Skip to main content
Erschienen in: Engineering with Computers 4/2023

21.05.2022 | Original Article

Multi-adaptive coupling of finite element meshes with peridynamic grids: robust implementation and potential applications

verfasst von: Farshid Mossaiby, Pouria Sheikhbahaei, Arman Shojaei

Erschienen in: Engineering with Computers | Ausgabe 4/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Coupling of methods based on the classical continuum mechanics (CCM), with peridynamic (PD) models is a recent hot topic in the realm of computational mechanics. In the coupled models, to optimize the usage of computational resources, usually the application of PD (the more demanding procedure) is restricted to critical areas of the domain affected by discontinuities such as propagating cracks. The remaining parts of the domain are described by a more efficient CCM-based model such as the finite element method (FEM). Here, we develop a coupled FEM/PD model for dynamic fracture modeling. The proposed method simultaneously features the following: (1) it can adaptively change the coupling configuration throughout the simulation such that only critical zones, on the verge of crack nucleation/propagation, are tackled by the PD procedure, and (2) it appropriately supports different grid spacing of PD and FEM parts. We refer to a model possessing both the features as multi-adaptive. This is crucial for a highly efficient coupling scheme. The performance of the proposed method is analyzed in terms of accuracy and computational efficiency through different numerical examples. The results show that the proposed method is superior to using a refined PD model, since it provides the same level of accuracy at a much lower computational cost. As a novel application, we present the promising results of a crack propagation problem in an unbounded domain, solved using classical artificial boundary conditions on an outer FEM layer.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Alhadeff A, Leon SE, Celes W, Paulino GH (2016) Massively parallel adaptive mesh refinement and coarsening for dynamic fracture simulations. Eng Comput 32(3):533–552 Alhadeff A, Leon SE, Celes W, Paulino GH (2016) Massively parallel adaptive mesh refinement and coarsening for dynamic fracture simulations. Eng Comput 32(3):533–552
2.
Zurück zum Zitat Ballarini R, Diana V, Biolzi L, Casolo S (2018) Bond-based peridynamic modelling of singular and nonsingular crack-tip fields. Meccanica 53(14):3495–3515MathSciNet Ballarini R, Diana V, Biolzi L, Casolo S (2018) Bond-based peridynamic modelling of singular and nonsingular crack-tip fields. Meccanica 53(14):3495–3515MathSciNet
3.
Zurück zum Zitat Bazazzadeh S, Mossaiby F, Shojaei A (2020) An adaptive thermo-mechanical peridynamic model for fracture analysis in ceramics. Eng Fract Mech 223:106708 Bazazzadeh S, Mossaiby F, Shojaei A (2020) An adaptive thermo-mechanical peridynamic model for fracture analysis in ceramics. Eng Fract Mech 223:106708
5.
Zurück zum Zitat Behzadinasab M, Foster JT (2019) The third sandia fracture challenge: peridynamic blind prediction of ductile fracture characterization in additively manufactured metal. Int J Fract 218(1–2):97–109 Behzadinasab M, Foster JT (2019) The third sandia fracture challenge: peridynamic blind prediction of ductile fracture characterization in additively manufactured metal. Int J Fract 218(1–2):97–109
6.
Zurück zum Zitat Belinha J, Azevedo J, Dinis LMDJS, Jorge RN (2018) Simulating fracture propagation in brittle materials using a meshless approach. Eng Comput 34(3):503–522 Belinha J, Azevedo J, Dinis LMDJS, Jorge RN (2018) Simulating fracture propagation in brittle materials using a meshless approach. Eng Comput 34(3):503–522
7.
Zurück zum Zitat Bie Y, Cui X, Li Z (2018) A coupling approach of state-based peridynamics with node-based smoothed finite element method. Comput Methods Appl Mech Eng 331:675–700MathSciNetMATH Bie Y, Cui X, Li Z (2018) A coupling approach of state-based peridynamics with node-based smoothed finite element method. Comput Methods Appl Mech Eng 331:675–700MathSciNetMATH
8.
Zurück zum Zitat Bobaru F, Zhang G (2015) Why do cracks branch? A peridynamic investigation of dynamic brittle fracture. Int J Fract 196(1–2):59–98 Bobaru F, Zhang G (2015) Why do cracks branch? A peridynamic investigation of dynamic brittle fracture. Int J Fract 196(1–2):59–98
9.
Zurück zum Zitat Bobaru F, Yang M, Alves LF, Silling SA, Askari E, Xu J (2009) Convergence, adaptive refinement, and scaling in 1D peridynamics. Int J Numer Meth Eng 77(6):852–877MATH Bobaru F, Yang M, Alves LF, Silling SA, Askari E, Xu J (2009) Convergence, adaptive refinement, and scaling in 1D peridynamics. Int J Numer Meth Eng 77(6):852–877MATH
10.
Zurück zum Zitat Bobaru F, Foster J, Geubelle P, Silling S (2016) Handbook of peridynamic modeling. Advances in applied mathematics. CRC Press, Boca RatonMATH Bobaru F, Foster J, Geubelle P, Silling S (2016) Handbook of peridynamic modeling. Advances in applied mathematics. CRC Press, Boca RatonMATH
11.
Zurück zum Zitat Boroomand B, Mossaiby F (2006) Dynamic solution of unbounded domains using finite element method: discrete Green’s functions in frequency domain. Int J Numer Meth Eng 67(11):1491–1530MathSciNetMATH Boroomand B, Mossaiby F (2006) Dynamic solution of unbounded domains using finite element method: discrete Green’s functions in frequency domain. Int J Numer Meth Eng 67(11):1491–1530MathSciNetMATH
12.
Zurück zum Zitat Boys B, Dodwell T, Hobbs M, Girolami M (2021) PeriPy—a high performance OpenCL peridynamics package. Comput Methods Appl Mech Eng 386:114085MathSciNetMATH Boys B, Dodwell T, Hobbs M, Girolami M (2021) PeriPy—a high performance OpenCL peridynamics package. Comput Methods Appl Mech Eng 386:114085MathSciNetMATH
13.
Zurück zum Zitat Brothers MD, Foster JT, Millwater HR (2014) A comparison of different methods for calculating tangent-stiffness matrices in a massively parallel computational peridynamics code. Comput Methods Appl Mech Eng 279:247–267MATH Brothers MD, Foster JT, Millwater HR (2014) A comparison of different methods for calculating tangent-stiffness matrices in a massively parallel computational peridynamics code. Comput Methods Appl Mech Eng 279:247–267MATH
14.
Zurück zum Zitat Diana V, Carvelli V (2020) An electromechanical micropolar peridynamic model. Comput Methods Appl Mech Eng 365:112998MathSciNetMATH Diana V, Carvelli V (2020) An electromechanical micropolar peridynamic model. Comput Methods Appl Mech Eng 365:112998MathSciNetMATH
16.
Zurück zum Zitat Diehl P, Jha P.K., Kaiser H, Lipton R, Levesque M (2018) Implementation of Peridynamics utilizing HPX—the C++ standard library for parallelism and concurrency. arXiv pp. arXiv–1806 Diehl P, Jha P.K., Kaiser H, Lipton R, Levesque M (2018) Implementation of Peridynamics utilizing HPX—the C++ standard library for parallelism and concurrency. arXiv pp. arXiv–1806
17.
Zurück zum Zitat Diehl P, Prudhomme S, Lévesque M (2019) A review of benchmark experiments for the validation of peridynamics models. J Peridynam Nonlocal Model 1(1):14–35MathSciNet Diehl P, Prudhomme S, Lévesque M (2019) A review of benchmark experiments for the validation of peridynamics models. J Peridynam Nonlocal Model 1(1):14–35MathSciNet
18.
Zurück zum Zitat Dipasquale D, Zaccariotto M, Galvanetto U (2014) Crack propagation with adaptive grid refinement in 2D peridynamics. Int J Fract 190(1–2):1–22 Dipasquale D, Zaccariotto M, Galvanetto U (2014) Crack propagation with adaptive grid refinement in 2D peridynamics. Int J Fract 190(1–2):1–22
19.
Zurück zum Zitat Dipasquale D, Sarego G, Zaccariotto M, Galvanetto U (2016) Dependence of crack paths on the orientation of regular 2D peridynamic grids. Eng Fract Mech 160:248–263 Dipasquale D, Sarego G, Zaccariotto M, Galvanetto U (2016) Dependence of crack paths on the orientation of regular 2D peridynamic grids. Eng Fract Mech 160:248–263
20.
Zurück zum Zitat Dipasquale D, Sarego G, Prapamonthon P, Yooyen S, Shojaei A (2022) A stress tensor-based failure criterion for ordinary state-based peridynamic models. J Appl Comput Mech 8:617–628 Dipasquale D, Sarego G, Prapamonthon P, Yooyen S, Shojaei A (2022) A stress tensor-based failure criterion for ordinary state-based peridynamic models. J Appl Comput Mech 8:617–628
21.
Zurück zum Zitat Diyaroglu C, Oterkus E, Oterkus S, Madenci E (2015) Peridynamics for bending of beams and plates with transverse shear deformation. Int J Solids Struct 69:152–168 Diyaroglu C, Oterkus E, Oterkus S, Madenci E (2015) Peridynamics for bending of beams and plates with transverse shear deformation. Int J Solids Struct 69:152–168
22.
Zurück zum Zitat Du Q, Han H, Zhang J, Zheng C (2018) Numerical solution of a two-dimensional nonlocal wave equation on unbounded domains. SIAM J Sci Comput 40(3):A1430–A1445MathSciNetMATH Du Q, Han H, Zhang J, Zheng C (2018) Numerical solution of a two-dimensional nonlocal wave equation on unbounded domains. SIAM J Sci Comput 40(3):A1430–A1445MathSciNetMATH
23.
Zurück zum Zitat Elices M, Guinea G, Gomez J, Planas J (2002) The cohesive zone model: advantages, limitations and challenges. Eng Fract Mech 69(2):137–163 Elices M, Guinea G, Gomez J, Planas J (2002) The cohesive zone model: advantages, limitations and challenges. Eng Fract Mech 69(2):137–163
24.
Zurück zum Zitat Engquist B, Majda A (1977) Absorbing boundary conditions for numerical simulation of waves. Proc Natl Acad Sci 74(5):1765–1766MathSciNetMATH Engquist B, Majda A (1977) Absorbing boundary conditions for numerical simulation of waves. Proc Natl Acad Sci 74(5):1765–1766MathSciNetMATH
25.
Zurück zum Zitat Fan H, Li S (2017) Parallel peridynamics-SPH simulation of explosion induced soil fragmentation by using OpenMP. Comput Particle Mech 4(2):199–211 Fan H, Li S (2017) Parallel peridynamics-SPH simulation of explosion induced soil fragmentation by using OpenMP. Comput Particle Mech 4(2):199–211
26.
Zurück zum Zitat Galvanetto U, Mudric T, Shojaei A, Zaccariotto M (2016) An effective way to couple FEM meshes and Peridynamics grids for the solution of static equilibrium problems. Mech Res Commun 76:41–47 Galvanetto U, Mudric T, Shojaei A, Zaccariotto M (2016) An effective way to couple FEM meshes and Peridynamics grids for the solution of static equilibrium problems. Mech Res Commun 76:41–47
27.
Zurück zum Zitat Gao W, Chen X, Wang X, Hu C (2020) Novel strength reduction numerical method to analyse the stability of a fractured rock slope from mesoscale failure. Eng Comput:1–17 Gao W, Chen X, Wang X, Hu C (2020) Novel strength reduction numerical method to analyse the stability of a fractured rock slope from mesoscale failure. Eng Comput:1–17
28.
Zurück zum Zitat Gu X, Zhang Q, Xia X (2017) Voronoi-based peridynamics and cracking analysis with adaptive refinement. Int J Numer Meth Eng 112(13):2087–2109MathSciNet Gu X, Zhang Q, Xia X (2017) Voronoi-based peridynamics and cracking analysis with adaptive refinement. Int J Numer Meth Eng 112(13):2087–2109MathSciNet
29.
Zurück zum Zitat Ha YD, Bobaru F (2010) Studies of dynamic crack propagation and crack branching with peridynamics. Int J Fract 162(1–2):229–244MATH Ha YD, Bobaru F (2010) Studies of dynamic crack propagation and crack branching with peridynamics. Int J Fract 162(1–2):229–244MATH
30.
Zurück zum Zitat Han F, Lubineau G, Azdoud Y, Askari A (2016) A morphing approach to couple state-based peridynamics with classical continuum mechanics. Comput Methods Appl Mech Eng 301:336–358MathSciNetMATH Han F, Lubineau G, Azdoud Y, Askari A (2016) A morphing approach to couple state-based peridynamics with classical continuum mechanics. Comput Methods Appl Mech Eng 301:336–358MathSciNetMATH
31.
Zurück zum Zitat Hermann A, Shojaei A, Steglich D, Höche D, Zeller-Plumhoff B, Cyron CJ (2022) Combining peridynamic and finite element simulations to capture the corrosion of degradable bone implants and to predict their residual strength. Int J Mech Sci 220:107143 Hermann A, Shojaei A, Steglich D, Höche D, Zeller-Plumhoff B, Cyron CJ (2022) Combining peridynamic and finite element simulations to capture the corrosion of degradable bone implants and to predict their residual strength. Int J Mech Sci 220:107143
32.
Zurück zum Zitat Higdon RL (1991) Absorbing boundary conditions for elastic waves. Geophysics 56(2):231–241 Higdon RL (1991) Absorbing boundary conditions for elastic waves. Geophysics 56(2):231–241
33.
Zurück zum Zitat Lages EN, Paulino GH, Menezes IF, Silva RR (1999) Nonlinear finite element analysis using an object-oriented philosophy-application to beam elements and to the cosserat continuum. Eng Comput 15(1):73–89 Lages EN, Paulino GH, Menezes IF, Silva RR (1999) Nonlinear finite element analysis using an object-oriented philosophy-application to beam elements and to the cosserat continuum. Eng Comput 15(1):73–89
34.
Zurück zum Zitat Le Q, Bobaru F (2018) Surface corrections for peridynamic models in elasticity and fracture. Comput Mech 61(4):499–518MathSciNetMATH Le Q, Bobaru F (2018) Surface corrections for peridynamic models in elasticity and fracture. Comput Mech 61(4):499–518MathSciNetMATH
35.
Zurück zum Zitat Lubineau G, Azdoud Y, Han F, Rey C, Askari A (2012) A morphing strategy to couple non-local to local continuum mechanics. J Mech Phys Solids 60(6):1088–1102MathSciNet Lubineau G, Azdoud Y, Han F, Rey C, Askari A (2012) A morphing strategy to couple non-local to local continuum mechanics. J Mech Phys Solids 60(6):1088–1102MathSciNet
36.
Zurück zum Zitat Madenci E, Dorduncu M, Barut A, Phan N (2018) Weak form of peridynamics for nonlocal essential and natural boundary conditions. Comput Methods Appl Mech Eng 337:598–631MathSciNetMATH Madenci E, Dorduncu M, Barut A, Phan N (2018) Weak form of peridynamics for nonlocal essential and natural boundary conditions. Comput Methods Appl Mech Eng 337:598–631MathSciNetMATH
37.
Zurück zum Zitat Mattesi V, Darbas M, Geuzaine C (2019) A high-order absorbing boundary condition for 2D time-harmonic elastodynamic scattering problems. Comput Math Appl 77(6):1703–1721MathSciNetMATH Mattesi V, Darbas M, Geuzaine C (2019) A high-order absorbing boundary condition for 2D time-harmonic elastodynamic scattering problems. Comput Math Appl 77(6):1703–1721MathSciNetMATH
38.
Zurück zum Zitat Mossaiby F, Shojaei A, Zaccariotto M, Galvanetto U (2017) OpenCL implementation of a high performance 3D Peridynamic model on graphics accelerators. Comput Math Appl 74(8):1856–1870MathSciNetMATH Mossaiby F, Shojaei A, Zaccariotto M, Galvanetto U (2017) OpenCL implementation of a high performance 3D Peridynamic model on graphics accelerators. Comput Math Appl 74(8):1856–1870MathSciNetMATH
39.
Zurück zum Zitat Mossaiby F, Shojaei A, Boroomand B, Zaccariotto M, Galvanetto U (2020) Local dirichlet-type absorbing boundary conditions for transient elastic wave propagation problems. Comput Methods Appl Mech Eng 362:112856MathSciNetMATH Mossaiby F, Shojaei A, Boroomand B, Zaccariotto M, Galvanetto U (2020) Local dirichlet-type absorbing boundary conditions for transient elastic wave propagation problems. Comput Methods Appl Mech Eng 362:112856MathSciNetMATH
40.
Zurück zum Zitat Ni T, Zaccariotto M, Zhu QZ, Galvanetto U (2019) Static solution of crack propagation problems in peridynamics. Comput Methods Appl Mech Eng 346:126–151MathSciNetMATH Ni T, Zaccariotto M, Zhu QZ, Galvanetto U (2019) Static solution of crack propagation problems in peridynamics. Comput Methods Appl Mech Eng 346:126–151MathSciNetMATH
43.
Zurück zum Zitat Rabczuk T, Belytschko T (2004) Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int J Numer Meth Eng 61(13):2316–2343MATH Rabczuk T, Belytschko T (2004) Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int J Numer Meth Eng 61(13):2316–2343MATH
44.
Zurück zum Zitat Rabczuk T, Belytschko T (2007) A three-dimensional large deformation meshfree method for arbitrary evolving cracks. Comput Methods Appl Mech Eng 196(29–30):2777–2799MathSciNetMATH Rabczuk T, Belytschko T (2007) A three-dimensional large deformation meshfree method for arbitrary evolving cracks. Comput Methods Appl Mech Eng 196(29–30):2777–2799MathSciNetMATH
45.
Zurück zum Zitat Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H (2010) A simple and robust three-dimensional cracking-particle method without enrichment. Comput Methods Appl Mech Eng 199(37–40):2437–2455MATH Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H (2010) A simple and robust three-dimensional cracking-particle method without enrichment. Comput Methods Appl Mech Eng 199(37–40):2437–2455MATH
46.
Zurück zum Zitat Ren H, Zhuang X, Cai Y, Rabczuk T (2016) Dual-horizon peridynamics. Int J Numer Meth Eng 108(12):1451–1476MathSciNet Ren H, Zhuang X, Cai Y, Rabczuk T (2016) Dual-horizon peridynamics. Int J Numer Meth Eng 108(12):1451–1476MathSciNet
47.
Zurück zum Zitat Ren H, Zhuang X, Rabczuk T (2017) Dual-horizon peridynamics: a stable solution to varying horizons. Comput Methods Appl Mech Eng 318:762–782MathSciNetMATH Ren H, Zhuang X, Rabczuk T (2017) Dual-horizon peridynamics: a stable solution to varying horizons. Comput Methods Appl Mech Eng 318:762–782MathSciNetMATH
48.
Zurück zum Zitat Ren H, Zhuang X, Rabczuk T (2020) Nonlocal operator method with numerical integration for gradient solid. Comput Struct 233:106235 Ren H, Zhuang X, Rabczuk T (2020) Nonlocal operator method with numerical integration for gradient solid. Comput Struct 233:106235
49.
Zurück zum Zitat Roy P, Pathrikar A, Deepu S, Roy D (2017) Peridynamics damage model through phase field theory. Int J Mech Sci 128:181–193 Roy P, Pathrikar A, Deepu S, Roy D (2017) Peridynamics damage model through phase field theory. Int J Mech Sci 128:181–193
50.
Zurück zum Zitat Seleson P, Beneddine S, Prudhomme S (2013) A force-based coupling scheme for peridynamics and classical elasticity. Comput Mater Sci 66:34–49 Seleson P, Beneddine S, Prudhomme S (2013) A force-based coupling scheme for peridynamics and classical elasticity. Comput Mater Sci 66:34–49
51.
Zurück zum Zitat Shojaei A, Hermann A, Seleson P, Cyron CJ (2020) Dirichlet absorbing boundary conditions for classical and peridynamic diffusion-type models. Comput Mech 66(4):773–793 Shojaei A, Hermann A,  Seleson P,  Cyron CJ (2020) Dirichlet absorbing boundary conditions for classical and peridynamic diffusion-type models. Comput Mech 66(4):773–793
52.
Zurück zum Zitat Shojaei A, Mudric T, Zaccariotto M, Galvanetto U (2016) A coupled meshless finite point/Peridynamic method for 2D dynamic fracture analysis. Int J Mech Sci 119:419–431 Shojaei A, Mudric T, Zaccariotto M, Galvanetto U (2016) A coupled meshless finite point/Peridynamic method for 2D dynamic fracture analysis. Int J Mech Sci 119:419–431
53.
Zurück zum Zitat Shojaei A, Zaccariotto M, Galvanetto U (2017) Coupling of 2D discretized Peridynamics with a meshless method based on classical elasticity using switching of nodal behaviour. Eng Comput Shojaei A, Zaccariotto M, Galvanetto U (2017) Coupling of 2D discretized Peridynamics with a meshless method based on classical elasticity using switching of nodal behaviour. Eng Comput
54.
Zurück zum Zitat Shojaei A, Mossaiby F, Zaccariotto M, Galvanetto U (2018) An adaptive multi-grid peridynamic method for dynamic fracture analysis. Int J Mech Sci 144:600–617 Shojaei A, Mossaiby F, Zaccariotto M, Galvanetto U (2018) An adaptive multi-grid peridynamic method for dynamic fracture analysis. Int J Mech Sci 144:600–617
55.
Zurück zum Zitat Shojaei A, Galvanetto U, Rabczuk T, Jenabi A, Zaccariotto M (2019) A generalized finite difference method based on the peridynamic differential operator for the solution of problems in bounded and unbounded domains. Comput Methods Appl Mech Eng 343:100–126MathSciNetMATH Shojaei A, Galvanetto U, Rabczuk T, Jenabi A, Zaccariotto M (2019) A generalized finite difference method based on the peridynamic differential operator for the solution of problems in bounded and unbounded domains. Comput Methods Appl Mech Eng 343:100–126MathSciNetMATH
56.
Zurück zum Zitat Shojaei A, Mossaiby F, Zaccariotto M, Galvanetto U (2019) A local collocation method to construct dirichlet-type absorbing boundary conditions for transient scalar wave propagation problems. Comput Methods Appl Mech Eng 356:629–651MathSciNetMATH Shojaei A, Mossaiby F, Zaccariotto M, Galvanetto U (2019) A local collocation method to construct dirichlet-type absorbing boundary conditions for transient scalar wave propagation problems. Comput Methods Appl Mech Eng 356:629–651MathSciNetMATH
57.
Zurück zum Zitat Shojaei A, Hermann A, Cyron CJ, Seleson P, Silling SA (2022) A hybrid meshfree discretization to improve the numerical performance of peridynamic models. Comput Methods Appl Mech Eng 391:114544MathSciNetMATH Shojaei A, Hermann A, Cyron CJ, Seleson P, Silling SA (2022) A hybrid meshfree discretization to improve the numerical performance of peridynamic models. Comput Methods Appl Mech Eng 391:114544MathSciNetMATH
58.
Zurück zum Zitat Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48(1):175–209MathSciNetMATH Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48(1):175–209MathSciNetMATH
59.
Zurück zum Zitat Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics. Comput Struct 83(17–18):1526–1535 Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics. Comput Struct 83(17–18):1526–1535
60.
Zurück zum Zitat Silling SA, Epton M, Weckner O, Xu J, Askari E (2007) Peridynamic states and constitutive modeling. J Elast 88(2):151–184MathSciNetMATH Silling SA, Epton M, Weckner O, Xu J, Askari E (2007) Peridynamic states and constitutive modeling. J Elast 88(2):151–184MathSciNetMATH
61.
Zurück zum Zitat Silling S, Littlewood D, Seleson P (2015) Variable horizon in a peridynamic medium. J Mech Mater Struct 10(5):591–612MathSciNet Silling S, Littlewood D, Seleson P (2015) Variable horizon in a peridynamic medium. J Mech Mater Struct 10(5):591–612MathSciNet
63.
Zurück zum Zitat Sukumar N, Moës N, Moran B, Belytschko T (2000) Extended finite element method for three-dimensional crack modelling. Int J Numer Meth Eng 48(11):1549–1570MATH Sukumar N, Moës N, Moran B, Belytschko T (2000) Extended finite element method for three-dimensional crack modelling. Int J Numer Meth Eng 48(11):1549–1570MATH
64.
Zurück zum Zitat Sun W, Fish J (2019) Superposition-based coupling of peridynamics and finite element method. Comput Mech 64(1):231–248MathSciNetMATH Sun W, Fish J (2019) Superposition-based coupling of peridynamics and finite element method. Comput Mech 64(1):231–248MathSciNetMATH
65.
Zurück zum Zitat Wang L, Chen Y, Xu J, Wang J (2017) Transmitting boundary conditions for 1D peridynamics. Int J Numer Meth Eng 110(4):379–400MathSciNetMATH Wang L, Chen Y, Xu J, Wang J (2017) Transmitting boundary conditions for 1D peridynamics. Int J Numer Meth Eng 110(4):379–400MathSciNetMATH
66.
Zurück zum Zitat Wang X, Kulkarni SS, Tabarraei A (2019) Concurrent coupling of peridynamics and classical elasticity for elastodynamic problems. Comput Methods Appl Mech Eng 344:251–275MathSciNetMATH Wang X, Kulkarni SS, Tabarraei A (2019) Concurrent coupling of peridynamics and classical elasticity for elastodynamic problems. Comput Methods Appl Mech Eng 344:251–275MathSciNetMATH
67.
Zurück zum Zitat Wang Y, Zhou X, Zhang T (2019) Size effect of thermal shock crack patterns in ceramics: insights from a nonlocal numerical approach. Mech Mater 137:103133 Wang Y, Zhou X, Zhang T (2019) Size effect of thermal shock crack patterns in ceramics: insights from a nonlocal numerical approach. Mech Mater 137:103133
68.
Zurück zum Zitat Weckner O, Abeyaratne R (2005) The effect of long-range forces on the dynamics of a bar. J Mech Phys Solids 53(3):705–728MathSciNetMATH Weckner O, Abeyaratne R (2005) The effect of long-range forces on the dynamics of a bar. J Mech Phys Solids 53(3):705–728MathSciNetMATH
69.
Zurück zum Zitat Wildman RA, Gazonas GA (2013) A perfectly matched layer for peridynamics in two dimensions. J Mech Mater Struct 7(8):765–781 Wildman RA, Gazonas GA (2013) A perfectly matched layer for peridynamics in two dimensions. J Mech Mater Struct 7(8):765–781
70.
Zurück zum Zitat Wildman RA, Gazonas GA (2014) A finite difference-augmented peridynamics method for reducing wave dispersion. Int J Fract 190(1–2):39–52 Wildman RA, Gazonas GA (2014) A finite difference-augmented peridynamics method for reducing wave dispersion. Int J Fract 190(1–2):39–52
71.
Zurück zum Zitat Yu Y, Bargos FF, You H, Parks ML, Bittencourt ML, Karniadakis GE (2018) A partitioned coupling framework for peridynamics and classical theory: analysis and simulations. Comput Methods Appl Mech Eng 340:905–931MathSciNetMATH Yu Y, Bargos FF, You H, Parks ML, Bittencourt ML, Karniadakis GE (2018) A partitioned coupling framework for peridynamics and classical theory: analysis and simulations. Comput Methods Appl Mech Eng 340:905–931MathSciNetMATH
72.
Zurück zum Zitat Yu K, Xin X, Lease KB (2010) A new method of adaptive integration with error control for bond-based peridynamics. In: Proceedings of the world congress on engineering and computer science, vol 2, pp 1041–1046 Yu K, Xin X, Lease KB (2010) A new method of adaptive integration with error control for bond-based peridynamics. In: Proceedings of the world congress on engineering and computer science, vol 2, pp 1041–1046
73.
Zurück zum Zitat Zaccariotto M, Tomasi D, Galvanetto U (2017) An enhanced coupling of PD grids to FE meshes. Mech Res Commun 84:125–135 Zaccariotto M, Tomasi D, Galvanetto U (2017) An enhanced coupling of PD grids to FE meshes. Mech Res Commun 84:125–135
74.
Zurück zum Zitat Zaccariotto M, Mudric T, Tomasi D, Shojaei A, Galvanetto U (2018) Coupling of FEM meshes with Peridynamic grids. Comput Methods Appl Mech Eng 330:471–497MathSciNetMATH Zaccariotto M, Mudric T, Tomasi D, Shojaei A, Galvanetto U (2018) Coupling of FEM meshes with Peridynamic grids. Comput Methods Appl Mech Eng 330:471–497MathSciNetMATH
75.
Zurück zum Zitat Zaccariotto M, Shojaei A, Galvanetto U (2021) Chapter 6—coupling of CCM and PD in a meshless way. In: Oterkus E, Oterkus S, Madenci E (eds) Peridynamic modeling, numerical techniques, and applications. Elsevier series in mechanics of advanced materials, Elsevier, pp 113–138. https://doi.org/10.1016/B978-0-12-820069-8.00014-7 Zaccariotto M, Shojaei A, Galvanetto U (2021) Chapter 6—coupling of CCM and PD in a meshless way. In: Oterkus E, Oterkus S, Madenci E (eds) Peridynamic modeling, numerical techniques, and applications. Elsevier series in mechanics of advanced materials, Elsevier, pp 113–138. https://​doi.​org/​10.​1016/​B978-0-12-820069-8.​00014-7
76.
Zurück zum Zitat Zhang W, Yang J, Zhang J, Du Q (2017) Artificial boundary conditions for nonlocal heat equations on unbounded domain. Commun Comput Phys 21(1):16–39MathSciNetMATH Zhang W, Yang J, Zhang J, Du Q (2017) Artificial boundary conditions for nonlocal heat equations on unbounded domain. Commun Comput Phys 21(1):16–39MathSciNetMATH
Metadaten
Titel
Multi-adaptive coupling of finite element meshes with peridynamic grids: robust implementation and potential applications
verfasst von
Farshid Mossaiby
Pouria Sheikhbahaei
Arman Shojaei
Publikationsdatum
21.05.2022
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 4/2023
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-022-01656-z

Weitere Artikel der Ausgabe 4/2023

Engineering with Computers 4/2023 Zur Ausgabe

Neuer Inhalt