, Wilson JS, Kim J-S, Ramsdale CM, Sirringhaus H, Friend RH (2003) Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene). Phys Rev B 67:064203CrossRef Brown PJ, Thomas DS, Köhler A, Wilson JS, Kim J-S, Ramsdale CM, Sirringhaus H, Friend RH (2003) Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene). Phys Rev B 67:064203CrossRef
Zurück zum Zitat Catchpole KR, Pillai S (2006) Absorption enhancement due to scattering by dipoles into silicon waveguides. J Appl Phys 100:44504CrossRef Catchpole KR, Pillai S (2006) Absorption enhancement due to scattering by dipoles into silicon waveguides. J Appl Phys 100:44504CrossRef
Zurück zum Zitat Catchpole KR, Polman A (2008a) Design principles for particle plasmon enhanced solar cells. Appl Phys Lett 93:191113CrossRef Catchpole KR, Polman A (2008a) Design principles for particle plasmon enhanced solar cells. Appl Phys Lett 93:191113CrossRef
Zurück zum Zitat Catchpole KR, Polman A (2008b) Plasmonic solar cells. Opt Express 16:21793–21800CrossRef Catchpole KR, Polman A (2008b) Plasmonic solar cells. Opt Express 16:21793–21800CrossRef
Zurück zum Zitat Curry A, Nusz G, Chilkoti A, Wax A (2005) Substrate effect on refractive index dependence of plasmon resonance for individual silver nanoparticles observed using darkfield microscopy. Opt Express 13:2668–2677CrossRef Curry A, Nusz G, Chilkoti A, Wax A (2005) Substrate effect on refractive index dependence of plasmon resonance for individual silver nanoparticles observed using darkfield microscopy. Opt Express 13:2668–2677CrossRef
Zurück zum Zitat Evanoff DD Jr, Chumanov G (2004) Size-controlled synthesis of nanoparticles. 2. Measurement of extinction, scattering, and absorption cross sections. J Phys Chem B 108:13957–13962CrossRef Evanoff DD Jr, Chumanov G (2004) Size-controlled synthesis of nanoparticles. 2. Measurement of extinction, scattering, and absorption cross sections. J Phys Chem B 108:13957–13962CrossRef
Zurück zum Zitat Ferry VE, Sweatlock LA, Pacifici D, Atwater HA (2008) Plasmonic nanostructure design for efficient light coupling into solar cells. Nano Lett 8:4391–4397CrossRef Ferry VE, Sweatlock LA, Pacifici D, Atwater HA (2008) Plasmonic nanostructure design for efficient light coupling into solar cells. Nano Lett 8:4391–4397CrossRef
Zurück zum Zitat Ferry VE, Vershuuren MA, Li HBT, Schropp REI, Atwater HA, Polman A (2009) Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors. Appl Phys Lett 95:183503CrossRef Ferry VE, Vershuuren MA, Li HBT, Schropp REI, Atwater HA, Polman A (2009) Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors. Appl Phys Lett 95:183503CrossRef
Zurück zum Zitat Ferry VE, Munday JN, Atwater HA (2010a) Design considerations for plasmonic photovoltaics. Adv Mater 22:4794–4808CrossRef Ferry VE, Munday JN, Atwater HA (2010a) Design considerations for plasmonic photovoltaics. Adv Mater 22:4794–4808CrossRef
Zurück zum Zitat Ferry VE, Verschuuren MA, Li HBT, Verhagen E, Walters RJ, Schropp REI, Atwater HA, Polman A (2010b) Light trapping in ultrathin plasmonic solar cells. Opt Express 18:A237–A245CrossRef Ferry VE, Verschuuren MA, Li HBT, Verhagen E, Walters RJ, Schropp REI, Atwater HA, Polman A (2010b) Light trapping in ultrathin plasmonic solar cells. Opt Express 18:A237–A245CrossRef
Zurück zum Zitat Hägglund C, Zäch M, Petersson G, Kasemo B (2008) Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons. Appl Phys Lett 92:053110CrossRef Hägglund C, Zäch M, Petersson G, Kasemo B (2008) Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons. Appl Phys Lett 92:053110CrossRef
Zurück zum Zitat Hill HD, Millstone JE, Banholzer MJ, Mirkin CA (2009) The role radius of curvature plays in thiolated oligonucleotide loading on gold nanoparticles. ACS Nano 3:418–424CrossRef Hill HD, Millstone JE, Banholzer MJ, Mirkin CA (2009) The role radius of curvature plays in thiolated oligonucleotide loading on gold nanoparticles. ACS Nano 3:418–424CrossRef
Zurück zum Zitat Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677CrossRef Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677CrossRef
Zurück zum Zitat Kirkengena M, Bergli J, Galperin YM (2007) Direct generation of charge carriers in c-Si solar cells due to embedded nanoparticles. J Appl Phys 102:093713CrossRef Kirkengena M, Bergli J, Galperin YM (2007) Direct generation of charge carriers in c-Si solar cells due to embedded nanoparticles. J Appl Phys 102:093713CrossRef
Zurück zum Zitat Konda RB et al (2007) Surface plasmon excitation via Au nanoparticles in n-CdSe/p-Si heterojunction diodes. Appl Phys Lett 91:191111CrossRef Konda RB et al (2007) Surface plasmon excitation via Au nanoparticles in n-CdSe/p-Si heterojunction diodes. Appl Phys Lett 91:191111CrossRef
Zurück zum Zitat Liao W-S, Yang T, Castellana ET, Kotaoke S, Cremer PS (2006) A rapid prototyping approach to Ag nanoparticle fabrication in the 10–100 nm range. Adv Mater 18:2240–2243CrossRef Liao W-S, Yang T, Castellana ET, Kotaoke S, Cremer PS (2006) A rapid prototyping approach to Ag nanoparticle fabrication in the 10–100 nm range. Adv Mater 18:2240–2243CrossRef
Zurück zum Zitat Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103:8410–8426CrossRef Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103:8410–8426CrossRef
Zurück zum Zitat Maier SA, Atwater HA (2005) Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J Appl Phys 98:011101CrossRef Maier SA, Atwater HA (2005) Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J Appl Phys 98:011101CrossRef
Zurück zum Zitat Masuda H, Satoh M (1996) Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask. Jpn J Appl Phys 35:L126–L129CrossRef Masuda H, Satoh M (1996) Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask. Jpn J Appl Phys 35:L126–L129CrossRef
Zurück zum Zitat Masuda H, Yamada H, Satoh M, Asoh H, Nakao M, Tamamura T (1997) Highly ordered nanochannel-array architecture in anodic alumina. Appl Phys Lett 71:2770–2772CrossRef Masuda H, Yamada H, Satoh M, Asoh H, Nakao M, Tamamura T (1997) Highly ordered nanochannel-array architecture in anodic alumina. Appl Phys Lett 71:2770–2772CrossRef
Zurück zum Zitat Mock JJ, Smith DR, Schultz S (2003) Local refractive index dependence of plasmon resonance spectra from individual nanoparticles. Nano Lett 3:485–491CrossRef Mock JJ, Smith DR, Schultz S (2003) Local refractive index dependence of plasmon resonance spectra from individual nanoparticles. Nano Lett 3:485–491CrossRef
Zurück zum Zitat Monestier F, Simon JJ, Torchio P, Escoubas L, Flory F, Bailly S, de Bettignies R, Guillerez S, Defranoux C (2007) Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend. Sol Energy Mater Sol Cells 91:405–410CrossRef Monestier F, Simon JJ, Torchio P, Escoubas L, Flory F, Bailly S, de Bettignies R, Guillerez S, Defranoux C (2007) Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend. Sol Energy Mater Sol Cells 91:405–410CrossRef
Zurück zum Zitat Myroshnychenko V, Rodríguez-Fernández J, Pastoriza-Santos I, Funston AM, Novo C, Mulvaney P, Liz-Marzán LM, de Abajo FJG (2008) Modelling the optical response of gold nanoparticles. Chem Soc Rev 37:1792–1805CrossRef Myroshnychenko V, Rodríguez-Fernández J, Pastoriza-Santos I, Funston AM, Novo C, Mulvaney P, Liz-Marzán LM, de Abajo FJG (2008) Modelling the optical response of gold nanoparticles. Chem Soc Rev 37:1792–1805CrossRef
Zurück zum Zitat Nah Y-C, Kim S-S, Park J-H, Park H-J, Jo J, Kim D-Y (2007) Enhanced electrochromic absorption in Ag nanoparticle embedded conjugated polymer composite films. Electrochem Commun 9:1542–1546CrossRef Nah Y-C, Kim S-S, Park J-H, Park H-J, Jo J, Kim D-Y (2007) Enhanced electrochromic absorption in Ag nanoparticle embedded conjugated polymer composite films. Electrochem Commun 9:1542–1546CrossRef
Zurück zum Zitat Nakayama K, Tanabe K, Atwater HA (2008) Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Appl Phys Lett 93:121904CrossRef Nakayama K, Tanabe K, Atwater HA (2008) Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Appl Phys Lett 93:121904CrossRef
Zurück zum Zitat Nehl CL, Hafner JH (2008) Shape-dependent plasmon resonances of gold nanoparticles. J Mater Chem 18:2415–2419CrossRef Nehl CL, Hafner JH (2008) Shape-dependent plasmon resonances of gold nanoparticles. J Mater Chem 18:2415–2419CrossRef
Zurück zum Zitat O’Carroll DM, Collopy AX, Ferry VE, Atwater HA (2010) Surface plasmon assisted absorption in conjugated polymer thin films and devices. In: 25th European Photovoltaic Solar Energy Conference and Exhibition, Valencia, pp 834–837 O’Carroll DM, Collopy AX, Ferry VE, Atwater HA (2010) Surface plasmon assisted absorption in conjugated polymer thin films and devices. In: 25th European Photovoltaic Solar Energy Conference and Exhibition, Valencia, pp 834–837
Zurück zum Zitat Palik ED (1985) Handbook of optical constants of solids. Academic Press, Boston Palik ED (1985) Handbook of optical constants of solids. Academic Press, Boston
Zurück zum Zitat Pillai S, Green MA (2010) Plasmonics for photovoltaic applications. Sol Energy Mater Sol Cells 94:1481–1486CrossRef Pillai S, Green MA (2010) Plasmonics for photovoltaic applications. Sol Energy Mater Sol Cells 94:1481–1486CrossRef
Zurück zum Zitat Pillai S, Catchpole KR, Trupke T, Green MA (2007) Surface plasmon enhanced silicon solar cells. J Appl Phys 101:093105CrossRef Pillai S, Catchpole KR, Trupke T, Green MA (2007) Surface plasmon enhanced silicon solar cells. J Appl Phys 101:093105CrossRef
Zurück zum Zitat Qiao L, Wang D, Zuo L, Ye Y, Qian J, Chen H, He S (2011) Localized surface plasmon resonance enhanced organic solar cell with gold nanospheres. Appl Energy 88:848–852CrossRef Qiao L, Wang D, Zuo L, Ye Y, Qian J, Chen H, He S (2011) Localized surface plasmon resonance enhanced organic solar cell with gold nanospheres. Appl Energy 88:848–852CrossRef
Zurück zum Zitat Saeta PN, Ferry VE, Pacifici D, Munday JN, Atwater HA (2009) How much can guided modes enhance absorption in thin solar cells? Opt Express 17:20975–20990CrossRef Saeta PN, Ferry VE, Pacifici D, Munday JN, Atwater HA (2009) How much can guided modes enhance absorption in thin solar cells? Opt Express 17:20975–20990CrossRef
Zurück zum Zitat Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9:193–204CrossRef Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9:193–204CrossRef
Zurück zum Zitat Sefunc MA, Okyay A, Demir HV (2011) Plasmonic backcontact grating for P3HT:PCBM organic solar cells enabling strong optical absorption increased in all polarizations. Opt Express 19:14200–14209CrossRef Sefunc MA, Okyay A, Demir HV (2011) Plasmonic backcontact grating for P3HT:PCBM organic solar cells enabling strong optical absorption increased in all polarizations. Opt Express 19:14200–14209CrossRef
Zurück zum Zitat Sönnichsen C, Franzl T, Wilk T, von Plessen G, Feldmann J (2002) Drastic reduction of plasmon damping in gold nanorods. Phys Rev Lett 88:077402CrossRef Sönnichsen C, Franzl T, Wilk T, von Plessen G, Feldmann J (2002) Drastic reduction of plasmon damping in gold nanorods. Phys Rev Lett 88:077402CrossRef
Zurück zum Zitat Tvingstedt K, Persson N, Inganas O, Rahachou A, Zozoulenko IV (2007) Surface plasmon increase absorption in polymer photovoltaic cells. Appl Phys Lett 91:113514CrossRef Tvingstedt K, Persson N, Inganas O, Rahachou A, Zozoulenko IV (2007) Surface plasmon increase absorption in polymer photovoltaic cells. Appl Phys Lett 91:113514CrossRef
Zurück zum Zitat Yang M, Li J, Li J, Zhu X (2012) Scattering of light by plasmonic nanoparticles on a silicon substrate. Chem Phys Chem 13:2573–2577CrossRef Yang M, Li J, Li J, Zhu X (2012) Scattering of light by plasmonic nanoparticles on a silicon substrate. Chem Phys Chem 13:2573–2577CrossRef
Zurück zum Zitat Zhang Z, Shimizu T, Senz S, Gösele U (2009) Ordered high-density Si [100] nanowire arrays epitaxially grown by bottom imprint method. Adv Mater 21:2824–2828CrossRef Zhang Z, Shimizu T, Senz S, Gösele U (2009) Ordered high-density Si [100] nanowire arrays epitaxially grown by bottom imprint method. Adv Mater 21:2824–2828CrossRef
Zurück zum Zitat Zhao L, Kelly KL, Schatz GC (2003) The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width. J Phys Chem B 107:7343–7350CrossRef Zhao L, Kelly KL, Schatz GC (2003) The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width. J Phys Chem B 107:7343–7350CrossRef
Metadaten
Titel
Absorption and scattering effects by silver nanoparticles near the interface of organic/inorganic semiconductor tandem films
verfasst von
Coleen T. Nemes
Divya K. Vijapurapu
Christopher E. Petoukhoff
Gary Z. Cheung
Deirdre M. O’Carroll
Publikationsdatum
01.08.2013
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 8/2013
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-013-1801-4

Weitere Artikel der Ausgabe 8/2013

Journal of Nanoparticle Research 8/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.