Skip to main content
Erschienen in: Engineering with Computers 2/2021

05.10.2019 | Original Article

Vibration analysis of porous magneto-electro-elastically actuated carbon nanotube-reinforced composite sandwich plate based on a refined plate theory

verfasst von: Farzad Ebrahimi, Navid Farazmandnia, Mohammad Reza Kokaba, Vinyas Mahesh

Erschienen in: Engineering with Computers | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this article, the free vibration response of sandwich plates with porous electro-magneto-elastic functionally graded (MEE-FG) materials as face sheets and functionally graded carbon nanotube-reinforced composites (FG-CNTRC) as core is investigated. To this end, four-variable shear deformation refined plate theory is exploited. The properties of functionally graded material plate are assumed to vary along the thickness direction of face sheets according to modified power-law expression. Furthermore, properties of FG-CNTRC layer are proposed via a mixture rule. Hamilton’s principle with a four-variable tangential–exponential refined theory is used to obtain the governing equations and boundary conditions of plate. An analytical solution approach is utilized to get the natural frequencies of embedded porous FG plate with FG-CNTRC core subjected to magneto-electrical field. A parametric study is led to fulfill the effects of porosity parameter, external magnetic potential, external electric voltage, types of FG-CNTRC, and different boundary conditions on dimensionless frequencies of porous MEE-FG sandwich plate. It is noteworthy that the numerical consequences can serve as benchmarks for future investigations for this type of structures with porous mediums.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lau AK-T, Hui D (2002) The revolutionary creation of new advanced materials carbon nanotube composites. Compos Part B Eng 33(4):263–277 Lau AK-T, Hui D (2002) The revolutionary creation of new advanced materials carbon nanotube composites. Compos Part B Eng 33(4):263–277
2.
Zurück zum Zitat Lau K-T, Gu C, Gao G-H, Ling H, Reid SR (2004) Stretching process of single-and multi-walled carbon nanotubes for nanocomposite applications. Carbon N Y 42(2):426–428 Lau K-T, Gu C, Gao G-H, Ling H, Reid SR (2004) Stretching process of single-and multi-walled carbon nanotubes for nanocomposite applications. Carbon N Y 42(2):426–428
3.
Zurück zum Zitat Esawi AMK, Farag MM (2007) Carbon nanotube reinforced composites: potential and current challenges. Mater Des 28(9):2394–2401 Esawi AMK, Farag MM (2007) Carbon nanotube reinforced composites: potential and current challenges. Mater Des 28(9):2394–2401
4.
Zurück zum Zitat Bonnet P, Sireude D, Garnier B, Chauvet O (2007) Thermal properties and percolation in carbon nanotube-polymer composites. Appl Phys Lett 91(20):201910 Bonnet P, Sireude D, Garnier B, Chauvet O (2007) Thermal properties and percolation in carbon nanotube-polymer composites. Appl Phys Lett 91(20):201910
5.
Zurück zum Zitat Fidelus JD, Wiesel E, Gojny FH, Schulte K, Wagner HD (2005) Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites. Compos Part A Appl Sci Manuf. 36(11):1555–1561 Fidelus JD, Wiesel E, Gojny FH, Schulte K, Wagner HD (2005) Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites. Compos Part A Appl Sci Manuf. 36(11):1555–1561
6.
Zurück zum Zitat Ajayan PM, Stephan O, Colliex C, Trauth D et al (1994) Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Sci Pap Ed 265(5176):1212–1214 Ajayan PM, Stephan O, Colliex C, Trauth D et al (1994) Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Sci Pap Ed 265(5176):1212–1214
7.
Zurück zum Zitat Odegard GM, Gates TS, Wise KE, Park C, Siochi EJ (2003) Constitutive modeling of nanotube–reinforced polymer composites. Compos Sci Technol 63(11):1671–1687 Odegard GM, Gates TS, Wise KE, Park C, Siochi EJ (2003) Constitutive modeling of nanotube–reinforced polymer composites. Compos Sci Technol 63(11):1671–1687
8.
Zurück zum Zitat Griebel M, Hamaekers J (2004) Molecular dynamics simulations of the elastic moduli of polymer–carbon nanotube composites. Comput Methods Appl Mech Eng 193(17):1773–1788MathSciNetMATH Griebel M, Hamaekers J (2004) Molecular dynamics simulations of the elastic moduli of polymer–carbon nanotube composites. Comput Methods Appl Mech Eng 193(17):1773–1788MathSciNetMATH
9.
Zurück zum Zitat Hu N, Fukunaga H, Lu C, Kameyama M, Yan B (2005) Prediction of elastic properties of carbon nanotube reinforced composites. Proc R Soc Lond A Math Phys Eng Sci 461(2058):1685–1710 Hu N, Fukunaga H, Lu C, Kameyama M, Yan B (2005) Prediction of elastic properties of carbon nanotube reinforced composites. Proc R Soc Lond A Math Phys Eng Sci 461(2058):1685–1710
10.
Zurück zum Zitat Thostenson ET, Chou T-W (2003) On the elastic properties of carbon nanotube-based composites: modelling and characterization. J Phys D Appl Phys 36(5):573 Thostenson ET, Chou T-W (2003) On the elastic properties of carbon nanotube-based composites: modelling and characterization. J Phys D Appl Phys 36(5):573
11.
Zurück zum Zitat Zhu R, Pan E, Roy AK (2007) Molecular dynamics study of the stress–strain behavior of carbon-nanotube reinforced Epon 862 composites. Mater Sci Eng A 447(1):51–57 Zhu R, Pan E, Roy AK (2007) Molecular dynamics study of the stress–strain behavior of carbon-nanotube reinforced Epon 862 composites. Mater Sci Eng A 447(1):51–57
12.
Zurück zum Zitat Xu Y, Ray G, Abdel-Magid B (2006) Thermal behavior of single-walled carbon nanotube polymer–matrix composites. Compos Part A Appl Sci Manuf 37(1):114–121 Xu Y, Ray G, Abdel-Magid B (2006) Thermal behavior of single-walled carbon nanotube polymer–matrix composites. Compos Part A Appl Sci Manuf 37(1):114–121
13.
Zurück zum Zitat Ashrafi B, Hubert P (2006) Modeling the elastic properties of carbon nanotube array/polymer composites. Compos Sci Technol 66(3):387–396 Ashrafi B, Hubert P (2006) Modeling the elastic properties of carbon nanotube array/polymer composites. Compos Sci Technol 66(3):387–396
14.
Zurück zum Zitat Han Y, Elliott J (2007) Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites. Comput Mater Sci 39(2):315–323 Han Y, Elliott J (2007) Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites. Comput Mater Sci 39(2):315–323
15.
Zurück zum Zitat Qian D, Dickey EC, Andrews R, Rantell T (2000) Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl Phys Lett 76(20):2868–2870 Qian D, Dickey EC, Andrews R, Rantell T (2000) Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl Phys Lett 76(20):2868–2870
16.
Zurück zum Zitat Seidel GD, Lagoudas DC (2006) Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites. Mech Mater 38(8):884–907 Seidel GD, Lagoudas DC (2006) Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites. Mech Mater 38(8):884–907
17.
Zurück zum Zitat Shen H-S (2009) Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. Compos Struct 91(1):9–19 Shen H-S (2009) Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. Compos Struct 91(1):9–19
18.
Zurück zum Zitat Wang Z-X, Shen H-S (2011) Nonlinear vibration of nanotube-reinforced composite plates in thermal environments. Comput Mater Sci 50(8):2319–2330 Wang Z-X, Shen H-S (2011) Nonlinear vibration of nanotube-reinforced composite plates in thermal environments. Comput Mater Sci 50(8):2319–2330
19.
Zurück zum Zitat Ke L-L, Yang J, Kitipornchai S (2010) Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams. Compos Struct 92(3):676–683 Ke L-L, Yang J, Kitipornchai S (2010) Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams. Compos Struct 92(3):676–683
20.
Zurück zum Zitat Ke L-L, Yang J, Kitipornchai S (2013) Dynamic stability of functionally graded carbon nanotube-reinforced composite beams. Mech Adv Mater Struct 20(1):28–37 Ke L-L, Yang J, Kitipornchai S (2013) Dynamic stability of functionally graded carbon nanotube-reinforced composite beams. Mech Adv Mater Struct 20(1):28–37
21.
Zurück zum Zitat Yang J, Ke L-L, Feng C (2015) Dynamic buckling of thermo-electro-mechanically loaded FG-CNTRC beams. Int J Struct Stab Dyn 15(08):1540017MathSciNetMATH Yang J, Ke L-L, Feng C (2015) Dynamic buckling of thermo-electro-mechanically loaded FG-CNTRC beams. Int J Struct Stab Dyn 15(08):1540017MathSciNetMATH
22.
Zurück zum Zitat Wang Z-X, Shen H-S (2012) Nonlinear vibration and bending of sandwich plates with nanotube-reinforced composite face sheets. Compos Part B Eng 43(2):411–421 Wang Z-X, Shen H-S (2012) Nonlinear vibration and bending of sandwich plates with nanotube-reinforced composite face sheets. Compos Part B Eng 43(2):411–421
23.
Zurück zum Zitat Vo TP, Thai H-T, Nguyen T-K, Maheri A, Lee J (2014) Finite element model for vibration and buckling of functionally graded sandwich beams based on a refined shear deformation theory. Eng Struct 64:12–22 Vo TP, Thai H-T, Nguyen T-K, Maheri A, Lee J (2014) Finite element model for vibration and buckling of functionally graded sandwich beams based on a refined shear deformation theory. Eng Struct 64:12–22
24.
Zurück zum Zitat Wu H, Kitipornchai S, Yang J (2015) Free vibration and buckling analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets. Int J Struct Stab Dyn 15(07):1540011MathSciNetMATH Wu H, Kitipornchai S, Yang J (2015) Free vibration and buckling analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets. Int J Struct Stab Dyn 15(07):1540011MathSciNetMATH
25.
Zurück zum Zitat Civalek O, Acar MH (2007) Discrete singular convolution method for the analysis of Mindlin plates on elastic foundations. Int J Press Vessels Pip 84(9):527–535 Civalek O, Acar MH (2007) Discrete singular convolution method for the analysis of Mindlin plates on elastic foundations. Int J Press Vessels Pip 84(9):527–535
26.
Zurück zum Zitat Civalek O (2007) Linear vibration analysis of isotropic conical shells by discrete singular convolution (DSC). Struct Eng Mech 25(1):127–130MathSciNetMATH Civalek O (2007) Linear vibration analysis of isotropic conical shells by discrete singular convolution (DSC). Struct Eng Mech 25(1):127–130MathSciNetMATH
27.
Zurück zum Zitat Civalek O (2008) Vibration analysis of conical panels using the method of discrete singular convolution. Commun Numer Methods Eng 24:169–181MathSciNetMATH Civalek O (2008) Vibration analysis of conical panels using the method of discrete singular convolution. Commun Numer Methods Eng 24:169–181MathSciNetMATH
28.
Zurück zum Zitat Civalek O (2013) Nonlinear dynamic response of laminated plates resting on nonlinear elastic foundations by the discrete singular convolution-differential quadrature coupled approaches. Compos B 50:171–179 Civalek O (2013) Nonlinear dynamic response of laminated plates resting on nonlinear elastic foundations by the discrete singular convolution-differential quadrature coupled approaches. Compos B 50:171–179
29.
Zurück zum Zitat Civalek O (2017) Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method. Compos B Eng 111:45–59 Civalek O (2017) Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method. Compos B Eng 111:45–59
30.
Zurück zum Zitat Akgöz B, Civalek O (2011) Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations. Steel Compos Struct 11:403–421 Akgöz B, Civalek O (2011) Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations. Steel Compos Struct 11:403–421
31.
Zurück zum Zitat Mohammadimehr M, Shahedi S (2017) High-order buckling and free vibration analysis of two types sandwich beam including AL or PVC-foam flexible core and CNTs reinforced nanocomposite face sheets using GDQM. Compos B 108:91–107 Mohammadimehr M, Shahedi S (2017) High-order buckling and free vibration analysis of two types sandwich beam including AL or PVC-foam flexible core and CNTs reinforced nanocomposite face sheets using GDQM. Compos B 108:91–107
32.
Zurück zum Zitat Akgöz B, Civalek O (2011) Buckling analysis of cantilever carbon nanotubes using the strain gradient elasticity and modified couple stress theories. J Comput Theor Nanosci 8:1821–1827MATH Akgöz B, Civalek O (2011) Buckling analysis of cantilever carbon nanotubes using the strain gradient elasticity and modified couple stress theories. J Comput Theor Nanosci 8:1821–1827MATH
33.
Zurück zum Zitat Mercan K, Civalek O (2017) Buckling analysis of silicon carbide nanotubes (SiCNTs) with surface effect and nonlocal elasticity using the method of HDQ. Compos B 114:34–45 Mercan K, Civalek O (2017) Buckling analysis of silicon carbide nanotubes (SiCNTs) with surface effect and nonlocal elasticity using the method of HDQ. Compos B 114:34–45
34.
Zurück zum Zitat Mercan K, Civalek O (2016) DSC method for buckling analysis of boron nitride nanotube (BNNT) surrounded by an elastic matrix. Compos Struct 143:300–309 Mercan K, Civalek O (2016) DSC method for buckling analysis of boron nitride nanotube (BNNT) surrounded by an elastic matrix. Compos Struct 143:300–309
35.
Zurück zum Zitat Thai HT, Kim SE (2015) A review of theories for the modeling and analysis of functionally graded plates and shells. Compos Struct 128:70–86 Thai HT, Kim SE (2015) A review of theories for the modeling and analysis of functionally graded plates and shells. Compos Struct 128:70–86
36.
Zurück zum Zitat Ebrahimi F, Salari E (2015) Nonlocal thermo-mechanical vibration analysis of functionally graded nanobeams in thermal environment. Acta Astronaut 113:29–50 Ebrahimi F, Salari E (2015) Nonlocal thermo-mechanical vibration analysis of functionally graded nanobeams in thermal environment. Acta Astronaut 113:29–50
37.
Zurück zum Zitat Khor KA, Gu YW (2000) Effects of residual stress on the performance of plasma sprayed functionally graded ZrO2/NiCoCrAlY coatings. Mater Sci Eng A 277(1):64–76 Khor KA, Gu YW (2000) Effects of residual stress on the performance of plasma sprayed functionally graded ZrO2/NiCoCrAlY coatings. Mater Sci Eng A 277(1):64–76
38.
Zurück zum Zitat Seifried S, Winterer M, Hahn H (2001) Nanocrystalline gradient films through chemical vapor synthesis. Scr Mater 44(8):2165–2168 Seifried S, Winterer M, Hahn H (2001) Nanocrystalline gradient films through chemical vapor synthesis. Scr Mater 44(8):2165–2168
39.
Zurück zum Zitat Watanabe Y, Eryu H, Matsuura K (2001) Evaluation of three-dimensional orientation of Al3Ti platelet in Al-based functionally graded materials fabricated by a centrifugal casting technique. Acta Mater 49(5):775–783 Watanabe Y, Eryu H, Matsuura K (2001) Evaluation of three-dimensional orientation of Al3Ti platelet in Al-based functionally graded materials fabricated by a centrifugal casting technique. Acta Mater 49(5):775–783
40.
Zurück zum Zitat Ebrahimi F, Ghadiri M, Salari E, Amir S, Hoseini H, Shaghaghi GR (2015) Application of the differential transformation method for nonlocal vibration analysis of functionally graded nanobeams. J Mech Sci Technol 29(3):1207 Ebrahimi F, Ghadiri M, Salari E, Amir S, Hoseini H, Shaghaghi GR (2015) Application of the differential transformation method for nonlocal vibration analysis of functionally graded nanobeams. J Mech Sci Technol 29(3):1207
41.
Zurück zum Zitat Ebrahimi F, Salari E (2015) Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments. Compos Struct 128:363–380 Ebrahimi F, Salari E (2015) Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments. Compos Struct 128:363–380
42.
Zurück zum Zitat Rahmani O, Refaeinejad V, Hosseini SAH (2017) Assessment of various nonlocal higher order theories for the bending and buckling behavior of functionally graded nanobeams. Steel Compos Struct Int J 23(3):339–350 Rahmani O, Refaeinejad V, Hosseini SAH (2017) Assessment of various nonlocal higher order theories for the bending and buckling behavior of functionally graded nanobeams. Steel Compos Struct Int J 23(3):339–350
43.
Zurück zum Zitat Bhangale RK, Ganesan N (2006) Thermoelastic buckling and vibration behavior of a functionally graded sandwich beam with constrained viscoelastic core. J Sound Vib 295(1):294–316 Bhangale RK, Ganesan N (2006) Thermoelastic buckling and vibration behavior of a functionally graded sandwich beam with constrained viscoelastic core. J Sound Vib 295(1):294–316
44.
Zurück zum Zitat Pradhan SC, Murmu T (2009) Thermo-mechanical vibration of FGM sandwich beam under variable elastic foundations using differential quadrature method. J Sound Vib 321(1):342–362 Pradhan SC, Murmu T (2009) Thermo-mechanical vibration of FGM sandwich beam under variable elastic foundations using differential quadrature method. J Sound Vib 321(1):342–362
45.
Zurück zum Zitat Zenkour AM, Sobhy M (2010) Thermal buckling of various types of FGM sandwich plates. Compos Struct 93(1):93–102 Zenkour AM, Sobhy M (2010) Thermal buckling of various types of FGM sandwich plates. Compos Struct 93(1):93–102
46.
Zurück zum Zitat Zenkour AM (2005) A comprehensive analysis of functionally graded sandwich plates: part 2 buckling and free vibration. Int J Solids Struct 42(18):5243–5258MATH Zenkour AM (2005) A comprehensive analysis of functionally graded sandwich plates: part 2 buckling and free vibration. Int J Solids Struct 42(18):5243–5258MATH
47.
Zurück zum Zitat Frostig Y, Thomsen OT (2008) Non-linear thermal response of sandwich panels with a flexible core and temperature dependent mechanical properties. Compos Part B Eng 39(1):165–184 Frostig Y, Thomsen OT (2008) Non-linear thermal response of sandwich panels with a flexible core and temperature dependent mechanical properties. Compos Part B Eng 39(1):165–184
48.
Zurück zum Zitat Botshekanan Dehkordi M, Khalili SMR (2015) Frequency analysis of sandwich plate with active SMA hybrid composite facesheets and temperature dependent flexible core. Compos Struct 123:408–419 Botshekanan Dehkordi M, Khalili SMR (2015) Frequency analysis of sandwich plate with active SMA hybrid composite facesheets and temperature dependent flexible core. Compos Struct 123:408–419
49.
Zurück zum Zitat Rahmani O, Pedram O (2014) Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory. Int J Eng Sci 77:55–70MathSciNetMATH Rahmani O, Pedram O (2014) Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory. Int J Eng Sci 77:55–70MathSciNetMATH
50.
Zurück zum Zitat Vinyas M, Kattimani SC (2018) Investigation of the effect of BaTiO3/CoFe2O4 particle arrangement on the static response of magneto-electro-thermo-elastic plates. Compos Struct 185:51–64 Vinyas M, Kattimani SC (2018) Investigation of the effect of BaTiO3/CoFe2O4 particle arrangement on the static response of magneto-electro-thermo-elastic plates. Compos Struct 185:51–64
51.
Zurück zum Zitat Vinyas M, Kattimani SC, Loja MAR, Vishwas M (2018) Effect of BaTiO3/CoFe2O4 micro-topological textures on the coupled static behaviour of magneto-electro-thermo-elastic beams indifferent thermal environment. Mater Res Express 5:125702 Vinyas M, Kattimani SC, Loja MAR, Vishwas M (2018) Effect of BaTiO3/CoFe2O4 micro-topological textures on the coupled static behaviour of magneto-electro-thermo-elastic beams indifferent thermal environment. Mater Res Express 5:125702
52.
Zurück zum Zitat Pan E, Han F (2005) Exact solution for functionally graded and layered magneto-electro-elastic plates. Int J Eng Sci 43(3):321–339 Pan E, Han F (2005) Exact solution for functionally graded and layered magneto-electro-elastic plates. Int J Eng Sci 43(3):321–339
53.
Zurück zum Zitat Yahia SA, Atmane HA, Houari MSA, Tounsi A (2015) Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories. Struct Eng Mech 53(6):1143–1165 Yahia SA, Atmane HA, Houari MSA, Tounsi A (2015) Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories. Struct Eng Mech 53(6):1143–1165
54.
Zurück zum Zitat Vinyas M, Piyush JS, Kattimani SC (2018) Influence of coupled fields on free vibration and static behavior of functionally graded magneto-electro-thermo-elastic plate. J Intell Mater Syst Struct 29(7):1430–1455 Vinyas M, Piyush JS, Kattimani SC (2018) Influence of coupled fields on free vibration and static behavior of functionally graded magneto-electro-thermo-elastic plate. J Intell Mater Syst Struct 29(7):1430–1455
55.
Zurück zum Zitat Vinyas M, Kattimani SC (2018) Finite element evaluation of free vibration characteristics of magneto-electro-elastic plates in hygrothermal environment using higher order shear deformation theory. Compos Struct 202:1339–1352 Vinyas M, Kattimani SC (2018) Finite element evaluation of free vibration characteristics of magneto-electro-elastic plates in hygrothermal environment using higher order shear deformation theory. Compos Struct 202:1339–1352
56.
Zurück zum Zitat Vinyas M, Kattimani SC, Harursampath D, Nguyen Thoi T (2019) Coupled evaluation of the free vibration characteristics of magneto-electro-elastic skew plates in hygrothermal environment. Smart Struct Syst 24(2):267–292 Vinyas M, Kattimani SC, Harursampath D, Nguyen Thoi T (2019) Coupled evaluation of the free vibration characteristics of magneto-electro-elastic skew plates in hygrothermal environment. Smart Struct Syst 24(2):267–292
57.
Zurück zum Zitat Vinyas M, Nischith G, Loja MAR, Ebrahimi F, Duc ND (2019) Numerical analysis of the vibration response of skew magneto-electro-elastic plates based on the higher-order shear deformation theory. Compos Struct 214:132–142 Vinyas M, Nischith G, Loja MAR, Ebrahimi F, Duc ND (2019) Numerical analysis of the vibration response of skew magneto-electro-elastic plates based on the higher-order shear deformation theory. Compos Struct 214:132–142
58.
Zurück zum Zitat Vinyas MA (2019) Higher order free vibration analysis of carbon nanotube-reinforced magneto-electro-elastic plates using finite element methods. Compos Part B 158:286–301 Vinyas MA (2019) Higher order free vibration analysis of carbon nanotube-reinforced magneto-electro-elastic plates using finite element methods. Compos Part B 158:286–301
59.
Zurück zum Zitat Vinyas M, Sunny KK, Harursampath D, Trung NT, Loja MAR (2019) Influence of interphase on the multi-physics coupled frequency of three phase smart magneto-electro-elastic composite plates. Compos Struct 226:111254 Vinyas M, Sunny KK, Harursampath D, Trung NT, Loja MAR (2019) Influence of interphase on the multi-physics coupled frequency of three phase smart magneto-electro-elastic composite plates. Compos Struct 226:111254
61.
Zurück zum Zitat Huang DJ, Ding HJ, Chen WQ (2007) Analytical solution for functionally graded magneto-electro-elastic plane beams. Int J Eng Sci 45(2):467–485 Huang DJ, Ding HJ, Chen WQ (2007) Analytical solution for functionally graded magneto-electro-elastic plane beams. Int J Eng Sci 45(2):467–485
62.
Zurück zum Zitat Wu C-P, Tsai Y-H (2007) Static behavior of functionally graded magneto-electro-elastic shells under electric displacement and magnetic flux. Int J Eng Sci 45(9):744–769 Wu C-P, Tsai Y-H (2007) Static behavior of functionally graded magneto-electro-elastic shells under electric displacement and magnetic flux. Int J Eng Sci 45(9):744–769
63.
Zurück zum Zitat Sladek J, Sladek V, Krahulec S, Chen CS, Young DL (2015) Analyses of circular magnetoelectroelastic plates with functionally graded material properties. Mech Adv Mater Struct 22(6):479–489 Sladek J, Sladek V, Krahulec S, Chen CS, Young DL (2015) Analyses of circular magnetoelectroelastic plates with functionally graded material properties. Mech Adv Mater Struct 22(6):479–489
64.
Zurück zum Zitat Vinyas M, Kattimani SC (2017) Static studies of stepped functionally graded magneto-electro-elastic beam subjected to different thermal loads. Compos Struct 163:216–237 Vinyas M, Kattimani SC (2017) Static studies of stepped functionally graded magneto-electro-elastic beam subjected to different thermal loads. Compos Struct 163:216–237
65.
Zurück zum Zitat Vinyas M, Kattimani SC (2017) A finite element based assessment of static behavior of multiphase magneto-electro-elastic beams under different thermal loading. Struct Eng Mech 62(5):519–535 Vinyas M, Kattimani SC (2017) A finite element based assessment of static behavior of multiphase magneto-electro-elastic beams under different thermal loading. Struct Eng Mech 62(5):519–535
66.
Zurück zum Zitat Vinyas M, Kattimani SC (2017) Static behavior of thermally loaded multilayered magneto-electro-elastic beam. Struct Eng Mech 63(4):481–495 Vinyas M, Kattimani SC (2017) Static behavior of thermally loaded multilayered magneto-electro-elastic beam. Struct Eng Mech 63(4):481–495
67.
Zurück zum Zitat Vinyas M, Kattimani SC (2017) Multiphysics response of magneto-electro-elastic beams in thermo-mechanical environment. Coupled Syst Mech 6(3):351–368 Vinyas M, Kattimani SC (2017) Multiphysics response of magneto-electro-elastic beams in thermo-mechanical environment. Coupled Syst Mech 6(3):351–368
68.
Zurück zum Zitat Vinyas M, Kattimani SC (2017) A 3D finite element static and free vibration analysis of magneto-electro-elastic beam. Coupled Syst Mech 6(4):465–485 Vinyas M, Kattimani SC (2017) A 3D finite element static and free vibration analysis of magneto-electro-elastic beam. Coupled Syst Mech 6(4):465–485
69.
Zurück zum Zitat Vinyas M, Kattimani SC (2017) Static analysis of stepped functionally graded magneto-electro-elastic plates in thermal environment: a finite element study. Compos Struct 178:63–85 Vinyas M, Kattimani SC (2017) Static analysis of stepped functionally graded magneto-electro-elastic plates in thermal environment: a finite element study. Compos Struct 178:63–85
70.
Zurück zum Zitat Vinyas M, Kattimani SC (2017) Hygrothermal analysis of magneto-electro-elastic plate using 3D finite element analysis. Compos Struct 180:617–637 Vinyas M, Kattimani SC (2017) Hygrothermal analysis of magneto-electro-elastic plate using 3D finite element analysis. Compos Struct 180:617–637
71.
Zurück zum Zitat Vinyas M, Kattimani SC, Joladarashi S (2018) Hygrothermal coupling analysis of magneto-electroelastic beams using finite element methods. J Ther Stresses 41(8):1063–1079 Vinyas M, Kattimani SC, Joladarashi S (2018) Hygrothermal coupling analysis of magneto-electroelastic beams using finite element methods. J Ther Stresses 41(8):1063–1079
72.
Zurück zum Zitat Wattanasakulpong N, Ungbhakorn V (2014) Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities. Aerosp Sci Technol 32(1):111–120 Wattanasakulpong N, Ungbhakorn V (2014) Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities. Aerosp Sci Technol 32(1):111–120
73.
Zurück zum Zitat Rezaei AS, Saidi AR (2016) Application of Carrera unified formulation to study the effect of porosity on natural frequencies of thick porous–cellular plates. Compos Part B Eng 91:361–370 Rezaei AS, Saidi AR (2016) Application of Carrera unified formulation to study the effect of porosity on natural frequencies of thick porous–cellular plates. Compos Part B Eng 91:361–370
74.
Zurück zum Zitat Wattanasakulpong N, Prusty BG, Kelly DW, Hoffman M (2012) Free vibration analysis of layered functionally graded beams with experimental validation. Mater Des 36:182–190 Wattanasakulpong N, Prusty BG, Kelly DW, Hoffman M (2012) Free vibration analysis of layered functionally graded beams with experimental validation. Mater Des 36:182–190
75.
Zurück zum Zitat Ebrahimi F, Mokhtari M (2015) Transverse vibration analysis of rotating porous beam with functionally graded microstructure using the differential transform method. J Braz Soc Mech Sci Eng 37(4):1435–1444 Ebrahimi F, Mokhtari M (2015) Transverse vibration analysis of rotating porous beam with functionally graded microstructure using the differential transform method. J Braz Soc Mech Sci Eng 37(4):1435–1444
76.
Zurück zum Zitat Wattanasakulpong N, Chaikittiratana A (2015) Flexural vibration of imperfect functionally graded beams based on Timoshenko beam theory: Chebyshev collocation method. Meccanica 50(5):1331–1342MathSciNetMATH Wattanasakulpong N, Chaikittiratana A (2015) Flexural vibration of imperfect functionally graded beams based on Timoshenko beam theory: Chebyshev collocation method. Meccanica 50(5):1331–1342MathSciNetMATH
77.
Zurück zum Zitat Ebrahimi F, Zia M (2015) Large amplitude nonlinear vibration analysis of functionally graded Timoshenko beams with porosities. Acta Astronaut 116(117–125):2015 Ebrahimi F, Zia M (2015) Large amplitude nonlinear vibration analysis of functionally graded Timoshenko beams with porosities. Acta Astronaut 116(117–125):2015
78.
Zurück zum Zitat Shafiei N, Mousavi A, Ghadiri M (2016) On size-dependent nonlinear vibration of porous and imperfect functionally graded tapered microbeams. Int J Eng Sci 106:42–56MATH Shafiei N, Mousavi A, Ghadiri M (2016) On size-dependent nonlinear vibration of porous and imperfect functionally graded tapered microbeams. Int J Eng Sci 106:42–56MATH
79.
Zurück zum Zitat Ebrahimi F, Ghasemi F, Salari E (2016) Investigating thermal effects on vibration behavior of temperature-dependent compositionally graded Euler beams with porosities. Meccanica 51(1):223–249MathSciNetMATH Ebrahimi F, Ghasemi F, Salari E (2016) Investigating thermal effects on vibration behavior of temperature-dependent compositionally graded Euler beams with porosities. Meccanica 51(1):223–249MathSciNetMATH
80.
Zurück zum Zitat She G-L, Yan K-M, Zhang Y-L, Liu H-B, Ren Y-R (2018) Wave propagation of functionally graded porous nanobeams based on non-local strain gradient theory. Eur Phys J Plus 133:368 She G-L, Yan K-M, Zhang Y-L, Liu H-B, Ren Y-R (2018) Wave propagation of functionally graded porous nanobeams based on non-local strain gradient theory. Eur Phys J Plus 133:368
81.
Zurück zum Zitat She G-L, Yuan F-G, Ren Y-R (2018) On wave propagation of porous nanotubes. Int J Eng Sci 130:62–74MathSciNetMATH She G-L, Yuan F-G, Ren Y-R (2018) On wave propagation of porous nanotubes. Int J Eng Sci 130:62–74MathSciNetMATH
82.
Zurück zum Zitat She G-L, Ren Y-R, Yuan F-G, Xiao W-S (2018) On vibrations of porous nanotubes. Int J Eng Sci 125:23–35MathSciNetMATH She G-L, Ren Y-R, Yuan F-G, Xiao W-S (2018) On vibrations of porous nanotubes. Int J Eng Sci 125:23–35MathSciNetMATH
83.
Zurück zum Zitat She G-L, Yuan F-G, Ren Y-R, Xiao W-S (2017) On buckling and postbuckling behavior of nanotubes. Int J Eng Sci 121:130–142MathSciNetMATH She G-L, Yuan F-G, Ren Y-R, Xiao W-S (2017) On buckling and postbuckling behavior of nanotubes. Int J Eng Sci 121:130–142MathSciNetMATH
84.
Zurück zum Zitat She G-L, Yuan F-G, Ren Y-R (2017) Thermal buckling and post-buckling analysis of functionally graded beams based on a general higher-order shear deformation theory. Appl Math Model 47:340–357MathSciNetMATH She G-L, Yuan F-G, Ren Y-R (2017) Thermal buckling and post-buckling analysis of functionally graded beams based on a general higher-order shear deformation theory. Appl Math Model 47:340–357MathSciNetMATH
85.
Zurück zum Zitat She G-L, Yuan F-G, Ren Y-R, Liu H-B, Xiao W-S (2018) Nonlinear bending and vibration analysis of functionally graded porous tubes via a nonlocal strain gradient theory. Compos Struct 203:614–623 She G-L, Yuan F-G, Ren Y-R, Liu H-B, Xiao W-S (2018) Nonlinear bending and vibration analysis of functionally graded porous tubes via a nonlocal strain gradient theory. Compos Struct 203:614–623
87.
Zurück zum Zitat She G-L, Yuan F-G, Karami B, Ren Y-R, Xiao W-S (2019) On nonlinear bending behavior of FG porous curved nanotubes. Int J Eng Sci 135(2019):58–74MathSciNetMATH She G-L, Yuan F-G, Karami B, Ren Y-R, Xiao W-S (2019) On nonlinear bending behavior of FG porous curved nanotubes. Int J Eng Sci 135(2019):58–74MathSciNetMATH
88.
Zurück zum Zitat Zeng S, Wang BL, Wang KF (2019) Nonlinear vibration of piezoelectric sandwich nanoplates with functionally graded porous core with consideration of flexoelectric effect. Compos Struct 207:340–351 Zeng S, Wang BL, Wang KF (2019) Nonlinear vibration of piezoelectric sandwich nanoplates with functionally graded porous core with consideration of flexoelectric effect. Compos Struct 207:340–351
89.
Zurück zum Zitat Ebrahimi F, Jafari A, Barati MR (2017) Free vibration analysis of smart porous plates subjected to various physical fields considering neutral surface position. Arab J Sci Eng 42(5):1865–1881MathSciNetMATH Ebrahimi F, Jafari A, Barati MR (2017) Free vibration analysis of smart porous plates subjected to various physical fields considering neutral surface position. Arab J Sci Eng 42(5):1865–1881MathSciNetMATH
90.
Zurück zum Zitat Shen H-S, Xiang Y (2013) Nonlinear analysis of nanotube-reinforced composite beams resting on elastic foundations in thermal environments. Eng Struct 56:698–708 Shen H-S, Xiang Y (2013) Nonlinear analysis of nanotube-reinforced composite beams resting on elastic foundations in thermal environments. Eng Struct 56:698–708
91.
Zurück zum Zitat Mantari JL, Bonilla EM, Soares CG (2014) A new tangential-exponential higher order shear deformation theory for advanced composite plates. Compos Part B Eng 60:319–328 Mantari JL, Bonilla EM, Soares CG (2014) A new tangential-exponential higher order shear deformation theory for advanced composite plates. Compos Part B Eng 60:319–328
92.
Zurück zum Zitat Ke L-L, Wang Y-S (2014) Free vibration of size-dependent magneto-electro-elastic nanobeams based on the nonlocal theory. Phys E Low Dimens Syst Nanostructures 63:52–61 Ke L-L, Wang Y-S (2014) Free vibration of size-dependent magneto-electro-elastic nanobeams based on the nonlocal theory. Phys E Low Dimens Syst Nanostructures 63:52–61
93.
Zurück zum Zitat Thai H-T, Choi D-H (2012) A refined shear deformation theory for free vibration of functionally graded plates on elastic foundation. Compos B: Eng 43(5):2335–2347 Thai H-T, Choi D-H (2012) A refined shear deformation theory for free vibration of functionally graded plates on elastic foundation. Compos B: Eng 43(5):2335–2347
Metadaten
Titel
Vibration analysis of porous magneto-electro-elastically actuated carbon nanotube-reinforced composite sandwich plate based on a refined plate theory
verfasst von
Farzad Ebrahimi
Navid Farazmandnia
Mohammad Reza Kokaba
Vinyas Mahesh
Publikationsdatum
05.10.2019
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 2/2021
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-019-00864-4

Weitere Artikel der Ausgabe 2/2021

Engineering with Computers 2/2021 Zur Ausgabe

Neuer Inhalt