Skip to main content
Erschienen in: Rheologica Acta 4/2017

28.02.2017 | Original Contribution

On the pulsating flow behavior of a biological fluid: human blood

verfasst von: Edtson Emilio Herrera-Valencia, Fausto Calderas, Luis Medina-Torres, Mariano Pérez-Camacho, Leonardo Moreno, Octavio Manero

Erschienen in: Rheologica Acta | Ausgabe 4/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, the rectilinear flow of a complex fluid (human blood) under a pulsating time-dependent pressure gradient is analyzed. A first approximation of the real case of blood flowing in a vein is described. The normalized pressure gradient simulates the pumping work of the heart while the flow geometry (circular tube) is assumed rigid, smooth, and cylindrical. The rheological behavior of blood with different cholesterol levels is modeled using the Bautista–Manero–Puig (BMP) constitutive equation. According to the analytical solution, a flow enhancement is predicted to first order which represents the optimum pumping work of the heart which governs the flow of blood in the entire body. This work is a contribution to the understanding of the complex rheology involved in the discontinuous pressure-driven flow of blood in the human body.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Acierno A, La Mantia FP, Marrucci G, Titomanlio G (1976) A non linear viscoelastic model with structure dependent relaxation times. I Basic formulation J Non-Newton Fluid Mech 1:125–146CrossRef Acierno A, La Mantia FP, Marrucci G, Titomanlio G (1976) A non linear viscoelastic model with structure dependent relaxation times. I Basic formulation J Non-Newton Fluid Mech 1:125–146CrossRef
Zurück zum Zitat Anand M, Rajagopal KR (2004) A shear-thinning viscoelastic fluid model for describing the flow of blood. Int J Cardiovasc Med Sci 4:59–68 Anand M, Rajagopal KR (2004) A shear-thinning viscoelastic fluid model for describing the flow of blood. Int J Cardiovasc Med Sci 4:59–68
Zurück zum Zitat Anand M, Kwack J, Masud A (2013) A new generalized Oldroyd-B model for blood flow in complex geometries. Int J Eng Sci 72:78–88 Anand M, Kwack J, Masud A (2013) A new generalized Oldroyd-B model for blood flow in complex geometries. Int J Eng Sci 72:78–88
Zurück zum Zitat Apostoldis AJ, Moyer AP, Beris AN (2016) Non-Newtonian effects in simulations of coronary arterial blood flow. J Non-Newton Fluid Mech 233:155–165CrossRef Apostoldis AJ, Moyer AP, Beris AN (2016) Non-Newtonian effects in simulations of coronary arterial blood flow. J Non-Newton Fluid Mech 233:155–165CrossRef
Zurück zum Zitat Apostolidis AJ, Beris AN (2015) The effect of cholesterol and triglycerides on the steady state rheology of blood. Rheol Acta 1:1–13 Apostolidis AJ, Beris AN (2015) The effect of cholesterol and triglycerides on the steady state rheology of blood. Rheol Acta 1:1–13
Zurück zum Zitat Barnes HA, Towsend P, Walters K (1969) Flow of non-Newtonian liquids under a varying pressure gradient. Nature 224:585–587CrossRef Barnes HA, Towsend P, Walters K (1969) Flow of non-Newtonian liquids under a varying pressure gradient. Nature 224:585–587CrossRef
Zurück zum Zitat Barnes HA, Towsend P, Walters K (1971) On pulsatile flow of non-Newtonian liquids. Rheol Acta 10:517–527 Barnes HA, Towsend P, Walters K (1971) On pulsatile flow of non-Newtonian liquids. Rheol Acta 10:517–527
Zurück zum Zitat Bautista F, Soltero JFA, Pérez-López JH, Puig JE, Manero O (2000) On the shear banding flow of elongated micellar solutions. J Non-Newton Fluid Mech 94:57–66CrossRef Bautista F, Soltero JFA, Pérez-López JH, Puig JE, Manero O (2000) On the shear banding flow of elongated micellar solutions. J Non-Newton Fluid Mech 94:57–66CrossRef
Zurück zum Zitat Bautista F, De Santos JM, Puig JE, Manero O (1999) Understanding thixotropic and antithixotropic behavior of viscoelastic micellar solutions and liquid crystalline dispersions. The model J Non-Newton Fluid Mech 80:93–113CrossRef Bautista F, De Santos JM, Puig JE, Manero O (1999) Understanding thixotropic and antithixotropic behavior of viscoelastic micellar solutions and liquid crystalline dispersions. The model J Non-Newton Fluid Mech 80:93–113CrossRef
Zurück zum Zitat Bautista F, Soltero JFA, Macias ER, Manero O (2002) On the shear banding flow of wormlike micelles. J Phys Chem B 106:13018–13026CrossRef Bautista F, Soltero JFA, Macias ER, Manero O (2002) On the shear banding flow of wormlike micelles. J Phys Chem B 106:13018–13026CrossRef
Zurück zum Zitat Bautista F, PérezLópez JH, García JP, Puig JE, Manero O (2007) Stability analysis of shear banding flow with the BMP model. J NonNewtonian Fluid Mech, 144:160–169 Bautista F, PérezLópez JH, García JP, Puig JE, Manero O (2007) Stability analysis of shear banding flow with the BMP model. J NonNewtonian Fluid Mech, 144:160–169
Zurück zum Zitat Brust M, Schaefer C, Doerr R, Pan L, Garcia M, Arratia P, Wagner C (2013) Rheology of human blood plasma: viscoelastic versus Newtonian behavior. Phys Rev Lett 110:078305CrossRef Brust M, Schaefer C, Doerr R, Pan L, Garcia M, Arratia P, Wagner C (2013) Rheology of human blood plasma: viscoelastic versus Newtonian behavior. Phys Rev Lett 110:078305CrossRef
Zurück zum Zitat Bureau M, Healy JC, Bourgoin D, Joly M (1979) Etude rhéologique en régime transitoire de quelques échantillons de sangs humains artificiellement modifies. Rheol Acta 18:756–768CrossRef Bureau M, Healy JC, Bourgoin D, Joly M (1979) Etude rhéologique en régime transitoire de quelques échantillons de sangs humains artificiellement modifies. Rheol Acta 18:756–768CrossRef
Zurück zum Zitat Bureau M, Healy JC, Bourgoin D, Joly M (1980) Rheological hysteresis of blood at low shear rate. Biorheology 17:191–203 Bureau M, Healy JC, Bourgoin D, Joly M (1980) Rheological hysteresis of blood at low shear rate. Biorheology 17:191–203
Zurück zum Zitat Calderas F, Sánchez-Solis A, Maciel A, Manero O (2009) The transient flow of the PETPEN-Montmorillonite clay nanocomposite. Macromol Symp Macromex 283-284:354–360CrossRef Calderas F, Sánchez-Solis A, Maciel A, Manero O (2009) The transient flow of the PETPEN-Montmorillonite clay nanocomposite. Macromol Symp Macromex 283-284:354–360CrossRef
Zurück zum Zitat Calderas F, Herrera-Valencia EE, Sanchez-Solis A, Manero O, Medina-Torres L, Renteria A, Sanchez-Olivares G (2013) On the yield stress of complex materials. Korea-Aust Rheol J 25:233–242CrossRef Calderas F, Herrera-Valencia EE, Sanchez-Solis A, Manero O, Medina-Torres L, Renteria A, Sanchez-Olivares G (2013) On the yield stress of complex materials. Korea-Aust Rheol J 25:233–242CrossRef
Zurück zum Zitat Caram Y, Bautista F, Puig JE, Manero O (2006) On the rheological modeling of associative polymers. Rheol Acta 56:45–57 Caram Y, Bautista F, Puig JE, Manero O (2006) On the rheological modeling of associative polymers. Rheol Acta 56:45–57
Zurück zum Zitat Chen J, Lu X (2006) Numerical investigation of the non-Newtonian pulsatile blood flow in a bifurcation model with a non-planar branch. J Biomech 39:818–832CrossRef Chen J, Lu X (2006) Numerical investigation of the non-Newtonian pulsatile blood flow in a bifurcation model with a non-planar branch. J Biomech 39:818–832CrossRef
Zurück zum Zitat Davies JM, Bhumiratana S, Bird RB (1978) Elastic and inertial effects in pulsatile flow of polymeric liquids in circular tubes. J Non-Newtonian Fluid Mech 3:237–259CrossRef Davies JM, Bhumiratana S, Bird RB (1978) Elastic and inertial effects in pulsatile flow of polymeric liquids in circular tubes. J Non-Newtonian Fluid Mech 3:237–259CrossRef
Zurück zum Zitat De Andrade Lima LRP, Rey AD (2005) Pulsatile Poiseuille flow of discotic mesophases. Chem Eng Sci 60:6622–6636CrossRef De Andrade Lima LRP, Rey AD (2005) Pulsatile Poiseuille flow of discotic mesophases. Chem Eng Sci 60:6622–6636CrossRef
Zurück zum Zitat De Andrade Lima LRP, Rey AD (2006) Pulsatile flows of Leslie-Ericksen liquid crystals. J Non-Newton Fluid Mech 135:32–45CrossRef De Andrade Lima LRP, Rey AD (2006) Pulsatile flows of Leslie-Ericksen liquid crystals. J Non-Newton Fluid Mech 135:32–45CrossRef
Zurück zum Zitat De Kee D, Chan Man Fong CF (1994) Rheological properties of structured fluids. Polym Eng Sci 34:438–445CrossRef De Kee D, Chan Man Fong CF (1994) Rheological properties of structured fluids. Polym Eng Sci 34:438–445CrossRef
Zurück zum Zitat Del Rio JA, López de Haro M, Whitaker S (1998) Enhancement in the dynamic response of a viscoelastic fluid flowing in a tube. Phys Rev E 58:6323–6327CrossRef Del Rio JA, López de Haro M, Whitaker S (1998) Enhancement in the dynamic response of a viscoelastic fluid flowing in a tube. Phys Rev E 58:6323–6327CrossRef
Zurück zum Zitat EL-Shahed M (2003) Pulsatile flow of blood through a stenosed porous medium under periodic body acceleration. Appl Math Comput 138:479–488 EL-Shahed M (2003) Pulsatile flow of blood through a stenosed porous medium under periodic body acceleration. Appl Math Comput 138:479–488
Zurück zum Zitat Escalante JI, Escobar D, Macias ER, Perez-Lopez JH, Bautista F, Mendizabal E, Puig JE, Manero O (2007) Effect of a hydrotope on the viscoelastic properties of polymer-like micellar solutions. Rheol Acta 46:685–691 Escalante JI, Escobar D, Macias ER, Perez-Lopez JH, Bautista F, Mendizabal E, Puig JE, Manero O (2007) Effect of a hydrotope on the viscoelastic properties of polymer-like micellar solutions. Rheol Acta 46:685–691
Zurück zum Zitat Fredrickson AG (1964) Principles and applications of rheology. Prentice-Hall, Englewood Cliffs Fredrickson AG (1964) Principles and applications of rheology. Prentice-Hall, Englewood Cliffs
Zurück zum Zitat Ghasemi SE, Hatami M, Hatami J, Sahebi SAR, Ganji DD (2016) An efficient approach to study the pulsatile blood flow in femoral and coronary arteries by Differential Quadrature Method. Physica A 443:406–414CrossRef Ghasemi SE, Hatami M, Hatami J, Sahebi SAR, Ganji DD (2016) An efficient approach to study the pulsatile blood flow in femoral and coronary arteries by Differential Quadrature Method. Physica A 443:406–414CrossRef
Zurück zum Zitat Giesekus H (1966) Die Elastizitat von Flussigkeiten. Rheol Acta 5:29–35CrossRef Giesekus H (1966) Die Elastizitat von Flussigkeiten. Rheol Acta 5:29–35CrossRef
Zurück zum Zitat Giesekus H (1982) A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility. J Non-Newtonian Fluid Mech 11:69–109CrossRef Giesekus H (1982) A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility. J Non-Newtonian Fluid Mech 11:69–109CrossRef
Zurück zum Zitat Giesekus H (1984) On configuration-dependent generalized Oldroyd derivatives. J Non-Newtonian Fluid Mech 14:47–65CrossRef Giesekus H (1984) On configuration-dependent generalized Oldroyd derivatives. J Non-Newtonian Fluid Mech 14:47–65CrossRef
Zurück zum Zitat Giesekus H (1985) Constitutive equation for polymer fluids based on the concept of configuration dependent molecular mobility: a generalized mean-configuration model. J Non-Newtonian Fluid Mech 17:349–372CrossRef Giesekus H (1985) Constitutive equation for polymer fluids based on the concept of configuration dependent molecular mobility: a generalized mean-configuration model. J Non-Newtonian Fluid Mech 17:349–372CrossRef
Zurück zum Zitat Herrera EE, Calderas F, Chavez AE, Manero O, Mena B (2009) Effect of random longitudinal vibration on the Poiseuille flow of a complex liquid. Rheol Acta 48:779–800CrossRef Herrera EE, Calderas F, Chavez AE, Manero O, Mena B (2009) Effect of random longitudinal vibration on the Poiseuille flow of a complex liquid. Rheol Acta 48:779–800CrossRef
Zurück zum Zitat Herrera-Valencia EE, Calderas F, Chávez AE, Manero O (2010) Study on the pulsating flow of a worm-like micellar solution. J Non-Newtonian Fluid Mech 165:174–183CrossRef Herrera-Valencia EE, Calderas F, Chávez AE, Manero O (2010) Study on the pulsating flow of a worm-like micellar solution. J Non-Newtonian Fluid Mech 165:174–183CrossRef
Zurück zum Zitat Kolbasov A, Comiskey PM, Sahu RP, Sinha-Ray S, Yarin AL, Sikarwar BS, Kim S, Jubery TZ, Attinger D (2016) Blood rheology in shear and uniaxial elongation. Rheol Acta 55:901–908 Kolbasov A, Comiskey PM, Sahu RP, Sinha-Ray S, Yarin AL, Sikarwar BS, Kim S, Jubery TZ, Attinger D (2016) Blood rheology in shear and uniaxial elongation. Rheol Acta 55:901–908
Zurück zum Zitat Lin Y, Han Tan GW, Phan-Thien N, Cheong Khoo B (2015) Flow enhancement in pulsating flow of non-colloidal suspension in tubes. J Non-Newtonian Fluid Mech 202:13–17 Lin Y, Han Tan GW, Phan-Thien N, Cheong Khoo B (2015) Flow enhancement in pulsating flow of non-colloidal suspension in tubes. J Non-Newtonian Fluid Mech 202:13–17
Zurück zum Zitat Macıas ER, Bautista F, Soltero JFA, Puig JE, Attane P, Manero O (2003) On the shear thickening flow of dilute CTAT wormlike micellar solutions. J Rheol 47:643–658 Macıas ER, Bautista F, Soltero JFA, Puig JE, Attane P, Manero O (2003) On the shear thickening flow of dilute CTAT wormlike micellar solutions. J Rheol 47:643–658
Zurück zum Zitat Majhi SN, Nair VR (1994) Pulsatile flow of third grade fluids under body acceleration-modelling blood flow. Internat J Eng Sci 32:839–846CrossRef Majhi SN, Nair VR (1994) Pulsatile flow of third grade fluids under body acceleration-modelling blood flow. Internat J Eng Sci 32:839–846CrossRef
Zurück zum Zitat Manero O, Mena B (1977) An interesting effect in non-Newtonian flow in oscillating pipes. Rheol Acta 19:277–284CrossRef Manero O, Mena B (1977) An interesting effect in non-Newtonian flow in oscillating pipes. Rheol Acta 19:277–284CrossRef
Zurück zum Zitat Manero O, Walters K (1980) On elastic effects in unsteady pipe flows. Rheol Acta 19:277–284CrossRef Manero O, Walters K (1980) On elastic effects in unsteady pipe flows. Rheol Acta 19:277–284CrossRef
Zurück zum Zitat Manero O, Bautista F, Soltero JFA, Puig JE (2002) Dynamics of worm-like micelles: the Cox-Merz rule. J Non-Newtonian Fluid Mech 106:1–15CrossRef Manero O, Bautista F, Soltero JFA, Puig JE (2002) Dynamics of worm-like micelles: the Cox-Merz rule. J Non-Newtonian Fluid Mech 106:1–15CrossRef
Zurück zum Zitat Manero O, Pérez-López JH, Escalante JI, Puig JE, Bautista F (2007) A thermodynamic approach to rheology of complex fluids: the generalized BMP model. J Non-Newton Fluid Mech 146:22–29 Manero O, Pérez-López JH, Escalante JI, Puig JE, Bautista F (2007) A thermodynamic approach to rheology of complex fluids: the generalized BMP model. J Non-Newton Fluid Mech 146:22–29
Zurück zum Zitat Massoudi M, Phuoc TX (2008) Pulsatile flow of blood using a modified second-grade fluid model. Comput Math Appl 56:199–211CrossRef Massoudi M, Phuoc TX (2008) Pulsatile flow of blood using a modified second-grade fluid model. Comput Math Appl 56:199–211CrossRef
Zurück zum Zitat Mena B, Manero O, Binding DM (1979) Complex flow of viscoelastic fluids through oscillating pipes. Interesting effects and applications J Non-Newtonian Fluid Mech 5:427–448CrossRef Mena B, Manero O, Binding DM (1979) Complex flow of viscoelastic fluids through oscillating pipes. Interesting effects and applications J Non-Newtonian Fluid Mech 5:427–448CrossRef
Zurück zum Zitat Moreno L, Calderas F, Sanchez-Olivares G, Medina-Torres L, Sanchez-Solis A, Manero O (2015) Effect of cholesterol and triglycerides levels on the rheological behavior of human blood. Korea-Aust Rheol J 27:1–10CrossRef Moreno L, Calderas F, Sanchez-Olivares G, Medina-Torres L, Sanchez-Solis A, Manero O (2015) Effect of cholesterol and triglycerides levels on the rheological behavior of human blood. Korea-Aust Rheol J 27:1–10CrossRef
Zurück zum Zitat Moyers-Gonzalez MA, Owens RG (2010) Mathematical modelling of the cell-depleted peripheral layer in the steady flow of blood in a tube. Biorheology 47:39–71 Moyers-Gonzalez MA, Owens RG (2010) Mathematical modelling of the cell-depleted peripheral layer in the steady flow of blood in a tube. Biorheology 47:39–71
Zurück zum Zitat Moyers-Gonzalez MA, Owens RG, Fang J (2008a) A nonhomogeneous constitutive model for human blood: part 1. Model derivation and steady flow. J Fluid Mech 617:327–354CrossRef Moyers-Gonzalez MA, Owens RG, Fang J (2008a) A nonhomogeneous constitutive model for human blood: part 1. Model derivation and steady flow. J Fluid Mech 617:327–354CrossRef
Zurück zum Zitat Moyers-Gonzalez MA, Owens RG, Fang J (2008b) A nonhomogeneous constitutive model for human blood: part II. Asymptotic solution for large Péclet numbers. J Non-Newtonian Fluid Mech 155:146–160CrossRef Moyers-Gonzalez MA, Owens RG, Fang J (2008b) A nonhomogeneous constitutive model for human blood: part II. Asymptotic solution for large Péclet numbers. J Non-Newtonian Fluid Mech 155:146–160CrossRef
Zurück zum Zitat Moyers-Gonzalez MA, Owens RG, Fang J (2008c) A nonhomogeneous constitutive model for human blood: part III. Oscillatory flow. J Fluid Mech 155:161–173 Moyers-Gonzalez MA, Owens RG, Fang J (2008c) A nonhomogeneous constitutive model for human blood: part III. Oscillatory flow. J Fluid Mech 155:161–173
Zurück zum Zitat Nandakumar N, Sahu KC, Anand M (2015) Pulsatile flow of a shear-thinning model for blood through a two-dimensional stenosed channel. Eur J Mech B-Fluid 49:29–35CrossRef Nandakumar N, Sahu KC, Anand M (2015) Pulsatile flow of a shear-thinning model for blood through a two-dimensional stenosed channel. Eur J Mech B-Fluid 49:29–35CrossRef
Zurück zum Zitat Owens RG (2006) A new micro structure-based constitutive model for human blood. J Non-Newtonian Fluid Mech 140:57–70CrossRef Owens RG (2006) A new micro structure-based constitutive model for human blood. J Non-Newtonian Fluid Mech 140:57–70CrossRef
Zurück zum Zitat Owens RG, MoyersGonzalez M, Fang J (2008) On the simulation of steady and oscillatory blood flow in a tube using a new nonhomogeneous constitutive model. Biorheology 45:83–84 Owens RG, MoyersGonzalez M, Fang J (2008) On the simulation of steady and oscillatory blood flow in a tube using a new nonhomogeneous constitutive model. Biorheology 45:83–84
Zurück zum Zitat Phan-Thien N (1978) On pulsating flow of polymeric fluids. J Non-Newtonian Fluid Mech 4:167–176CrossRef Phan-Thien N (1978) On pulsating flow of polymeric fluids. J Non-Newtonian Fluid Mech 4:167–176CrossRef
Zurück zum Zitat Phan-Thien N (1980a) Flow enhancement mechanism of a pulsating flow of non-Newtonian liquids. Rheol Acta 19:285–290CrossRef Phan-Thien N (1980a) Flow enhancement mechanism of a pulsating flow of non-Newtonian liquids. Rheol Acta 19:285–290CrossRef
Zurück zum Zitat Phan-Thien N (1980b) The effects of longitudinal vibration on pipe flow of a non-Newtonian fluid. Rheol Acta 19:539–547CrossRef Phan-Thien N (1980b) The effects of longitudinal vibration on pipe flow of a non-Newtonian fluid. Rheol Acta 19:539–547CrossRef
Zurück zum Zitat Phan-Thien N (1981) On pulsating flow of a polymer fluids: strain-dependent memory kernels. J Rheol 25:293–314CrossRef Phan-Thien N (1981) On pulsating flow of a polymer fluids: strain-dependent memory kernels. J Rheol 25:293–314CrossRef
Zurück zum Zitat Phan-Thien N (1982) On a pulsating flow of slightly non-Newtonian liquids. J Méc Théo Appl 1:81–89 Phan-Thien N (1982) On a pulsating flow of slightly non-Newtonian liquids. J Méc Théo Appl 1:81–89
Zurück zum Zitat Phan-Thien N, Dudek J (1982a) Pulsating flow of a plastic fluid. Nature 296:843–884CrossRef Phan-Thien N, Dudek J (1982a) Pulsating flow of a plastic fluid. Nature 296:843–884CrossRef
Zurück zum Zitat Phan-Thien N, Dudek J (1982b) Pulsating flow revisited. J Non-Newton Fluid-Mech 11:147–161CrossRef Phan-Thien N, Dudek J (1982b) Pulsating flow revisited. J Non-Newton Fluid-Mech 11:147–161CrossRef
Zurück zum Zitat Prakash J, Ogulu A (2007) A study of pulsatile blood flow modeled as a power law fluid in a constricted tube. Int Commun Heat Mass Transfer 34:762–768CrossRef Prakash J, Ogulu A (2007) A study of pulsatile blood flow modeled as a power law fluid in a constricted tube. Int Commun Heat Mass Transfer 34:762–768CrossRef
Zurück zum Zitat Quemada D (1981) A rheological model for studying the hematocrit dependence of red cell-red cell and red cellprotein interactions in blood. Biorheology 18:501–516 Quemada D (1981) A rheological model for studying the hematocrit dependence of red cell-red cell and red cellprotein interactions in blood. Biorheology 18:501–516
Zurück zum Zitat Rao LVM (2014) sPLA2-V: A new player in thrombosis? J Thromb Haemost 12:1918–1920 Rao LVM (2014) sPLA2-V: A new player in thrombosis? J Thromb Haemost 12:1918–1920
Zurück zum Zitat Razavi A, Shirani E, Sadeghi MR (2011) Numerical simulation of blood pulsatile flow in a stenosed carotid artery using different rheological models. J Biomech 44:2021–2030CrossRef Razavi A, Shirani E, Sadeghi MR (2011) Numerical simulation of blood pulsatile flow in a stenosed carotid artery using different rheological models. J Biomech 44:2021–2030CrossRef
Zurück zum Zitat Reddy JVR, Srikanth D, Murthy SVSSNVGK (2014) Mathematical modelling of pulsatile flow of blood through catheterized unsymmetric stenosed artery—effects of tapering angle and slip velocity. Eur J Mech B-Fluid 48:236–244CrossRef Reddy JVR, Srikanth D, Murthy SVSSNVGK (2014) Mathematical modelling of pulsatile flow of blood through catheterized unsymmetric stenosed artery—effects of tapering angle and slip velocity. Eur J Mech B-Fluid 48:236–244CrossRef
Zurück zum Zitat Siddiqui SU, Verma NK, NMishra S, Gupta RS (2009) Mathematical modelling of pulsatile flow of Casson’s fluid in arterial stenosis. App Math and Comp 210:1–10CrossRef Siddiqui SU, Verma NK, NMishra S, Gupta RS (2009) Mathematical modelling of pulsatile flow of Casson’s fluid in arterial stenosis. App Math and Comp 210:1–10CrossRef
Zurück zum Zitat Soltero JFA, Puig JE, Manero O (1999) Rheology of cetyltrimethylammonium p-toluenesulfonate-water system. 3. Nonlinear viscoelasticity. Langmuir 15:1604–1612CrossRef Soltero JFA, Puig JE, Manero O (1999) Rheology of cetyltrimethylammonium p-toluenesulfonate-water system. 3. Nonlinear viscoelasticity. Langmuir 15:1604–1612CrossRef
Zurück zum Zitat Sousa PC, Carneiro J, Pinho FT, Oliveira MSN, Alves MA (2013) Steady and large-oscillatory shear rheology of whole blood. Biorheology 50:269–282 Sousa PC, Carneiro J, Pinho FT, Oliveira MSN, Alves MA (2013) Steady and large-oscillatory shear rheology of whole blood. Biorheology 50:269–282
Zurück zum Zitat Sousa PC, Pinho FT, Alves MA, Oliveira MSN (2016) A review of hemorheology: measuring techniques and recent advances. Korea- Aust Rheol J 28:1–22 Sousa PC, Pinho FT, Alves MA, Oliveira MSN (2016) A review of hemorheology: measuring techniques and recent advances. Korea- Aust Rheol J 28:1–22
Zurück zum Zitat Sun N, Kee DD (2001) Simple shear, hysteresis and yield stress in biofluids. Can J Chem Eng 79:36–41 Sun N, Kee DD (2001) Simple shear, hysteresis and yield stress in biofluids. Can J Chem Eng 79:36–41
Zurück zum Zitat Tabatabaei S, López-Aguilar JE, Tamaddon-Jahromi HR et al (2015) Rheol Acta 54:869–885 Tabatabaei S, López-Aguilar JE, Tamaddon-Jahromi HR et al (2015) Rheol Acta 54:869–885
Zurück zum Zitat Tian F, Zhu L, Fok P, Lu X (2013) Simulation of a pulsatile non- Newtonian flow past a stenosed 2D artery with atherosclerosis. Comput Biol Med 43:1098–1113 Tian F, Zhu L, Fok P, Lu X (2013) Simulation of a pulsatile non- Newtonian flow past a stenosed 2D artery with atherosclerosis. Comput Biol Med 43:1098–1113
Zurück zum Zitat Tropea C, Yarin AL, Foss JF (2007) Springer handbook of experimental fluid mechanics, volume 1. Springer Science and Busines Media, Berlin Tropea C, Yarin AL, Foss JF (2007) Springer handbook of experimental fluid mechanics, volume 1. Springer Science and Busines Media, Berlin
Metadaten
Titel
On the pulsating flow behavior of a biological fluid: human blood
verfasst von
Edtson Emilio Herrera-Valencia
Fausto Calderas
Luis Medina-Torres
Mariano Pérez-Camacho
Leonardo Moreno
Octavio Manero
Publikationsdatum
28.02.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Rheologica Acta / Ausgabe 4/2017
Print ISSN: 0035-4511
Elektronische ISSN: 1435-1528
DOI
https://doi.org/10.1007/s00397-017-0994-3

Weitere Artikel der Ausgabe 4/2017

Rheologica Acta 4/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.