Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 2/2015

01.02.2015 | RESEARCH PAPER

Level set topology optimization of scalar transport problems

verfasst von: David Makhija, Kurt Maute

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 2/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper studies level set topology optimization of scalar transport problems, modeled by an advection-diffusion equation. Examples of such problems include the transport of energy or mass in a fluid. The geometry is defined via a level set method (LSM). The flow field is predicted by a hydrodynamic Boltzmann transport model and the scalar transport by a standard advection-diffusion model. Both models are discretized by the extended Finite Element Method (XFEM). The hydrodynamic Boltzmann equation is well suited for the XFEM as it allows for convenient enforcement of boundary conditions along immersed boundaries. In contrast, Navier Stokes models require more complex approaches to impose Dirichlet boundary conditions, such as stabilized Lagrange multiplier and Nitsche methods.
The combination of the LSM and the XFEM is an alternative to density-based topology optimization methods which have been applied previously to scalar transport problems. Density methods often suffer from a fuzzy description of boundaries, spurious diffusion through “void” regions, and the presence of fictitious material in the optimized design. This paper illustrates that the LSM/XFEM approach addresses these three concerns. The proposed approach is studied with two dimensional problems at steady state conditions. Both “fluid-void” and “fluid-solid” optimization problems are considered. For the “fluid-void” case, optimization results are obtained without spurious diffusion through “void” regions. For the “fluid-solid” case, the analysis recovers strong gradients of the flow and scalar fields at the fluid-solid interface, using moderately refined meshes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393CrossRefMATHMathSciNet Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393CrossRefMATHMathSciNet
Zurück zum Zitat Andreasen CS, Gersborg AR, Sigmund O (2009) Topology optimization of microfluidic mixers. Int J Numer Methods Fluids 61(5):498–513CrossRefMATHMathSciNet Andreasen CS, Gersborg AR, Sigmund O (2009) Topology optimization of microfluidic mixers. Int J Numer Methods Fluids 61(5):498–513CrossRefMATHMathSciNet
Zurück zum Zitat Angot P, Bruneau CH, Fabrie P (1999) A penalization method to take into account obstacles in viscous flows. Numer Math 81:497–520CrossRefMATHMathSciNet Angot P, Bruneau CH, Fabrie P (1999) A penalization method to take into account obstacles in viscous flows. Numer Math 81:497–520CrossRefMATHMathSciNet
Zurück zum Zitat Avila M, Codina R, Principe J (2011) Spatial approximation of the radiation transport equation using a subgrid-scale finite element method. Comput Methods Appl Mech Eng 200(5-8):425–438CrossRefMATHMathSciNet Avila M, Codina R, Principe J (2011) Spatial approximation of the radiation transport equation using a subgrid-scale finite element method. Comput Methods Appl Mech Eng 200(5-8):425–438CrossRefMATHMathSciNet
Zurück zum Zitat Bhatnagar PL, Gross EP, Krook M (1954) A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component systems. Phys Rev 94(3):511–525CrossRefMATH Bhatnagar PL, Gross EP, Krook M (1954) A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component systems. Phys Rev 94(3):511–525CrossRefMATH
Zurück zum Zitat Bijl H, Carpenter MH, Vatsa VN, Kennedy CA (2002) Implicit time integration schemes for the unsteady compressible Navier-Stokes equations: Laminar flow. J Comput Phys 179(1):313–329CrossRefMATH Bijl H, Carpenter MH, Vatsa VN, Kennedy CA (2002) Implicit time integration schemes for the unsteady compressible Navier-Stokes equations: Laminar flow. J Comput Phys 179(1):313–329CrossRefMATH
Zurück zum Zitat Brooks AN, Hughes TJ (1982) Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 32(1-3):199–259CrossRefMATHMathSciNet Brooks AN, Hughes TJ (1982) Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 32(1-3):199–259CrossRefMATHMathSciNet
Zurück zum Zitat Cao N, Chen S, Jin S, Martínez D (1997) Physical symmetry and lattice symmetry in the lattice Boltzmann method. Phys Rev E 55:R21–R24CrossRef Cao N, Chen S, Jin S, Martínez D (1997) Physical symmetry and lattice symmetry in the lattice Boltzmann method. Phys Rev E 55:R21–R24CrossRef
Zurück zum Zitat Chen H (1998) Volumetric formulation of the lattice Boltzmann method for fluid dynamics: Basic concept. Phys Rev E 58:3955–3963CrossRef Chen H (1998) Volumetric formulation of the lattice Boltzmann method for fluid dynamics: Basic concept. Phys Rev E 58:3955–3963CrossRef
Zurück zum Zitat Codina R (1998) Comparison of some finite element methods for solving the diffusion-convection-reaction equation. Comput Methods Appl Mech Eng 156(1-4):185–210CrossRefMATHMathSciNet Codina R (1998) Comparison of some finite element methods for solving the diffusion-convection-reaction equation. Comput Methods Appl Mech Eng 156(1-4):185–210CrossRefMATHMathSciNet
Zurück zum Zitat Codina R (2001) A stabilized finite element method for generalized stationary incompressible flows. Comput Methods Appl Mech Eng 190(2021):2681–2706CrossRefMATHMathSciNet Codina R (2001) A stabilized finite element method for generalized stationary incompressible flows. Comput Methods Appl Mech Eng 190(2021):2681–2706CrossRefMATHMathSciNet
Zurück zum Zitat Codina R (2002) Stabilized finite element approximation of transient incompressible flows using orthogonal subscales. Comput Methods Appl Mech Eng 191(39-40):4295–4321CrossRefMATHMathSciNet Codina R (2002) Stabilized finite element approximation of transient incompressible flows using orthogonal subscales. Comput Methods Appl Mech Eng 191(39-40):4295–4321CrossRefMATHMathSciNet
Zurück zum Zitat Daux C, Moes N, Dolbow J, Sukumark N, Belytschko T (2000) Arbitrary branched and intersecting cracks with the extended nite element method. Int J Numer Meth Engng 48:1741–1760CrossRefMATH Daux C, Moes N, Dolbow J, Sukumark N, Belytschko T (2000) Arbitrary branched and intersecting cracks with the extended nite element method. Int J Numer Meth Engng 48:1741–1760CrossRefMATH
Zurück zum Zitat Dede E (2010) Multiphysics optimization, synthesis, and application of jet impingement target surfaces. In: Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 2010 12th IEEE Intersociety Conference on, pp 1–7 Dede E (2010) Multiphysics optimization, synthesis, and application of jet impingement target surfaces. In: Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 2010 12th IEEE Intersociety Conference on, pp 1–7
Zurück zum Zitat van Dijk N, Langelaar M, van Keulen F (2012) Explicit level-set-based topology optimization using an exact heaviside function and consistent sensitivity analysis. Int J Numer Meth Engng 91(1):67–97 van Dijk N, Langelaar M, van Keulen F (2012) Explicit level-set-based topology optimization using an exact heaviside function and consistent sensitivity analysis. Int J Numer Meth Engng 91(1):67–97
Zurück zum Zitat van Dijk N, Maute K, Langelaar M, van Keulen F (2013) Levelset methods for structural topology optimization A review. Struct Multidiscip Optim 48(3):437–472 van Dijk N, Maute K, Langelaar M, van Keulen F (2013) Levelset methods for structural topology optimization A review. Struct Multidiscip Optim 48(3):437–472
Zurück zum Zitat Dolbow J, Harari I (2009) An efficient finite element method for embedded interface problems. Int J Numer Meth Engng 78:229–252CrossRefMATHMathSciNet Dolbow J, Harari I (2009) An efficient finite element method for embedded interface problems. Int J Numer Meth Engng 78:229–252CrossRefMATHMathSciNet
Zurück zum Zitat Düster A, Demkowicz L, Rank E (2006) High-order finite elements applied to the discrete Boltzmann equation. Int J Numer Methods Eng 67(8):1094–1121CrossRefMATH Düster A, Demkowicz L, Rank E (2006) High-order finite elements applied to the discrete Boltzmann equation. Int J Numer Methods Eng 67(8):1094–1121CrossRefMATH
Zurück zum Zitat Duysinx P, Miegroet L, Jacobs T, Fleury C (2006) Generalized shape optimization using x-fem and level set methods. , In: IUTAM Symposium on Topological Design Optimization of Structures. Springer, Machines and Materials, pp 23–32 Duysinx P, Miegroet L, Jacobs T, Fleury C (2006) Generalized shape optimization using x-fem and level set methods. , In: IUTAM Symposium on Topological Design Optimization of Structures. Springer, Machines and Materials, pp 23–32
Zurück zum Zitat Evans B, Morgan K, Hassan O (2011) A discontinuous finite element solution of the Boltzmann kinetic equation in collisionless and BGK forms for macroscopic gas flows. Appl Math Model 35(3):996–1015CrossRefMATHMathSciNet Evans B, Morgan K, Hassan O (2011) A discontinuous finite element solution of the Boltzmann kinetic equation in collisionless and BGK forms for macroscopic gas flows. Appl Math Model 35(3):996–1015CrossRefMATHMathSciNet
Zurück zum Zitat Fries T, Belytschko T (2010) The extended/generalized finite element method: an overview of the method and its applications. Int J Numer Methods Eng 84(3):253–304MATHMathSciNet Fries T, Belytschko T (2010) The extended/generalized finite element method: an overview of the method and its applications. Int J Numer Methods Eng 84(3):253–304MATHMathSciNet
Zurück zum Zitat Gersborg-Hansen A, Sigmund O, Haber RB (2005) Topology optimization of channel flow problems. Struct Multidiscip Optim 30(3):181–192CrossRefMATHMathSciNet Gersborg-Hansen A, Sigmund O, Haber RB (2005) Topology optimization of channel flow problems. Struct Multidiscip Optim 30(3):181–192CrossRefMATHMathSciNet
Zurück zum Zitat Gersborg-Hansen A, Bendse MP, Sigmund O (2006) Topology optimization of heat conduction problems using the finite volume method. Struct Multidiscip Optim 31(4):251–259CrossRefMATHMathSciNet Gersborg-Hansen A, Bendse MP, Sigmund O (2006) Topology optimization of heat conduction problems using the finite volume method. Struct Multidiscip Optim 31(4):251–259CrossRefMATHMathSciNet
Zurück zum Zitat Gerstenberger A, Wall WA (2008) An extended finite element method/Lagrange multiplier based approach for fluid-structure interaction. Comput Methods Appl Mech Eng 197:1699–1714CrossRefMATHMathSciNet Gerstenberger A, Wall WA (2008) An extended finite element method/Lagrange multiplier based approach for fluid-structure interaction. Comput Methods Appl Mech Eng 197:1699–1714CrossRefMATHMathSciNet
Zurück zum Zitat Guest J, Prévost J, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238– 254CrossRefMATH Guest J, Prévost J, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238– 254CrossRefMATH
Zurück zum Zitat Guo X, Zhang W, Zhong W (2014) Explicit feature control in structural topology optimization via level set method. Comput Methods Appl Mech Eng 272:354–378CrossRefMATHMathSciNet Guo X, Zhang W, Zhong W (2014) Explicit feature control in structural topology optimization via level set method. Comput Methods Appl Mech Eng 272:354–378CrossRefMATHMathSciNet
Zurück zum Zitat Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput Methods Appl Mech Eng 193(3335):3523–3540CrossRefMATHMathSciNet Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput Methods Appl Mech Eng 193(3335):3523–3540CrossRefMATHMathSciNet
Zurück zum Zitat Hauke G (2002) A simple subgrid scale stabilized method for the advection-diffusion-reaction equation. Comput Methods Appl Mechanics Eng 191(27–28):2925–2947CrossRefMATHMathSciNet Hauke G (2002) A simple subgrid scale stabilized method for the advection-diffusion-reaction equation. Comput Methods Appl Mechanics Eng 191(27–28):2925–2947CrossRefMATHMathSciNet
Zurück zum Zitat Hughes TJR, Mallet M (1986) A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems. Comput Methods Appl Mechanics Eng 58(3):305–328CrossRefMATHMathSciNet Hughes TJR, Mallet M (1986) A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems. Comput Methods Appl Mechanics Eng 58(3):305–328CrossRefMATHMathSciNet
Zurück zum Zitat Kontoleontos EA, Papoutsis-Kiachagias EM, Zymaris AS, Papadimitriou DI, Giannakoglou KC (2013) Adjoint-based constrained topology optimization for viscous flows, including heat transfer. Eng Opt 45(8):941–961CrossRefMathSciNet Kontoleontos EA, Papoutsis-Kiachagias EM, Zymaris AS, Papadimitriou DI, Giannakoglou KC (2013) Adjoint-based constrained topology optimization for viscous flows, including heat transfer. Eng Opt 45(8):941–961CrossRefMathSciNet
Zurück zum Zitat Kreisselmeier G, Steinhauser R (1979) Systematic control design by optimizing a vector performance index. , In: International Federation of Active Contrals Symposium on Computer Aided Design of Control Systems. Zurich, Switzerland Kreisselmeier G, Steinhauser R (1979) Systematic control design by optimizing a vector performance index. , In: International Federation of Active Contrals Symposium on Computer Aided Design of Control Systems. Zurich, Switzerland
Zurück zum Zitat Kreissl S, Maute K (2011) Topology optimization for unsteady flow. Int J Numer Methods Eng 87:1229–1253MATHMathSciNet Kreissl S, Maute K (2011) Topology optimization for unsteady flow. Int J Numer Methods Eng 87:1229–1253MATHMathSciNet
Zurück zum Zitat Kreissl S, Maute K (2012) Levelset based fluid topology optimization using the extended finite element method. Struct Multidiscip Optim 46(3):311–326CrossRefMATHMathSciNet Kreissl S, Maute K (2012) Levelset based fluid topology optimization using the extended finite element method. Struct Multidiscip Optim 46(3):311–326CrossRefMATHMathSciNet
Zurück zum Zitat Kreissl S, Pingen G, Evgrafov A, Maute K (2010) Topology optimization of flexible micro-fluidic devices. Struct Multidiscip Optim 42(4):495–516 Kreissl S, Pingen G, Evgrafov A, Maute K (2010) Topology optimization of flexible micro-fluidic devices. Struct Multidiscip Optim 42(4):495–516
Zurück zum Zitat Kreissl S, Pingen G, Maute K (2011) An explicit level set approach for generalized shape optimization of fluids with the lattice boltzmann method. Int J Numer Methods Fluids 65(5):496–519CrossRefMATH Kreissl S, Pingen G, Maute K (2011) An explicit level set approach for generalized shape optimization of fluids with the lattice boltzmann method. Int J Numer Methods Fluids 65(5):496–519CrossRefMATH
Zurück zum Zitat Li Y, LeBoeuf EJ, Basu PK (2004) Least-squares finite-element lattice Boltzmann method. Phys Rev E 69(065):701 Li Y, LeBoeuf EJ, Basu PK (2004) Least-squares finite-element lattice Boltzmann method. Phys Rev E 69(065):701
Zurück zum Zitat Li Y, LeBoeuf E, Basu P (2005) Least-squares finite-element scheme for the lattice Boltzmann method on an unstructured mesh. Phys Rev E 72(4)(046):711 Li Y, LeBoeuf E, Basu P (2005) Least-squares finite-element scheme for the lattice Boltzmann method on an unstructured mesh. Phys Rev E 72(4)(046):711
Zurück zum Zitat Luo Z, Tong L, Wang MY, Wang S (2007) Shape and topology optimization of compliant mechanisms using a parameterization level set method. J Comput Phys 227(1):680–705CrossRefMATHMathSciNet Luo Z, Tong L, Wang MY, Wang S (2007) Shape and topology optimization of compliant mechanisms using a parameterization level set method. J Comput Phys 227(1):680–705CrossRefMATHMathSciNet
Zurück zum Zitat Makhija D, Maute K (2014) Numerical instabilities in level set topology optimization with the extended finite element method. Struct Multidiscip Optim 49(2):185–197 Makhija D, Maute K (2014) Numerical instabilities in level set topology optimization with the extended finite element method. Struct Multidiscip Optim 49(2):185–197
Zurück zum Zitat Makhija D, Pingen G, Yang R, Maute K (2012) Topology optimization of multi-component flows using a multi-relaxation time lattice Boltzmann method. Comput Fluids 67(0):104–114CrossRefMathSciNet Makhija D, Pingen G, Yang R, Maute K (2012) Topology optimization of multi-component flows using a multi-relaxation time lattice Boltzmann method. Comput Fluids 67(0):104–114CrossRefMathSciNet
Zurück zum Zitat Makhija D, Pingen G, Maute K (2014) An immersed boundary method for fluids using the xfem and the hydrodynamic boltzmann transport equation. Comput Methods Appl Mech Eng 273:37–55 Makhija D, Pingen G, Maute K (2014) An immersed boundary method for fluids using the xfem and the hydrodynamic boltzmann transport equation. Comput Methods Appl Mech Eng 273:37–55
Zurück zum Zitat Matsumori T, Kondoh T, Kawamoto A, Nomura T (2013) Topology optimization for fluid-thermal interaction problems under constant input power. Struct Multidiscip Optim 47(4):571–581CrossRefMATH Matsumori T, Kondoh T, Kawamoto A, Nomura T (2013) Topology optimization for fluid-thermal interaction problems under constant input power. Struct Multidiscip Optim 47(4):571–581CrossRefMATH
Zurück zum Zitat Maute K, Kreissl S, Makhija D, Yang R (2011) Topology optimization of heat conduction in nano-composites. Shizuoka, Japan Maute K, Kreissl S, Makhija D, Yang R (2011) Topology optimization of heat conduction in nano-composites. Shizuoka, Japan
Zurück zum Zitat Mei R, Shyy W (1998) On the finite difference-based lattice Boltzmann method in curvilinear coordinates. J Comput Phys 143(2):426–448CrossRefMATHMathSciNet Mei R, Shyy W (1998) On the finite difference-based lattice Boltzmann method in curvilinear coordinates. J Comput Phys 143(2):426–448CrossRefMATHMathSciNet
Zurück zum Zitat van Miegroet L, Duysinx P (2007) Stress concentration minimization of 2d filets using x-fem and level set description. Struct Multidiscip Optim 33(4-5):425–438CrossRef van Miegroet L, Duysinx P (2007) Stress concentration minimization of 2d filets using x-fem and level set description. Struct Multidiscip Optim 33(4-5):425–438CrossRef
Zurück zum Zitat van Miegroet L, Moës N Fleury C, Duysinx P (2005) Generalized shape optimization based on the level set method. In: 6 th World Congress of Structural and Multidisciplinary Optimization van Miegroet L, Moës N Fleury C, Duysinx P (2005) Generalized shape optimization based on the level set method. In: 6 th World Congress of Structural and Multidisciplinary Optimization
Zurück zum Zitat Min M, Lee T (2011) A spectral-element discontinuous Galerkin lattice Boltzmann method for nearly incompressible flows. J Comput Phys 230(1):245–259CrossRefMATHMathSciNet Min M, Lee T (2011) A spectral-element discontinuous Galerkin lattice Boltzmann method for nearly incompressible flows. J Comput Phys 230(1):245–259CrossRefMATHMathSciNet
Zurück zum Zitat Okkels F, Gregersen M, Bruus H (2009) Topology optimization of fully nonlinear lab-on-a-chip systems. In: Proceedings of 8th World Congress on Structural and Multidisciplinary Optimization, June 1–5, 2009. Lisbon, Portugal Okkels F, Gregersen M, Bruus H (2009) Topology optimization of fully nonlinear lab-on-a-chip systems. In: Proceedings of 8th World Congress on Structural and Multidisciplinary Optimization, June 1–5, 2009. Lisbon, Portugal
Zurück zum Zitat Othmer C (2006) CFD topology and shape optimization with adjoint methods. , In: VDI Fahrzeug- und Verkehrstechnik. Internationaler Kongress, Berechnung und Simulation im Fahrzeugbau, Würzburg, p 13 Othmer C (2006) CFD topology and shape optimization with adjoint methods. , In: VDI Fahrzeug- und Verkehrstechnik. Internationaler Kongress, Berechnung und Simulation im Fahrzeugbau, Würzburg, p 13
Zurück zum Zitat Othmer C, de Villiers E, Weller HG (2007) Implementation of a continuous adjoint for topology optimization of ducted flows. In: Proceedings of the 18th AIAA Computational Fluid Dynamics Conference Miami. AIAA, FL Othmer C, de Villiers E, Weller HG (2007) Implementation of a continuous adjoint for topology optimization of ducted flows. In: Proceedings of the 18th AIAA Computational Fluid Dynamics Conference Miami. AIAA, FL
Zurück zum Zitat Patil DV, Lakshmisha K (2009) Finite volume TVD formulation of lattice Boltzmann simulation on unstructured mesh. J Comput Phys 228(14):5262–5279CrossRefMATHMathSciNet Patil DV, Lakshmisha K (2009) Finite volume TVD formulation of lattice Boltzmann simulation on unstructured mesh. J Comput Phys 228(14):5262–5279CrossRefMATHMathSciNet
Zurück zum Zitat Peng G, Xi H, Duncan C, Chou SH (1998) Lattice Boltzmann method on irregular meshes. Phys Rev E 58:R4124–R4127CrossRef Peng G, Xi H, Duncan C, Chou SH (1998) Lattice Boltzmann method on irregular meshes. Phys Rev E 58:R4124–R4127CrossRef
Zurück zum Zitat Peng G, Xi H, Duncan C, Chou SH (1999) Finite volume scheme for the lattice Boltzmann method on unstructured meshes. Phys Rev E 59:4675–4682CrossRef Peng G, Xi H, Duncan C, Chou SH (1999) Finite volume scheme for the lattice Boltzmann method on unstructured meshes. Phys Rev E 59:4675–4682CrossRef
Zurück zum Zitat Pingen G, Evgrafov A, Maute K (2009) Adjoint parameter sensitivity analysis for the hydrodynamic lattice Boltzmann method with applications to design optimization. Comput Fluids 38(4):910–923CrossRefMATHMathSciNet Pingen G, Evgrafov A, Maute K (2009) Adjoint parameter sensitivity analysis for the hydrodynamic lattice Boltzmann method with applications to design optimization. Comput Fluids 38(4):910–923CrossRefMATHMathSciNet
Zurück zum Zitat Pingen G, Waidmann M, Evgrafov A, Maute K (2010) A parametric level-set approach for topology optimization of flow domains. Struct Multidiscip Optim 41(1):117–131CrossRefMATHMathSciNet Pingen G, Waidmann M, Evgrafov A, Maute K (2010) A parametric level-set approach for topology optimization of flow domains. Struct Multidiscip Optim 41(1):117–131CrossRefMATHMathSciNet
Zurück zum Zitat Shi X, Lin J, Yu Z (2003) Discontinuous Galerkin spectral element lattice Boltzmann method on triangular element. Int J Numer Methods Fluids 42(11):1249–1261CrossRefMATH Shi X, Lin J, Yu Z (2003) Discontinuous Galerkin spectral element lattice Boltzmann method on triangular element. Int J Numer Methods Fluids 42(11):1249–1261CrossRefMATH
Zurück zum Zitat Sigmund O, Maute K (2013) Topology optimization approaches: A comparative review. Struct Multidiscip Optim 48(6):1031–1055 Sigmund O, Maute K (2013) Topology optimization approaches: A comparative review. Struct Multidiscip Optim 48(6):1031–1055
Zurück zum Zitat Stenberg R (1995) On some techniques for approximating boundary conditions in the finite element method. J Comput Appl Math 63(1-3):139–148CrossRefMATHMathSciNet Stenberg R (1995) On some techniques for approximating boundary conditions in the finite element method. J Comput Appl Math 63(1-3):139–148CrossRefMATHMathSciNet
Zurück zum Zitat Struchtrup H (2005) Macroscopic Transport Equations for Rarefied Gas Flows. Springer Struchtrup H (2005) Macroscopic Transport Equations for Rarefied Gas Flows. Springer
Zurück zum Zitat Struchtrup H, Torrilhon M (2003) Regularization of Grad’s 13 moment equations: Derivation and linear analysis. Fluids 15:2668–2680CrossRefMathSciNet Struchtrup H, Torrilhon M (2003) Regularization of Grad’s 13 moment equations: Derivation and linear analysis. Fluids 15:2668–2680CrossRefMathSciNet
Zurück zum Zitat Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J Optim 12(2):555–573CrossRefMATHMathSciNet Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J Optim 12(2):555–573CrossRefMATHMathSciNet
Zurück zum Zitat Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Methods Eng 58(9):1321–1346CrossRefMATH Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Methods Eng 58(9):1321–1346CrossRefMATH
Zurück zum Zitat Tölke J, Krafczyk M, Schulz M, Rank E (2000) Discretization of the Boltzmann equation in velocity space using a Galerkin approach. Comput Phys Commun 129(13):91–99CrossRefMATH Tölke J, Krafczyk M, Schulz M, Rank E (2000) Discretization of the Boltzmann equation in velocity space using a Galerkin approach. Comput Phys Commun 129(13):91–99CrossRefMATH
Zurück zum Zitat Tran AB, Yvonnet J, He QC, Toulemonde C, Sanahuja J (2011) A multiple level set approach to prevent numerical artefacts in complex microstructures with nearby inclusions within xfem. Int J Numer Methods Eng 85(11):1436–1459CrossRefMATH Tran AB, Yvonnet J, He QC, Toulemonde C, Sanahuja J (2011) A multiple level set approach to prevent numerical artefacts in complex microstructures with nearby inclusions within xfem. Int J Numer Methods Eng 85(11):1436–1459CrossRefMATH
Zurück zum Zitat Ubertini S, Succi S (2005) Recent advances of lattice Boltzmann techniques on unstructured grids. Progress in Computational Fluid Dynamics, an International Journal 5(1):85– 96CrossRefMathSciNet Ubertini S, Succi S (2005) Recent advances of lattice Boltzmann techniques on unstructured grids. Progress in Computational Fluid Dynamics, an International Journal 5(1):85– 96CrossRefMathSciNet
Zurück zum Zitat Ubertini S, Bella G, Succi S (2003) Lattice Boltzmann method on unstructured grids: Further developments. Phys Rev E 68(016):701MathSciNet Ubertini S, Bella G, Succi S (2003) Lattice Boltzmann method on unstructured grids: Further developments. Phys Rev E 68(016):701MathSciNet
Zurück zum Zitat Villanueva C, Maute K (2014) Density and level set-xfem schemes for topology optimization of 3-D structures. Comput Mech 54(1):133–150 Villanueva C, Maute K (2014) Density and level set-xfem schemes for topology optimization of 3-D structures. Comput Mech 54(1):133–150
Zurück zum Zitat Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mechanics Eng 192(1-2):227–246CrossRefMATH Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mechanics Eng 192(1-2):227–246CrossRefMATH
Zurück zum Zitat Wang S, Wang M (2006) Radial basis functions and level set method for structural topology optimization. Int J Numer Methods Eng 65(12):2060–2090CrossRefMATH Wang S, Wang M (2006) Radial basis functions and level set method for structural topology optimization. Int J Numer Methods Eng 65(12):2060–2090CrossRefMATH
Zurück zum Zitat Wei P, Wang M, Xing X (2010) A study on X-FEM in continuum structural optimization using a level set model. Comput Aided Des 42(8):708–719CrossRef Wei P, Wang M, Xing X (2010) A study on X-FEM in continuum structural optimization using a level set model. Comput Aided Des 42(8):708–719CrossRef
Zurück zum Zitat Xi H, Peng G, Chou SH (1999) Finite-volume lattice Boltzmann method. Phys Rev E 59:6202–6205CrossRef Xi H, Peng G, Chou SH (1999) Finite-volume lattice Boltzmann method. Phys Rev E 59:6202–6205CrossRef
Zurück zum Zitat Yang J, Huang J (1995) Rarefied flow computations using nonlinear model Boltzmann equations. J Comput Phys 120(2):323–339CrossRefMATH Yang J, Huang J (1995) Rarefied flow computations using nonlinear model Boltzmann equations. J Comput Phys 120(2):323–339CrossRefMATH
Zurück zum Zitat Yoon G (2009) Topology optimization for stationary fluid-structure interaction problems using a new monolithic formulation , In: Proceedings of 8th World Congress on Structural and Multidisciplinary Optimization. Lisbon, Portugal Yoon G (2009) Topology optimization for stationary fluid-structure interaction problems using a new monolithic formulation , In: Proceedings of 8th World Congress on Structural and Multidisciplinary Optimization. Lisbon, Portugal
Zurück zum Zitat Yu D, Mei R, Luo L, Shyy W (2003) Viscous flow computations with the method of lattice Boltzmann equation. Prog Aerosp Sci 39(5):329–367CrossRef Yu D, Mei R, Luo L, Shyy W (2003) Viscous flow computations with the method of lattice Boltzmann equation. Prog Aerosp Sci 39(5):329–367CrossRef
Metadaten
Titel
Level set topology optimization of scalar transport problems
verfasst von
David Makhija
Kurt Maute
Publikationsdatum
01.02.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 2/2015
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-014-1142-7

Weitere Artikel der Ausgabe 2/2015

Structural and Multidisciplinary Optimization 2/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.