Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 7-8/2019

12.11.2019 | ORIGINAL ARTICLE

Microstructure and mechanical properties of direct metal laser–sintered 15-5PH steel with different solution annealing heat treatments

verfasst von: Ala’aldin Alafaghani, Ala Qattawi, Md Shah Jaman, Muhammad Ali Ablat

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 7-8/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

15-5PH parts that are fabricated using direct metal laser sintering (DMLS) has shown mechanical properties comparable to conventionally manufactured parts. However, DMLS-fabricated 15-5PH parts have shown high anisotropy in their mechanical properties due to the layering nature of additive manufacturing process. In addition, the fatigue life and strength of DMLS 15-5PH varies significantly between horizontally and vertically fabricated parts and both orientations are inferior to conventionally manufactured parts. Reliability and large variations in performance remain as a barrier from employing 15-5PH parts fabricated using DMLS. Standard heat treatment of 15-5PH is insufficient to eliminate the anisotropy and homogenize the DMLS parts. Modified precipitation hardening heat treatments did not show further improvement in published literature. Therefore, in this paper, we investigate the influence of different solution annealing heat treatments on the microstructure and mechanical properties of 15-5PH steel produced using DMLS. Three different solution annealing heat treatments were investigated: the standard solution heat treatment, the second heat treatment extended the time from 1 to 3 h, the third heat treatment increased the temperature from 1038 to 1200 °C. For each heat treatment, three patches of specimens were fabricated each in one of the three principal orientations X, Y, and Z. In addition, three patches, one of each orientation, were tested in as-built condition. The specimens were tensile tested and their microstructure and fractured surfaces were imaged. It was found that extending the time of the heat treatment improved the homogenization while increasing the temperature of the heat treatment to 1200 °C had detrimental effects, especially on vertically fabricated specimens.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lewis GK, Schlienger E (2000) Practical considerations and capabilities for laser assisted direct metal deposition. Mater Des 21:417–423 Lewis GK, Schlienger E (2000) Practical considerations and capabilities for laser assisted direct metal deposition. Mater Des 21:417–423
2.
Zurück zum Zitat Gratton A (2012) Comparison of mechanical , metallurgical properties of 17-4PH stainless steel between direct metal laser sintering ( DMLS ) and traditional manufacturing methods. In: Proc. Natl. Conf. Undergrad. Res. 2012, pp 423–431 Gratton A (2012) Comparison of mechanical , metallurgical properties of 17-4PH stainless steel between direct metal laser sintering ( DMLS ) and traditional manufacturing methods. In: Proc. Natl. Conf. Undergrad. Res. 2012, pp 423–431
3.
Zurück zum Zitat Jia Q, Gu D (Feb. 2014) Selective laser melting additive manufacturing of Inconel 718 superalloy parts: densification, microstructure and properties. J Alloys Compd 585:713–721 Jia Q, Gu D (Feb. 2014) Selective laser melting additive manufacturing of Inconel 718 superalloy parts: densification, microstructure and properties. J Alloys Compd 585:713–721
4.
Zurück zum Zitat Monkova K, Zetkova I, Kučerová L, Zetek M, Monka P, Daňa M (2019) Study of 3D printing direction and effects of heat treatment on mechanical properties of MS1 maraging steel. Arch Appl Mech 89(5):791–804 Monkova K, Zetkova I, Kučerová L, Zetek M, Monka P, Daňa M (2019) Study of 3D printing direction and effects of heat treatment on mechanical properties of MS1 maraging steel. Arch Appl Mech 89(5):791–804
5.
Zurück zum Zitat Yadollahi A, Shamsaei N, Thompson SM, Elwany A, Bian L (2017) Effects of building orientation and heat treatment on fatigue behavior of selective laser melted 17-4 PH stainless steel. Int J Fatigue 94:218–235 Yadollahi A, Shamsaei N, Thompson SM, Elwany A, Bian L (2017) Effects of building orientation and heat treatment on fatigue behavior of selective laser melted 17-4 PH stainless steel. Int J Fatigue 94:218–235
6.
Zurück zum Zitat Amato KNN et al (2012) Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting. Acta Mater 60(5):2229–2239 Amato KNN et al (2012) Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting. Acta Mater 60(5):2229–2239
7.
Zurück zum Zitat Trosch T, Strößner J, Völkl R, Glatzel U (2016) Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting. Mater Lett 164:428–431 Trosch T, Strößner J, Völkl R, Glatzel U (2016) Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting. Mater Lett 164:428–431
8.
Zurück zum Zitat Chiumenti M et al (2017) Numerical modelling and experimental validation in selective laser melting. Addit Manuf 18(October):171–185 Chiumenti M et al (2017) Numerical modelling and experimental validation in selective laser melting. Addit Manuf 18(October):171–185
9.
Zurück zum Zitat Irwin J, Reutzel EW, Michaleris P, Keist J, Nassar AR (2016) Predicting microstructure from thermal history during additive manufacturing for Ti-6Al-4V. J Manuf Sci Eng 138(11):111007 Irwin J, Reutzel EW, Michaleris P, Keist J, Nassar AR (2016) Predicting microstructure from thermal history during additive manufacturing for Ti-6Al-4V. J Manuf Sci Eng 138(11):111007
10.
Zurück zum Zitat P. Promoppatum et al., “Numerical modeling and experimental validation of thermal history and microstructure for additive manufacturing of an Inconel 718 product,” Prog. Addit. Manuf., vol. 3, no. 1–2, pp. 1–11, Jun. 2018 P. Promoppatum et al., “Numerical modeling and experimental validation of thermal history and microstructure for additive manufacturing of an Inconel 718 product,” Prog. Addit. Manuf., vol. 3, no. 1–2, pp. 1–11, Jun. 2018
11.
Zurück zum Zitat Suryawanshi J, Prashanth KG, Ramamurty U (2017) Mechanical behavior of selective laser melted 316L stainless steel. Mater Sci Eng A 696:113–121 Suryawanshi J, Prashanth KG, Ramamurty U (2017) Mechanical behavior of selective laser melted 316L stainless steel. Mater Sci Eng A 696:113–121
12.
Zurück zum Zitat Alafaghani A, Qattawi A, Castañón MAG (2018) Effect of manufacturing parameters on the microstructure and mechanical properties of metal laser sintering parts of precipitate hardenable metals. Int J Adv Manuf Technol 99(9–12):2491–2507 Alafaghani A, Qattawi A, Castañón MAG (2018) Effect of manufacturing parameters on the microstructure and mechanical properties of metal laser sintering parts of precipitate hardenable metals. Int J Adv Manuf Technol 99(9–12):2491–2507
13.
Zurück zum Zitat Beretta S, Romano S (2017) A comparison of fatigue strength sensitivity to defects for materials manufactured by AM or traditional processes. Int J Fatigue 94:178–191 Beretta S, Romano S (2017) A comparison of fatigue strength sensitivity to defects for materials manufactured by AM or traditional processes. Int J Fatigue 94:178–191
14.
Zurück zum Zitat Mower TM, Long MJ (2016) Mechanical behavior of additive manufactured , powder-bed laser-fused materials. Mater Sci Eng A 651:198–213 Mower TM, Long MJ (2016) Mechanical behavior of additive manufactured , powder-bed laser-fused materials. Mater Sci Eng A 651:198–213
15.
Zurück zum Zitat Sames WJ, List FA, Pannala S, Dehoff RR, Babu SS (2016) The metallurgy and processing science of metal additive manufacturing. Int Mater Rev 6608(March):1–46 Sames WJ, List FA, Pannala S, Dehoff RR, Babu SS (2016) The metallurgy and processing science of metal additive manufacturing. Int Mater Rev 6608(March):1–46
16.
Zurück zum Zitat Makoana N, Yadroitsava I, Möller H, Yadroitsev I (2018) Characterization of 17-4PH single tracks produced at different parametric conditions towards increased productivity of LPBF systems—the effect of laser power and spot size upscaling. Metals (Basel) 8(7):475 Makoana N, Yadroitsava I, Möller H, Yadroitsev I (2018) Characterization of 17-4PH single tracks produced at different parametric conditions towards increased productivity of LPBF systems—the effect of laser power and spot size upscaling. Metals (Basel) 8(7):475
17.
Zurück zum Zitat Popovici TD, Dijmrescu MR, Angelastro A, Campanelli SL, Linda M (2017) Influence of laser power on microstructure of laser metal deposited 17–4 ph stainless steel influence of laser power on microstructure of laser metal deposited 17–4 ph stainless steel, pp 0–7 Popovici TD, Dijmrescu MR, Angelastro A, Campanelli SL, Linda M (2017) Influence of laser power on microstructure of laser metal deposited 17–4 ph stainless steel influence of laser power on microstructure of laser metal deposited 17–4 ph stainless steel, pp 0–7
18.
Zurück zum Zitat Gong H, Rafi K, Gu H, Starr T, Stucker B (2014) Analysis of defect generation in Ti-6Al-4V parts made using powder bed fusion additive manufacturing processes. Addit Manuf 1:87–98 Gong H, Rafi K, Gu H, Starr T, Stucker B (2014) Analysis of defect generation in Ti-6Al-4V parts made using powder bed fusion additive manufacturing processes. Addit Manuf 1:87–98
19.
Zurück zum Zitat Vrancken B, Thijs L, Kruth J, Van Humbeeck J, Van Humbeeck J (2012) Heat treatment of Ti6Al4V produced by selective laser melting : microstructure and mechanical properties. J Alloys Compd 541(0):177–185 Vrancken B, Thijs L, Kruth J, Van Humbeeck J, Van Humbeeck J (2012) Heat treatment of Ti6Al4V produced by selective laser melting : microstructure and mechanical properties. J Alloys Compd 541(0):177–185
20.
Zurück zum Zitat Jafarlou DM, Walde C, Champagne VK, Krishnamurty S, Grosse IR (2018) Influence of cold sprayed Cr 3 C 2 -Ni coating on fracture characteristics of additively manufactured 15Cr-5Ni stainless steel. Mater Des 155:134–147, Oct Jafarlou DM, Walde C, Champagne VK, Krishnamurty S, Grosse IR (2018) Influence of cold sprayed Cr 3 C 2 -Ni coating on fracture characteristics of additively manufactured 15Cr-5Ni stainless steel. Mater Des 155:134–147, Oct
21.
Zurück zum Zitat M. Thöne, S. Leuders, A. Riemer, T. Tröster, and H. A. Richard, “Influence of heat-treatment on selective laser melting products – e.g. Ti6Al4V,” SFF, Austin Texas, pp. 492–498, 2012 M. Thöne, S. Leuders, A. Riemer, T. Tröster, and H. A. Richard, “Influence of heat-treatment on selective laser melting products – e.g. Ti6Al4V,” SFF, Austin Texas, pp. 492–498, 2012
22.
Zurück zum Zitat Abad A, Hahn M, Es-Said OS (2010) Corrosion of 15-5PH H1025 stainless steel due to environmental conditions. Eng Fail Anal 17(1):208–212 Abad A, Hahn M, Es-Said OS (2010) Corrosion of 15-5PH H1025 stainless steel due to environmental conditions. Eng Fail Anal 17(1):208–212
23.
Zurück zum Zitat Couturier L, De Geuser F, Descoins M, Deschamps A (2016) Evolution of the microstructure of a 15-5PH martensitic stainless steel during precipitation hardening heat treatment. Mater Des 107:416–425 Couturier L, De Geuser F, Descoins M, Deschamps A (2016) Evolution of the microstructure of a 15-5PH martensitic stainless steel during precipitation hardening heat treatment. Mater Des 107:416–425
24.
Zurück zum Zitat Abdelshehid M, Mahmodieh K, Mori K, Chen L, Stoyanov P, Davlantes D, Foyos J, Ogren J, Clark R Jr, Es-Said OS (2007) On the correlation between fracture toughness and precipitation hardening heat treatments in 15-5PH stainless steel. Eng Fail Anal 14(4):626–631 Abdelshehid M, Mahmodieh K, Mori K, Chen L, Stoyanov P, Davlantes D, Foyos J, Ogren J, Clark R Jr, Es-Said OS (2007) On the correlation between fracture toughness and precipitation hardening heat treatments in 15-5PH stainless steel. Eng Fail Anal 14(4):626–631
25.
Zurück zum Zitat Chen HC, Pinkerton AJ, Li L (2011) Fibre laser welding of dissimilar alloys of Ti-6Al-4V and Inconel 718 for aerospace applications. Int J Adv Manuf Technol 52(9–12):977–987 Chen HC, Pinkerton AJ, Li L (2011) Fibre laser welding of dissimilar alloys of Ti-6Al-4V and Inconel 718 for aerospace applications. Int J Adv Manuf Technol 52(9–12):977–987
26.
Zurück zum Zitat Kamal M, Rizza G (2019) Design for metal additive manufacturing for aerospace applications. Addit Manuf Aerosp Ind:67–86 Kamal M, Rizza G (2019) Design for metal additive manufacturing for aerospace applications. Addit Manuf Aerosp Ind:67–86
27.
Zurück zum Zitat Dossett JL, Boyer HE (2006) Practical heat treating, 2nd edn Dossett JL, Boyer HE (2006) Practical heat treating, 2nd edn
28.
Zurück zum Zitat Smallman RE and Ngan AHW, (2007) Physical metallurgy and advanced materials engineering Smallman RE and Ngan AHW, (2007) Physical metallurgy and advanced materials engineering
29.
Zurück zum Zitat Sakhawat S, Baig MN, Falahati A, Degischer HP, Dománková M, Mahmood A Investigations of precipitation in two different types of precipitation hardening stainless steels, pp 13–18 Sakhawat S, Baig MN, Falahati A, Degischer HP, Dománková M, Mahmood A Investigations of precipitation in two different types of precipitation hardening stainless steels, pp 13–18
30.
Zurück zum Zitat Habibi Bajguirani HR (2002) The effect of ageing upon the microstructure and mechanical properties of type 15-5 PH stainless steel. Mater Sci Eng A 338(1–2):142–159 Habibi Bajguirani HR (2002) The effect of ageing upon the microstructure and mechanical properties of type 15-5 PH stainless steel. Mater Sci Eng A 338(1–2):142–159
31.
Zurück zum Zitat S. Pal et al., “The effect of post-processing and machining process parameters on properties of Stainless Steel PH1 product produced by direct metal laser,” Procedia Eng., vol. 149, no. June, pp. 359–365, Jan. 2016 S. Pal et al., “The effect of post-processing and machining process parameters on properties of Stainless Steel PH1 product produced by direct metal laser,” Procedia Eng., vol. 149, no. June, pp. 359–365, Jan. 2016
32.
Zurück zum Zitat Lum E, Palazotto AN, Dempsey A, and Abrahams R, “Analysis of the effects of additive manufacturing on the material properties of 15-5PH stainless steel,” in 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2017, no. January Lum E, Palazotto AN, Dempsey A, and Abrahams R, “Analysis of the effects of additive manufacturing on the material properties of 15-5PH stainless steel,” in 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2017, no. January
33.
Zurück zum Zitat Buchanan C, Matilainen V-P, Salminen A, Gardner L (2017) Structural performance of additive manufactured metallic material and cross-sections. J Constr Steel Res 136:35–48 Buchanan C, Matilainen V-P, Salminen A, Gardner L (2017) Structural performance of additive manufactured metallic material and cross-sections. J Constr Steel Res 136:35–48
34.
Zurück zum Zitat Rafi HK, Starr TL, Stucker BE (2013) A comparison of the tensile, fatigue, and fracture behavior of Ti-6Al-4V and 15-5 PH stainless steel parts made by selective laser melting. Int J Adv Manuf Technol 69(5–8):1299–1309 Rafi HK, Starr TL, Stucker BE (2013) A comparison of the tensile, fatigue, and fracture behavior of Ti-6Al-4V and 15-5 PH stainless steel parts made by selective laser melting. Int J Adv Manuf Technol 69(5–8):1299–1309
35.
Zurück zum Zitat Spierings AB, Starr TL, Wegener K (2013) Fatigue performance of additive manufactured metallic parts. Rapid Prototyp J 19:88–94 Spierings AB, Starr TL, Wegener K (2013) Fatigue performance of additive manufactured metallic parts. Rapid Prototyp J 19:88–94
36.
Zurück zum Zitat Yadollahi A, Simsiriwong J, Thompson SM (2016) Data demonstrating the effects of build orientation and heat treatment on fatigue behavior of selective laser melted 17 – 4 PH stainless steel. Data Br 7:89–92 Yadollahi A, Simsiriwong J, Thompson SM (2016) Data demonstrating the effects of build orientation and heat treatment on fatigue behavior of selective laser melted 17 – 4 PH stainless steel. Data Br 7:89–92
37.
Zurück zum Zitat Sarkar S, Kumar CS, Nath AK (2019) Effects of different surface modifications on the fatigue life of selective laser melted 15–5 PH stainless steel. Mater Sci Eng A 762:138109 Sarkar S, Kumar CS, Nath AK (2019) Effects of different surface modifications on the fatigue life of selective laser melted 15–5 PH stainless steel. Mater Sci Eng A 762:138109
38.
Zurück zum Zitat Sarkar S, Kumar CS, Nath AK (2019) Effects of heat treatment and build orientations on the fatigue life of selective laser melted 15-5 PH stainless steel. Mater Sci Eng A 755:235–245 Sarkar S, Kumar CS, Nath AK (2019) Effects of heat treatment and build orientations on the fatigue life of selective laser melted 15-5 PH stainless steel. Mater Sci Eng A 755:235–245
39.
Zurück zum Zitat Sarkar S, Kumar CS, Nath AK (2019) Investigation on the mode of failures and fatigue life of laser-based powder bed fusion produced stainless steel parts under variable amplitude loading conditions. Addit Manuf 25:71–83 Sarkar S, Kumar CS, Nath AK (2019) Investigation on the mode of failures and fatigue life of laser-based powder bed fusion produced stainless steel parts under variable amplitude loading conditions. Addit Manuf 25:71–83
40.
Zurück zum Zitat Masoomi M, Shamsaei N, Winholtz RA, Milner JL, Gnäupel-Herold T, Elwany A, Mahmoudi M, Thompson SM (2017) Data in brief residual stress measurements via neutron diffraction of additive manufactured stainless steel 17-4 PH. Data Br 13:408–414 Masoomi M, Shamsaei N, Winholtz RA, Milner JL, Gnäupel-Herold T, Elwany A, Mahmoudi M, Thompson SM (2017) Data in brief residual stress measurements via neutron diffraction of additive manufactured stainless steel 17-4 PH. Data Br 13:408–414
41.
Zurück zum Zitat Clausen B, Brown DW, Carpenter JS, Clarke KD, Clarke AJ, Vogel SC, Bernardin JD, Spernjak D, Thompson JM (2017) Deformation behavior of additively manufactured GP1 stainless steel. Mater Sci Eng A 696(February):331–340 Clausen B, Brown DW, Carpenter JS, Clarke KD, Clarke AJ, Vogel SC, Bernardin JD, Spernjak D, Thompson JM (2017) Deformation behavior of additively manufactured GP1 stainless steel. Mater Sci Eng A 696(February):331–340
42.
Zurück zum Zitat Carlton HD, Haboub A, Gallegos GF, Parkinson DY, Macdowell AA (2016) Materials Science & Engineering a damage evolution and failure mechanisms in additively manufactured stainless steel. Mater Sci Eng A 651:406–414 Carlton HD, Haboub A, Gallegos GF, Parkinson DY, Macdowell AA (2016) Materials Science & Engineering a damage evolution and failure mechanisms in additively manufactured stainless steel. Mater Sci Eng A 651:406–414
43.
Zurück zum Zitat Facchini L, Vicente N, Lonardelli I, Magalini E, Robotti P, Alberto M (2010) Metastable austenite in 17-4 precipitation-hardening stainless steel produced by selective laser melting. Adv Eng Mater 12(3):184–188 Facchini L, Vicente N, Lonardelli I, Magalini E, Robotti P, Alberto M (2010) Metastable austenite in 17-4 precipitation-hardening stainless steel produced by selective laser melting. Adv Eng Mater 12(3):184–188
44.
Zurück zum Zitat Cheruvathur S, Lass EA, Campbell CE (2016) Additive manufacturing of 17-4 PH stainless steel: post-processing heat treatment to achieve uniform reproducible microstructure. Jom 68(3):930–942 Cheruvathur S, Lass EA, Campbell CE (2016) Additive manufacturing of 17-4 PH stainless steel: post-processing heat treatment to achieve uniform reproducible microstructure. Jom 68(3):930–942
45.
Zurück zum Zitat Croccolo D, De Agostinis M, Fini S, Olmi G, Bogojevic N, Ciric-Kostic S (2018) Effects of build orientation and thickness of allowance on the fatigue behaviour of 15–5 PH stainless steel manufactured by DMLS. Fatigue Fract Eng Mater Struct 41(4):900–916 Croccolo D, De Agostinis M, Fini S, Olmi G, Bogojevic N, Ciric-Kostic S (2018) Effects of build orientation and thickness of allowance on the fatigue behaviour of 15–5 PH stainless steel manufactured by DMLS. Fatigue Fract Eng Mater Struct 41(4):900–916
46.
Zurück zum Zitat K. M. Coffy, “Microstructure and chemistry evaluation of direct metal laser sintered 15-5 PH stainless steel,” Electron Theses Diss, vol Paper 4756, p. 160, 2014 K. M. Coffy, “Microstructure and chemistry evaluation of direct metal laser sintered 15-5 PH stainless steel,” Electron Theses Diss, vol Paper 4756, p. 160, 2014
47.
Zurück zum Zitat Rafi HK, Pal D, Patil N, Starr TL, Stucker BE (2014) Microstructure and mechanical behavior of 17-4 precipitation hardenable steel processed by selective laser melting. J Mater Eng Perform 23(12):4421–4428 Rafi HK, Pal D, Patil N, Starr TL, Stucker BE (2014) Microstructure and mechanical behavior of 17-4 precipitation hardenable steel processed by selective laser melting. J Mater Eng Perform 23(12):4421–4428
48.
Zurück zum Zitat Sarkar S, Kumar CS, Nath AK (2017) Effect of different heat treatments on mechanical properties of laser sintered additive manufactured parts. J Manuf Sci Eng 139(11):111010 Sarkar S, Kumar CS, Nath AK (2017) Effect of different heat treatments on mechanical properties of laser sintered additive manufactured parts. J Manuf Sci Eng 139(11):111010
49.
Zurück zum Zitat Alafaghani A, Qattawi A, Ablat MA (2017) Design consideration for additive manufacturing: fused deposition modelling. Open J Appl Sci 07(06):291–318 Alafaghani A, Qattawi A, Ablat MA (2017) Design consideration for additive manufacturing: fused deposition modelling. Open J Appl Sci 07(06):291–318
50.
Zurück zum Zitat Vayre B, Vignat F, Villeneuve F (2012) Metallic additive manufacturing: state-of-the-art review and prospects. Mech Ind 13(2):89–96 Vayre B, Vignat F, Villeneuve F (2012) Metallic additive manufacturing: state-of-the-art review and prospects. Mech Ind 13(2):89–96
51.
Zurück zum Zitat ASTM (2012) F2921 - standard terminology for additive manufacturing — coordinate systems and test. Am Soc Test Mater, vol. i:12 ASTM (2012) F2921 - standard terminology for additive manufacturing — coordinate systems and test. Am Soc Test Mater, vol. i:12
52.
Zurück zum Zitat ASTM Int. and ASTM (2009) Standard test methods for tension testing of metallic materials, Astm, no. C, pp 1–27 ASTM Int. and ASTM (2009) Standard test methods for tension testing of metallic materials, Astm, no. C, pp 1–27
53.
Zurück zum Zitat Moyer JM and Ansell GS, “The volume expansion accompanying the martensite transformation in iron-carbon alloys” Moyer JM and Ansell GS, “The volume expansion accompanying the martensite transformation in iron-carbon alloys”
54.
Zurück zum Zitat Dempsey A, Liu D, Palazotto AN, Abrahams R (2016) Dynamic properties of additively manufactured 15-5 stainless steel and three-dimensional microstructure characterization. In: 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference Dempsey A, Liu D, Palazotto AN, Abrahams R (2016) Dynamic properties of additively manufactured 15-5 stainless steel and three-dimensional microstructure characterization. In: 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
55.
Zurück zum Zitat Huang E-W, Lee SY, Jain J, Tong Y, An K, Tsou NT, Lam TN, Yu D, Chae H, Chen SW, Chen SM, Chou HS (2019) Hardening steels by the generation of transient phase using additive manufacturing. Intermetallics 109:60–67 Huang E-W, Lee SY, Jain J, Tong Y, An K, Tsou NT, Lam TN, Yu D, Chae H, Chen SW, Chen SM, Chou HS (2019) Hardening steels by the generation of transient phase using additive manufacturing. Intermetallics 109:60–67
56.
Zurück zum Zitat Sun Y, Hebert RJ, Aindow M (2018) Effect of heat treatments on microstructural evolution of additively manufactured and wrought 17-4PH stainless steel. Mater Des 156:429–440 Sun Y, Hebert RJ, Aindow M (2018) Effect of heat treatments on microstructural evolution of additively manufactured and wrought 17-4PH stainless steel. Mater Des 156:429–440
57.
Zurück zum Zitat Chae H, Huang EW, Jain J, Wang H, Woo W, Chen SW, Harjo S, Kawasaki T, Lee SY (2019) Plastic anisotropy and deformation-induced phase transformation of additive manufactured stainless steel. Mater Sci Eng A 762:138065 Chae H, Huang EW, Jain J, Wang H, Woo W, Chen SW, Harjo S, Kawasaki T, Lee SY (2019) Plastic anisotropy and deformation-induced phase transformation of additive manufactured stainless steel. Mater Sci Eng A 762:138065
58.
Zurück zum Zitat Hu Z, Zhu H, Zhang H, Zeng X (2017) Experimental investigation on selective laser melting of 17-4PH stainless steel. Opt Laser Technol 87:17–25 Hu Z, Zhu H, Zhang H, Zeng X (2017) Experimental investigation on selective laser melting of 17-4PH stainless steel. Opt Laser Technol 87:17–25
59.
Zurück zum Zitat Croccolo D, De Agostinis M, Fini S, Olmi G, Bogojevic N, and Ciric-Kostic S (2018) How build orientation and thickness of allowance may affect the fatigue response Of DMLS produced 15-5 PH stainless steel Croccolo D, De Agostinis M, Fini S, Olmi G, Bogojevic N, and Ciric-Kostic S (2018) How build orientation and thickness of allowance may affect the fatigue response Of DMLS produced 15-5 PH stainless steel
60.
Zurück zum Zitat Alnajjar M, Christien F, Wolski K, Bosch C (2019) Evidence of austenite by-passing in a stainless steel obtained from laser melting additive manufacturing. Addit Manuf 25:187–195 Alnajjar M, Christien F, Wolski K, Bosch C (2019) Evidence of austenite by-passing in a stainless steel obtained from laser melting additive manufacturing. Addit Manuf 25:187–195
61.
Zurück zum Zitat yuan Peng X, liang X, ZHOU X, Hua Z, Wei Z w, LIU HY (2015) Effect of aging on hardening behavior of 15-5 PH stainless steel. J Iron Steel Res Int 22(7):607–614 yuan Peng X, liang X, ZHOU X, Hua Z, Wei Z w, LIU HY (2015) Effect of aging on hardening behavior of 15-5 PH stainless steel. J Iron Steel Res Int 22(7):607–614
62.
Zurück zum Zitat Slunder AM, C. J., Hoenie AF, & Hall (1967) “Thermal and mechanical treatment for precipitation-hardening stainless steels,” NASA SP-5089 Slunder AM, C. J., Hoenie AF, & Hall (1967) “Thermal and mechanical treatment for precipitation-hardening stainless steels,” NASA SP-5089
Metadaten
Titel
Microstructure and mechanical properties of direct metal laser–sintered 15-5PH steel with different solution annealing heat treatments
verfasst von
Ala’aldin Alafaghani
Ala Qattawi
Md Shah Jaman
Muhammad Ali Ablat
Publikationsdatum
12.11.2019
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 7-8/2019
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-019-04404-8

Weitere Artikel der Ausgabe 7-8/2019

The International Journal of Advanced Manufacturing Technology 7-8/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.