Skip to main content
Erschienen in: Electrical Engineering 2/2017

17.05.2016 | Original Paper

Performance and cost comparison of reluctance motors used for electric bicycles

verfasst von: Burin Kerdsup, Nisai H. Fuengwarodsakul

Erschienen in: Electrical Engineering | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Electric bicycles have come to be of public interest due to the awareness of energy preservation and environment. The regulations in many European countries limit the maximum electric motor power to 250 W, which assists the rider up to a bicycle velocity of 25 km/h. Due to the high market competition, electric bicycles are highly cost-sensitive. Currently, most of the electric bicycles use a brushless DC (BLDC) motor due to its compact size and high efficiency. An obvious drawback of a BLDC motor for electric bicycles is the necessity of expensive permanent magnets. Furthermore, the uncertain development of the permanent magnet price also leads to the commercial risk of the product. As a result, the motor concepts without permanent magnets could reduce significant costs and the commercial risk. This paper investigates the feasibility of reluctance motors for replacing BLDC motors in electric bicycles in terms of performances and material costs. The study focuses on two types of reluctance motors, switched reluctance motor and synchronous reluctance motor, which will be compared with a commercial benchmark BLDC motor. The considered reluctance motors will be designed to fulfill the entire torque–speed range of electric bicycles. The motor performances are calculated by design software together with simulation models using the finite element (FE) method. The material cost analysis is done based on the current market prices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat EN Standard (2009) Electrically power assisted cycles—EPAC bicycles, DIN EN 15194:2009-06 EN Standard (2009) Electrically power assisted cycles—EPAC bicycles, DIN EN 15194:2009-06
2.
Zurück zum Zitat Muetze A, Tan YC (2007) Electric bicycles—a performance evaluation. IEEE Ind Appl Mag 13(4):12–21CrossRef Muetze A, Tan YC (2007) Electric bicycles—a performance evaluation. IEEE Ind Appl Mag 13(4):12–21CrossRef
3.
Zurück zum Zitat Starschich E, Muetze A (2007) Comparison of the performances of different geared brushless-dc motor drives for electric bicycles. Proc IEEE Electr Mach Drives Conf 1:140–147 Starschich E, Muetze A (2007) Comparison of the performances of different geared brushless-dc motor drives for electric bicycles. Proc IEEE Electr Mach Drives Conf 1:140–147
4.
Zurück zum Zitat Muetze A, Jack A, Mecrow B (2001) Brushless DC motor using soft magnetic composites as a direct drive in an electric bicycle. Proc Eur Conf Power Electr Appl 1–7 Muetze A, Jack A, Mecrow B (2001) Brushless DC motor using soft magnetic composites as a direct drive in an electric bicycle. Proc Eur Conf Power Electr Appl 1–7
7.
Zurück zum Zitat Fujishiro S, Ishikawa K, Kikuchi S, Nakamura K, Ichinokura O (2006) Design of outer-rotor-type multipolar switched reluctance motor for electric vehicle. J Appl Phys 99(8):07R324-3–08R324CrossRef Fujishiro S, Ishikawa K, Kikuchi S, Nakamura K, Ichinokura O (2006) Design of outer-rotor-type multipolar switched reluctance motor for electric vehicle. J Appl Phys 99(8):07R324-3–08R324CrossRef
8.
Zurück zum Zitat Kiyota K, Chiba A (2012) Design of switched reluctance motor competitive to 60 kW IPMSM in third-generation hybrid electric vehicle. IEEE Trans Ind Appl 48(6):2303–212309CrossRef Kiyota K, Chiba A (2012) Design of switched reluctance motor competitive to 60 kW IPMSM in third-generation hybrid electric vehicle. IEEE Trans Ind Appl 48(6):2303–212309CrossRef
9.
Zurück zum Zitat Miller TJE, Hutton A, Cossar C, Staton DA (1991) Design of a synchronous reluctance motor drive. IEEE Trans Ind Appl 27(4):741–749CrossRef Miller TJE, Hutton A, Cossar C, Staton DA (1991) Design of a synchronous reluctance motor drive. IEEE Trans Ind Appl 27(4):741–749CrossRef
10.
Zurück zum Zitat Vagati A (1994) The synchronous reluctance solution: a new alternative in AC drives. Proc IECON’94 Ind Electr Control Instrum 1:1–13 Vagati A (1994) The synchronous reluctance solution: a new alternative in AC drives. Proc IECON’94 Ind Electr Control Instrum 1:1–13
11.
Zurück zum Zitat Lipo TA (1991) Synchronous reluctance machines—a viable alternative for AC drives? Electr Mach Power Syst 19(9):659–671CrossRef Lipo TA (1991) Synchronous reluctance machines—a viable alternative for AC drives? Electr Mach Power Syst 19(9):659–671CrossRef
12.
13.
Zurück zum Zitat Krishnan R, Arumugam R, Lindsay JF (1988) Design procedure for switched reluctance motors. IEEE Trans Ind Appl 24(3):456–461CrossRef Krishnan R, Arumugam R, Lindsay JF (1988) Design procedure for switched reluctance motors. IEEE Trans Ind Appl 24(3):456–461CrossRef
14.
Zurück zum Zitat Radun AV (1995) Design considerations for the switched reluctance motor. IEEE Trans Ind Appl 31(5):1079–1087CrossRef Radun AV (1995) Design considerations for the switched reluctance motor. IEEE Trans Ind Appl 31(5):1079–1087CrossRef
15.
Zurück zum Zitat Staton DA, Miller TJE, Wood SE (1991) Optimization of the synchronous reluctance motor geometry. In: Proceeding of 5th international conference on electrical machines and drives. IET, London, pp 156–160 Staton DA, Miller TJE, Wood SE (1991) Optimization of the synchronous reluctance motor geometry. In: Proceeding of 5th international conference on electrical machines and drives. IET, London, pp 156–160
16.
Zurück zum Zitat Staton DA, Miller TJE, Wood SE (1993) Maximizing the saliency ratio of the synchronous reluctance motor. IEEE Proc Electr Power Appl 140(4):249–259CrossRef Staton DA, Miller TJE, Wood SE (1993) Maximizing the saliency ratio of the synchronous reluctance motor. IEEE Proc Electr Power Appl 140(4):249–259CrossRef
17.
Zurück zum Zitat Chabu IE, Silva VC, Cardoso JR, Nabeta SI, Foggia A (1999) A new design technique based on a suitable choice of rotor geometrical parameters to maximize torque and power factor in synchronous reluctance motors: part i—theory. IEEE Trans Energy Convers 14(3):599–604CrossRef Chabu IE, Silva VC, Cardoso JR, Nabeta SI, Foggia A (1999) A new design technique based on a suitable choice of rotor geometrical parameters to maximize torque and power factor in synchronous reluctance motors: part i—theory. IEEE Trans Energy Convers 14(3):599–604CrossRef
18.
Zurück zum Zitat Chabu IE, Cardoso JR, Silva VC, Nabeta SI, Foggia A (1999) A new design technique based on a suitable choice of rotor geometrical parameters to maximize torque and power factor in synchronous reluctance motors: part ii—finite element analysis and measurements. IEEE Trans Energy Convers 14(3):605–609CrossRef Chabu IE, Cardoso JR, Silva VC, Nabeta SI, Foggia A (1999) A new design technique based on a suitable choice of rotor geometrical parameters to maximize torque and power factor in synchronous reluctance motors: part ii—finite element analysis and measurements. IEEE Trans Energy Convers 14(3):605–609CrossRef
19.
Zurück zum Zitat Krishnan R (2001) Switched reluctance motor drives: modeling, simulation, analysis, design and applications. CRC Press, New YorkCrossRef Krishnan R (2001) Switched reluctance motor drives: modeling, simulation, analysis, design and applications. CRC Press, New YorkCrossRef
20.
Zurück zum Zitat Boldea I (1996) Reluctance synchronous machines and drives. Clarendon Press, Oxford Boldea I (1996) Reluctance synchronous machines and drives. Clarendon Press, Oxford
21.
Zurück zum Zitat Miller TJE (1993) Switched reluctance motors and their control. Magna Physics Publishing and Clarendon Press, Oxford Miller TJE (1993) Switched reluctance motors and their control. Magna Physics Publishing and Clarendon Press, Oxford
22.
Zurück zum Zitat Kiriyama H, Kawano S, Honda Y, Higaki T, Morimoto S, Takeda Y (1998) High performance synchronous reluctance motor with multi-flux barrier for the appliance industry. In: IEEE industry applications conference, 33rd IAS Annual Meeting, vol 1. IEEE, St. Louis, pp 111–117 Kiriyama H, Kawano S, Honda Y, Higaki T, Morimoto S, Takeda Y (1998) High performance synchronous reluctance motor with multi-flux barrier for the appliance industry. In: IEEE industry applications conference, 33rd IAS Annual Meeting, vol 1. IEEE, St. Louis, pp 111–117
23.
Zurück zum Zitat Miller TJE (1993) Brushless permanent-magnet and reluctance motor drives. Clarendon Press, Oxford Miller TJE (1993) Brushless permanent-magnet and reluctance motor drives. Clarendon Press, Oxford
24.
Zurück zum Zitat Hendershot JR, Miller TJE (1994) Design of brushless permanent-magnet motors. Oxford University Press, New York Hendershot JR, Miller TJE (1994) Design of brushless permanent-magnet motors. Oxford University Press, New York
25.
Zurück zum Zitat Burkhart B, Brauer H, De Doncker R (2012) Design of a switched reluctance traction drive for electric vehicles. In: IEEE vehicle power and propulsion conference. IEEE, Seoul, pp 204–209 Burkhart B, Brauer H, De Doncker R (2012) Design of a switched reluctance traction drive for electric vehicles. In: IEEE vehicle power and propulsion conference. IEEE, Seoul, pp 204–209
26.
Zurück zum Zitat Owatchaiphong S (2013) Automatic design process of switched reluctance motors using genetic algorithms, Ph.D. dissertation, Dept. Electrical Engineering, King Mongkut’s University of Technology North Bangkok, Bangkok Owatchaiphong S (2013) Automatic design process of switched reluctance motors using genetic algorithms, Ph.D. dissertation, Dept. Electrical Engineering, King Mongkut’s University of Technology North Bangkok, Bangkok
29.
Zurück zum Zitat Lange T, Kerdsup B, Weiss C, De Doncker R (2014) Torque ripple reduction in reluctance synchronous machines using an asymmetric rotor structure. In: 7th IET international conference on power electronics, machines and drives (PEMD 2014). IET, Manchester, pp 1–5 Lange T, Kerdsup B, Weiss C, De Doncker R (2014) Torque ripple reduction in reluctance synchronous machines using an asymmetric rotor structure. In: 7th IET international conference on power electronics, machines and drives (PEMD 2014). IET, Manchester, pp 1–5
30.
Zurück zum Zitat Fiorillo F, Novikov A (1990) An improved approach to power losses in magnetic laminations under nonsinusoidal induction waveform. IEEE Trans Magn 26(5):2904–2910CrossRef Fiorillo F, Novikov A (1990) An improved approach to power losses in magnetic laminations under nonsinusoidal induction waveform. IEEE Trans Magn 26(5):2904–2910CrossRef
Metadaten
Titel
Performance and cost comparison of reluctance motors used for electric bicycles
verfasst von
Burin Kerdsup
Nisai H. Fuengwarodsakul
Publikationsdatum
17.05.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering / Ausgabe 2/2017
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-016-0373-6

Weitere Artikel der Ausgabe 2/2017

Electrical Engineering 2/2017 Zur Ausgabe

Neuer Inhalt