Skip to main content

2018 | OriginalPaper | Buchkapitel

5. A variational formula for the essential spectral radius

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter describes a third scale of anisotropic Banach spaces of distributions, for which the best known bounds on the essential spectral radius of the transfer operator are known, improving those given in Chapter 4. The last section implements the Gouëzel-Keller-Liverani perturbation theory for this third type of Banach spaces.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Beware that the functions \(|\det DT|_{E^{u}(T)}|\) and \(|\det DT|_{E^{s}(T)}\) are only Hölder in general.
 
2
Kitaev used the notation \(\rho^{t,-s}(\mathcal{L})\) for our \(\rho^{t,s}(T,g)\).
 
3
The claim there is about “regular mixed transfer operators”, but we may apply [112, Lemma 2] to the regular mixed transfer operator induced by \(T\) and \(g\), using local charts and partitions of unity.
 
4
Regular cone-hyperbolicity only depends on the data \(\mathbf{C}_{+}\) and \(\mathbf{C}'_{-}\).
 
5
In the application we shall take \(s<0<t\).
 
6
Recall Remark 5.11.
 
7
Similarly, in [28] we use the Young inequality (2.​77) in the proof of Lemmas 4.​26 for \(p=\infty\).
 
8
In particular, there is no need to worry about intersection multiplicity.
 
9
If \(r\) is large enough and \(T_{\epsilon}\in C^{N}([-1,1],C^{r}(M,M))\) for \(N\ge3\), it is possible to write down explicit formulas for derivatives of higher order.
 
10
As mentioned above, this is a crucial starting point.
 
11
The proof of Lemma 5.17 shows that the boundedness claims hold for \(\mathcal{B}_{0}\) even if \(t-N<0\).
 
12
An analogous claim for spaces \(W^{t,s}_{p,*}\) is proved in [24, (2.6)].
 
13
Applications to Sinai billiards, in the spirit of [60, 19], would be especially interesting in higher dimensions, where only a conditional exponential mixing result is known [33, 34], assuming complexity control. (In dimension two, the “one-step expansion” argument in [60] allows us to show that hyperbolicity dominates complexity.)
 
Literatur
9.
Zurück zum Zitat Avila, A., Gouëzel, S., Tsujii, M.: Smoothness of solenoidal attractors. Discrete and continuous dynamical systems. 15, 21–35 (2006) MathSciNetCrossRef Avila, A., Gouëzel, S., Tsujii, M.: Smoothness of solenoidal attractors. Discrete and continuous dynamical systems. 15, 21–35 (2006) MathSciNetCrossRef
17.
Zurück zum Zitat Baladi, V.: The quest for the ultimate anisotropic Banach space. J. Stat. Phys. Special Volume for D. Ruelle and Ya. Sinai 166, 525–557 (2017) MathSciNetMATH Baladi, V.: The quest for the ultimate anisotropic Banach space. J. Stat. Phys. Special Volume for D. Ruelle and Ya. Sinai 166, 525–557 (2017) MathSciNetMATH
18.
Zurück zum Zitat Baladi, V.: Characteristic functions as bounded multipliers on anisotropic spaces. Preprint arXiv:1704.00157, to appear Proc. Amer. Math. Soc. Baladi, V.: Characteristic functions as bounded multipliers on anisotropic spaces. Preprint arXiv:​1704.​00157, to appear Proc. Amer. Math. Soc.
19.
Zurück zum Zitat Baladi, V., Demers, M., Liverani, C.: Exponential decay of correlations for finite horizon Sinai billiard flows. Invent. Math. 211, 39–177 (2018) MathSciNetCrossRef Baladi, V., Demers, M., Liverani, C.: Exponential decay of correlations for finite horizon Sinai billiard flows. Invent. Math. 211, 39–177 (2018) MathSciNetCrossRef
20.
Zurück zum Zitat Baladi, V., Gouëzel, S.: Good Banach spaces for piecewise hyperbolic maps via interpolation. Annales de l’Institut Henri Poincaré/Analyse non linéaire 26, 1453–1481 (2009) MathSciNetCrossRef Baladi, V., Gouëzel, S.: Good Banach spaces for piecewise hyperbolic maps via interpolation. Annales de l’Institut Henri Poincaré/Analyse non linéaire 26, 1453–1481 (2009) MathSciNetCrossRef
21.
Zurück zum Zitat Baladi, V., Gouëzel, S.: Banach spaces for piecewise cone hyperbolic maps. J. Modern Dynam. 4, 91–135 (2010) MathSciNetMATH Baladi, V., Gouëzel, S.: Banach spaces for piecewise cone hyperbolic maps. J. Modern Dynam. 4, 91–135 (2010) MathSciNetMATH
24.
Zurück zum Zitat Baladi, V., Kuna, T., and Lucarini, V.: Linear and fractional response for the SRB measure of smooth hyperbolic attractors and discontinuous observables. Nonlinearity 30, 1204–1220 (2017). Corrigendum. Nonlinearity 30, C4–C6 (2017) MathSciNetCrossRef Baladi, V., Kuna, T., and Lucarini, V.: Linear and fractional response for the SRB measure of smooth hyperbolic attractors and discontinuous observables. Nonlinearity 30, 1204–1220 (2017). Corrigendum. Nonlinearity 30, C4–C6 (2017) MathSciNetCrossRef
25.
Zurück zum Zitat Baladi, V., Liverani, C.: Exponential decay of correlations for piecewise contact hyperbolic flows. Comm. Math. Phys. 314, 689–773 (2012) MathSciNetCrossRef Baladi, V., Liverani, C.: Exponential decay of correlations for piecewise contact hyperbolic flows. Comm. Math. Phys. 314, 689–773 (2012) MathSciNetCrossRef
28.
Zurück zum Zitat Baladi, V., Tsujii, M.: Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms. Ann. Inst. Fourier 57, 127–154 (2007) MathSciNetCrossRef Baladi, V., Tsujii, M.: Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms. Ann. Inst. Fourier 57, 127–154 (2007) MathSciNetCrossRef
31.
Zurück zum Zitat Baladi, V., Tsujii, M.: Dynamical determinants and spectrum for hyperbolic diffeomorphisms. In: Burns, K., Dolgopyat, D., Pesin, Ya. (eds.) Probabilistic and Geometric Structures in Dynamics, pp. 29–68, Contemp. Math., 469, Amer. Math. Soc., Providence, RI (2008) CrossRef Baladi, V., Tsujii, M.: Dynamical determinants and spectrum for hyperbolic diffeomorphisms. In: Burns, K., Dolgopyat, D., Pesin, Ya. (eds.) Probabilistic and Geometric Structures in Dynamics, pp. 29–68, Contemp. Math., 469, Amer. Math. Soc., Providence, RI (2008) CrossRef
33.
Zurück zum Zitat Bálint, P., Tóth, I.P.: Exponential decay of correlations in multi-dimensional dispersing billiards. Ann. Henri Poincaré 9, 1309–1369 (2008) MathSciNetCrossRef Bálint, P., Tóth, I.P.: Exponential decay of correlations in multi-dimensional dispersing billiards. Ann. Henri Poincaré 9, 1309–1369 (2008) MathSciNetCrossRef
34.
Zurück zum Zitat Bálint, P., Tóth, I.P. : Example for exponential growth of complexity in a finite horizon multi-dimensional dispersing billiard. Nonlinearity 25, 1275–1297 (2012) MathSciNetCrossRef Bálint, P., Tóth, I.P. : Example for exponential growth of complexity in a finite horizon multi-dimensional dispersing billiard. Nonlinearity 25, 1275–1297 (2012) MathSciNetCrossRef
37.
Zurück zum Zitat Blank, M., Keller, G., Liverani, C.: Ruelle-Perron-Frobenius spectrum for Anosov maps. Nonlinearity 15, 1905–1973 (2002) MathSciNetCrossRef Blank, M., Keller, G., Liverani, C.: Ruelle-Perron-Frobenius spectrum for Anosov maps. Nonlinearity 15, 1905–1973 (2002) MathSciNetCrossRef
42.
Zurück zum Zitat Butterley, O., Liverani, C.: Smooth Anosov flows: correlation spectra and stability. J. Mod. Dyn. 1, 301–322 (2007) MathSciNetCrossRef Butterley, O., Liverani, C.: Smooth Anosov flows: correlation spectra and stability. J. Mod. Dyn. 1, 301–322 (2007) MathSciNetCrossRef
47.
Zurück zum Zitat Buzzi, J., Maume-Deschamps, V.: Decay of correlations for piecewise invertible maps in higher dimensions. Israel J. Math. 131, 203–220 (2002) MathSciNetCrossRef Buzzi, J., Maume-Deschamps, V.: Decay of correlations for piecewise invertible maps in higher dimensions. Israel J. Math. 131, 203–220 (2002) MathSciNetCrossRef
49.
Zurück zum Zitat Chicone, C., Latushkin, Y.: Evolution Semigroups in Dynamical Systems and Differential Equations. Amer. Math. Soc., Providence, RI (1999) CrossRef Chicone, C., Latushkin, Y.: Evolution Semigroups in Dynamical Systems and Differential Equations. Amer. Math. Soc., Providence, RI (1999) CrossRef
59.
Zurück zum Zitat Demers, M. F., Liverani, C.: Stability of statistical properties in two-dimensional piecewise hyperbolic maps. Trans. Amer. Math. Soc. 360, 4777–4814 (2008) MathSciNetCrossRef Demers, M. F., Liverani, C.: Stability of statistical properties in two-dimensional piecewise hyperbolic maps. Trans. Amer. Math. Soc. 360, 4777–4814 (2008) MathSciNetCrossRef
60.
Zurück zum Zitat Demers, M.F., Zhang, H.-K.: Spectral analysis for the transfer operator for the Lorentz gas. J. Modern Dynamics 5, 665–709 (2011) MathSciNetCrossRef Demers, M.F., Zhang, H.-K.: Spectral analysis for the transfer operator for the Lorentz gas. J. Modern Dynamics 5, 665–709 (2011) MathSciNetCrossRef
63.
Zurück zum Zitat Dyatlov, S., Zworski, M.: Stochastic stability of Pollicott-Ruelle resonances. Nonlinearity, 28, 3511–3534 (2015) MathSciNetCrossRef Dyatlov, S., Zworski, M.: Stochastic stability of Pollicott-Ruelle resonances. Nonlinearity, 28, 3511–3534 (2015) MathSciNetCrossRef
87.
Zurück zum Zitat Gouëzel, S., Liverani, C.: Banach spaces adapted to Anosov systems. Ergodic Theory Dynam. Systems 26, 189–217 (2006) MathSciNetCrossRef Gouëzel, S., Liverani, C.: Banach spaces adapted to Anosov systems. Ergodic Theory Dynam. Systems 26, 189–217 (2006) MathSciNetCrossRef
91.
Zurück zum Zitat Gundlach, V. M., Latushkin, Y.: A sharp formula for the essential spectral radius of the Ruelle transfer operator on smooth and Hölder spaces. Ergodic Theory Dynam. Systems 23, 175–191 (2003) MathSciNetCrossRef Gundlach, V. M., Latushkin, Y.: A sharp formula for the essential spectral radius of the Ruelle transfer operator on smooth and Hölder spaces. Ergodic Theory Dynam. Systems 23, 175–191 (2003) MathSciNetCrossRef
102.
Zurück zum Zitat Jiang, M., Differentiating potential functions of SRB measures on hyperbolic attractors. Ergodic Theory Dynam. Systems 32, 1350–1369 (2012) MathSciNetCrossRef Jiang, M., Differentiating potential functions of SRB measures on hyperbolic attractors. Ergodic Theory Dynam. Systems 32, 1350–1369 (2012) MathSciNetCrossRef
105.
Zurück zum Zitat Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge (1995) CrossRef Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge (1995) CrossRef
106.
Zurück zum Zitat Katok, A., Knieper, G., Pollicott, M., Weiss, H.: Differentiability and analyticity of topological entropy for Anosov and geodesic flows. Invent. Math. 98, 581–597 (1989) MathSciNetCrossRef Katok, A., Knieper, G., Pollicott, M., Weiss, H.: Differentiability and analyticity of topological entropy for Anosov and geodesic flows. Invent. Math. 98, 581–597 (1989) MathSciNetCrossRef
109.
Zurück zum Zitat Keller, G., Liverani, C.: Stability of the spectrum for transfer operators. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 28, 141–152 (1999) MathSciNetMATH Keller, G., Liverani, C.: Stability of the spectrum for transfer operators. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 28, 141–152 (1999) MathSciNetMATH
112.
Zurück zum Zitat Kitaev, A.Yu.: Fredholm determinants for hyperbolic diffeomorphisms of finite smoothness. Nonlinearity 12, 141–179 (1999). Corrigendum: “Fredholm determinants for hyperbolic diffeomorphisms of finite smoothness”. Nonlinearity 12, 1717–1719 (1999) MathSciNetCrossRef Kitaev, A.Yu.: Fredholm determinants for hyperbolic diffeomorphisms of finite smoothness. Nonlinearity 12, 141–179 (1999). Corrigendum: “Fredholm determinants for hyperbolic diffeomorphisms of finite smoothness”. Nonlinearity 12, 1717–1719 (1999) MathSciNetCrossRef
147.
Zurück zum Zitat Ruelle, D.: Correction and complements: “Differentiation of SRB states” [Comm. Math. Phys. 187, (1997)]. Comm. Math. Phys. 234, 185–190 (2003) MathSciNetCrossRef Ruelle, D.: Correction and complements: “Differentiation of SRB states” [Comm. Math. Phys. 187, (1997)]. Comm. Math. Phys. 234, 185–190 (2003) MathSciNetCrossRef
150.
163.
Zurück zum Zitat Strichartz, R.: Multipliers on fractional Sobolev spaces. J. Math. Mech. 16, 1031–1060 (1967) MathSciNetMATH Strichartz, R.: Multipliers on fractional Sobolev spaces. J. Math. Mech. 16, 1031–1060 (1967) MathSciNetMATH
178.
Zurück zum Zitat Walters, P.: An introduction to ergodic theory. Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin (1982) MATH Walters, P.: An introduction to ergodic theory. Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin (1982) MATH
Metadaten
Titel
A variational formula for the essential spectral radius
verfasst von
Viviane Baladi
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-77661-3_5

Premium Partner