Skip to main content
Erschienen in: Archive of Applied Mechanics 6/2019

08.02.2019 | Original

A two-scale homogenization analysis of porous magneto-electric two-phase composites

verfasst von: Matthias Labusch, Jörg Schröder, Doru C. Lupascu

Erschienen in: Archive of Applied Mechanics | Ausgabe 6/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A computational homogenization analysis for the simulation of porous magneto-electric composite materials is presented. These materials combine two or more ferroic states with each other enabling a coupling between magnetization and electric polarization. This magneto-electric coupling finds application in sensor technology or data storage devices. Since most single-phase multiferroics show coupling at very low temperatures beyond technically relevant applications, two-phase composites, consisting of a ferroelectric and a ferromagnetic phases, are manufactured. They generate a strain-induced magneto-electric coupling at room temperature. The performance and reliability of these materials is influenced by defects or pores, which can arise during the manufacturing process. We analyze the impact of pores on the magnitude of the magneto-electric coupling coefficient. In order to determine the effective properties of the composite, a two-scale finite element (\(\hbox {FE}^2\)) homogenization approach is performed. It combines the macroscopic and microscopic scale by direct incorporation of the microscopic morphology. We derive the basic equations for the localization and the homogenization of the individual field variables and give an algorithmic expression for the effective tangent moduli. We discuss the influence of pores on the magneto-electric coupling in two-phase composites by analyzing numerical examples.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Astrov, D.N.: The magnetoelectric effect in antiferromagnetics. Soviet Phys. JETP 38, 984–985 (1960) Astrov, D.N.: The magnetoelectric effect in antiferromagnetics. Soviet Phys. JETP 38, 984–985 (1960)
2.
Zurück zum Zitat Astrov, D.N.: Magnetoelectric effect in chromium oxide. J. Exp. Theor. Phys. 40, 1035–1041 (1961) Astrov, D.N.: Magnetoelectric effect in chromium oxide. J. Exp. Theor. Phys. 40, 1035–1041 (1961)
3.
Zurück zum Zitat Avakian, A., Gellmann, R., Ricoeur, A.: Nonlinear modeling and finite element simulation of magnetoelectric coupling and residual stress in multiferroic composites. Acta Mech. 226, 2789–2806 (2015)MathSciNetCrossRefMATH Avakian, A., Gellmann, R., Ricoeur, A.: Nonlinear modeling and finite element simulation of magnetoelectric coupling and residual stress in multiferroic composites. Acta Mech. 226, 2789–2806 (2015)MathSciNetCrossRefMATH
4.
Zurück zum Zitat Bibes, M., Barthélémy, A.: Multiferroics: towards a magnetoelectric memory. Nat. Mater. 7(6), 425–426 (2008). ISSN 1476-1122CrossRef Bibes, M., Barthélémy, A.: Multiferroics: towards a magnetoelectric memory. Nat. Mater. 7(6), 425–426 (2008). ISSN 1476-1122CrossRef
5.
Zurück zum Zitat Brown, W.F., Hornreich, R.M., Shtrikman, S.: Upper bound on the magnetoelectric susceptibility. Phys. Rev. 168(2), 574–577 (1968)CrossRef Brown, W.F., Hornreich, R.M., Shtrikman, S.: Upper bound on the magnetoelectric susceptibility. Phys. Rev. 168(2), 574–577 (1968)CrossRef
6.
Zurück zum Zitat Cheong, S.-W., Mostovoy, M.: Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6(1), 13–20 (2007). ISSN 1476-1122CrossRef Cheong, S.-W., Mostovoy, M.: Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6(1), 13–20 (2007). ISSN 1476-1122CrossRef
7.
Zurück zum Zitat Crottaz, O., Rivera, J.-P., Revaz, B., Schmid, H.: Magnetoelectric effect of \(\text{ Mn }_3\text{ B }_7\text{ O }_{13}{\text{ I }}\) boracite. Ferroelectrics 204, 125–133 (1997)CrossRef Crottaz, O., Rivera, J.-P., Revaz, B., Schmid, H.: Magnetoelectric effect of \(\text{ Mn }_3\text{ B }_7\text{ O }_{13}{\text{ I }}\) boracite. Ferroelectrics 204, 125–133 (1997)CrossRef
8.
Zurück zum Zitat Eerenstein, W., Mathur, N.D., Scott, J.F.: Multiferroic and magnetoelectric materials. Nature 442(7104), 759–765 (2006)CrossRef Eerenstein, W., Mathur, N.D., Scott, J.F.: Multiferroic and magnetoelectric materials. Nature 442(7104), 759–765 (2006)CrossRef
9.
Zurück zum Zitat Eerenstein, W., Wiora, M., Prieto, J.L., Scott, J.F., Mathur, N.D.: Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures. Nat. Mater. 6(5), 348–351 (2007)CrossRef Eerenstein, W., Wiora, M., Prieto, J.L., Scott, J.F., Mathur, N.D.: Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures. Nat. Mater. 6(5), 348–351 (2007)CrossRef
10.
Zurück zum Zitat Etier, M., Shvartsman, V.V., Gao, Y., Landers, J., Wende, H., Lupascu, D.C.: Magnetoelectric effect in (0–3) \(\text{ CoFe }_2{\text{ O }}_4\)–\(\text{ BaTiO }_3\) (20/80) composite ceramics prepared by the organosol route. Ferroelectrics 448, 77–85 (2013)CrossRef Etier, M., Shvartsman, V.V., Gao, Y., Landers, J., Wende, H., Lupascu, D.C.: Magnetoelectric effect in (0–3) \(\text{ CoFe }_2{\text{ O }}_4\)\(\text{ BaTiO }_3\) (20/80) composite ceramics prepared by the organosol route. Ferroelectrics 448, 77–85 (2013)CrossRef
11.
Zurück zum Zitat Fiebig, M.: Revival of the magnetoelectric effect. J. Phys. D: Appl. Phys. 38, R123–R152 (2005)CrossRef Fiebig, M.: Revival of the magnetoelectric effect. J. Phys. D: Appl. Phys. 38, R123–R152 (2005)CrossRef
12.
Zurück zum Zitat Hill, R.: Elastic properties of reinforced solids—some theoretical principles. J. Mech. Phys. Solids 11, 357–372 (1963)CrossRefMATH Hill, R.: Elastic properties of reinforced solids—some theoretical principles. J. Mech. Phys. Solids 11, 357–372 (1963)CrossRefMATH
13.
Zurück zum Zitat Hill, N.A.: Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694–6709 (2000)CrossRef Hill, N.A.: Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694–6709 (2000)CrossRef
14.
Zurück zum Zitat Hwang, S.C., Lynch, C.S., McMeeking, R.M.: Ferroelectric/ferroelastic interaction and a polarization switching model. Acta Metall. Mater. 43, 2073–2084 (1995)CrossRef Hwang, S.C., Lynch, C.S., McMeeking, R.M.: Ferroelectric/ferroelastic interaction and a polarization switching model. Acta Metall. Mater. 43, 2073–2084 (1995)CrossRef
15.
Zurück zum Zitat Keip, M.-A.: Modeling of electro-mechanically coupled materials on multiple scales. PhD thesis, University of Duisburg-Essen (2012) Keip, M.-A.: Modeling of electro-mechanically coupled materials on multiple scales. PhD thesis, University of Duisburg-Essen (2012)
16.
Zurück zum Zitat Khomskii, D.: Classifying multiferroics: mechanisms and effects. Physics 2, 20 (2009)CrossRef Khomskii, D.: Classifying multiferroics: mechanisms and effects. Physics 2, 20 (2009)CrossRef
17.
Zurück zum Zitat Kouznetsova, V., Geers, M.G.D., Brekelmans, W.A.M.: Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int. J. Numer. Methods Eng. 54(8), 1235–1260 (2002)CrossRefMATH Kouznetsova, V., Geers, M.G.D., Brekelmans, W.A.M.: Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int. J. Numer. Methods Eng. 54(8), 1235–1260 (2002)CrossRefMATH
18.
Zurück zum Zitat Kumar, M.M., Srinivas, A., Kumar, G.S., Suryanarayana, S.V.: Investigation of the magnetoelectric effect in \(\text{ BiFeO }_3\)–\(\text{ BaTiO }_3\) solid solutions. J. Phys. Condens. Matter 11, 8131–8139 (1999)CrossRef Kumar, M.M., Srinivas, A., Kumar, G.S., Suryanarayana, S.V.: Investigation of the magnetoelectric effect in \(\text{ BiFeO }_3\)\(\text{ BaTiO }_3\) solid solutions. J. Phys. Condens. Matter 11, 8131–8139 (1999)CrossRef
19.
Zurück zum Zitat Kurzhöfer, I.: Mehrskalen-Modellierung polykristalliner Ferroelektrika basierend auf diskreten Orientierungsverteilungsfunktionen. PhD thesis, University of Duisburg-Essen (2007) Kurzhöfer, I.: Mehrskalen-Modellierung polykristalliner Ferroelektrika basierend auf diskreten Orientierungsverteilungsfunktionen. PhD thesis, University of Duisburg-Essen (2007)
20.
Zurück zum Zitat Labusch, M., Etier, M., Lupascu, D.C., Schröder, J., Keip, M.-A.: Product properties of a two-phase magneto-electric composite: synthesis and numerical modeling. Comput. Mech. 54, 71–83 (2014)MathSciNetCrossRefMATH Labusch, M., Etier, M., Lupascu, D.C., Schröder, J., Keip, M.-A.: Product properties of a two-phase magneto-electric composite: synthesis and numerical modeling. Comput. Mech. 54, 71–83 (2014)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Labusch, M., Schröder, J., Lupascu, D.C.: Multiscale homogenization of magneto-electric porous two-phase composites. In: Zingoni, A. (ed.) Insights and Innovations in Structural Engineering, Mechanics and Computation: Proceedings of the Sixth International Conference on Structural Engineering, Mechanics and Computation (SEMC 2016). Taylor & Francis Group, London (2016) Labusch, M., Schröder, J., Lupascu, D.C.: Multiscale homogenization of magneto-electric porous two-phase composites. In: Zingoni, A. (ed.) Insights and Innovations in Structural Engineering, Mechanics and Computation: Proceedings of the Sixth International Conference on Structural Engineering, Mechanics and Computation (SEMC 2016). Taylor & Francis Group, London (2016)
22.
Zurück zum Zitat Lee, J.S., Boyd, J.G., Lagoudas, D.C.: Effective properties of three-phase electro–magneto-elastic composites. Int. J. Eng. Sci. 43(10), 790–825 (2005)MathSciNetCrossRefMATH Lee, J.S., Boyd, J.G., Lagoudas, D.C.: Effective properties of three-phase electro–magneto-elastic composites. Int. J. Eng. Sci. 43(10), 790–825 (2005)MathSciNetCrossRefMATH
23.
Zurück zum Zitat Mandel, J., Dantu, P.: Conribution à l’étude théorique et expérimentale du coefficient d’élasticité d’un milieu hétérogène mais statistiquement homogène. Annales des Ponts et Chaussées, Paris (1963) Mandel, J., Dantu, P.: Conribution à l’étude théorique et expérimentale du coefficient d’élasticité d’un milieu hétérogène mais statistiquement homogène. Annales des Ponts et Chaussées, Paris (1963)
24.
Zurück zum Zitat Martin, L.W., Chu, Y.-H., Ramesh, R.: Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films. Mater. Sci. Eng. R: Rep. 68(4–6), 89–133 (2010). ISSN 0927-796XCrossRef Martin, L.W., Chu, Y.-H., Ramesh, R.: Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films. Mater. Sci. Eng. R: Rep. 68(4–6), 89–133 (2010). ISSN 0927-796XCrossRef
25.
Zurück zum Zitat Michel, J.C., Moulinec, H., Suquet, P.: Effective properties of composite materials with periodic microstructure: a computational approach. Comput. Methods Appl. Mech. Eng. 172, 109–143 (1999)MathSciNetCrossRefMATH Michel, J.C., Moulinec, H., Suquet, P.: Effective properties of composite materials with periodic microstructure: a computational approach. Comput. Methods Appl. Mech. Eng. 172, 109–143 (1999)MathSciNetCrossRefMATH
26.
Zurück zum Zitat Miehe, C., Bayreuther, C.G.: On mutiscale FE analyses of heterogeneous structures: from homogenization to multigrid solvers. Int. J. Numer. Methods Eng. 71, 1135–1180 (2007)CrossRefMATH Miehe, C., Bayreuther, C.G.: On mutiscale FE analyses of heterogeneous structures: from homogenization to multigrid solvers. Int. J. Numer. Methods Eng. 71, 1135–1180 (2007)CrossRefMATH
27.
Zurück zum Zitat Miehe, C., Schotte, J., Schröder, J.: Computational micro–macro transitions and overall moduli in the analysis of polycrystals at large strains. Comput. Mater. Sci. 16(1–4), 372–382 (1999)CrossRef Miehe, C., Schotte, J., Schröder, J.: Computational micro–macro transitions and overall moduli in the analysis of polycrystals at large strains. Comput. Mater. Sci. 16(1–4), 372–382 (1999)CrossRef
28.
Zurück zum Zitat Nan, C.-W.: Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. Phys. Rev. B 50, 6082–6088 (1994)CrossRef Nan, C.-W.: Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. Phys. Rev. B 50, 6082–6088 (1994)CrossRef
29.
Zurück zum Zitat Nan, C.-W., Liu, L., Cai, N., Zhai, J., Ye, Y., Lin, Y.H.: A three-phase magnetoelectric composite of piezoelectric ceramics, rare-earth iron alloys, and polymer. Appl. Phys. Lett. 81, 3831–3833 (2002)CrossRef Nan, C.-W., Liu, L., Cai, N., Zhai, J., Ye, Y., Lin, Y.H.: A three-phase magnetoelectric composite of piezoelectric ceramics, rare-earth iron alloys, and polymer. Appl. Phys. Lett. 81, 3831–3833 (2002)CrossRef
30.
Zurück zum Zitat Nan, C.-W., Bichurin, M.I., Dong, Shuxiang, Viehland, D., Srinivasan, G.: Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103(3), 031101 (2008)CrossRef Nan, C.-W., Bichurin, M.I., Dong, Shuxiang, Viehland, D., Srinivasan, G.: Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103(3), 031101 (2008)CrossRef
31.
Zurück zum Zitat Naveed-Ul-Haq, M., Shvartsman, V.V., Trivedi, H., Salamon, S., Webers, S., Wende, H., Hagemann, U., Schröder, J., Lupascu, D.C.: Strong converse magnetoelectric effect in \(\text{(Ba, } \text{ Ca)(Zr, } \text{ Ti)O }_3\)–\(\text{ NiFe }_2\text{ O }_4\) multiferroics: a relationship between phase-connectivity and interface coupling. Acta Mater. 144, 305–313 (2018)CrossRef Naveed-Ul-Haq, M., Shvartsman, V.V., Trivedi, H., Salamon, S., Webers, S., Wende, H., Hagemann, U., Schröder, J., Lupascu, D.C.: Strong converse magnetoelectric effect in \(\text{(Ba, } \text{ Ca)(Zr, } \text{ Ti)O }_3\)\(\text{ NiFe }_2\text{ O }_4\) multiferroics: a relationship between phase-connectivity and interface coupling. Acta Mater. 144, 305–313 (2018)CrossRef
32.
Zurück zum Zitat Priya, S., Islam, R., Dong, S.X., Viehland, D.: Recent advancements in magnetoelectric particulate and laminate composites. J. Electroceram. 19(1), 147–164 (2007) Priya, S., Islam, R., Dong, S.X., Viehland, D.: Recent advancements in magnetoelectric particulate and laminate composites. J. Electroceram. 19(1), 147–164 (2007)
33.
Zurück zum Zitat Rado, G.T., Ferrari, J.M., Maisch, W.G.: Magnetoelectric susceptibility and magnetic symmetry of magnetoelectrically annealed \(\text{ TbPO }_4\). Phys. Rev. B 29, 4041–4048 (1984)CrossRef Rado, G.T., Ferrari, J.M., Maisch, W.G.: Magnetoelectric susceptibility and magnetic symmetry of magnetoelectrically annealed \(\text{ TbPO }_4\). Phys. Rev. B 29, 4041–4048 (1984)CrossRef
34.
Zurück zum Zitat Ramesh, R., Spaldin, N.A.: Multiferroics: progress and prospects in thin films. Nat. Mater. 6(1), 21–29 (2007). ISSN 1476-1122CrossRef Ramesh, R., Spaldin, N.A.: Multiferroics: progress and prospects in thin films. Nat. Mater. 6(1), 21–29 (2007). ISSN 1476-1122CrossRef
35.
Zurück zum Zitat Rivera, J.-P.: On definitions, units, measurements, tensor forms of the linear magnetoelectric effect and on a new dynamic method applied to Cr–Cl boracite. Ferroelectrics 161, 165–180 (1994a)CrossRef Rivera, J.-P.: On definitions, units, measurements, tensor forms of the linear magnetoelectric effect and on a new dynamic method applied to Cr–Cl boracite. Ferroelectrics 161, 165–180 (1994a)CrossRef
36.
Zurück zum Zitat Rivera, J.-P.: The linear magnetoelectric effect in \(\text{ licopo }_4\) revisited. Ferroelectrics 161, 147–164 (1994b)CrossRef Rivera, J.-P.: The linear magnetoelectric effect in \(\text{ licopo }_4\) revisited. Ferroelectrics 161, 147–164 (1994b)CrossRef
37.
Zurück zum Zitat Rivera, J.-P., Schmid, H.: On the birefringence of magnetoelectric \(\text{ BiFeO }_3\). Ferroelectrics 204, 23–33 (1997)CrossRef Rivera, J.-P., Schmid, H.: On the birefringence of magnetoelectric \(\text{ BiFeO }_3\). Ferroelectrics 204, 23–33 (1997)CrossRef
38.
Zurück zum Zitat Ryu, J., Carazo, A Vázquez, Uchino, K., Kim, H.-E.: Piezoelectric and magnetoelectric properties of lead zirconate titanate/ni-ferrite particulate composites. J. Electroceram. 7, 17–24 (2001)CrossRef Ryu, J., Carazo, A Vázquez, Uchino, K., Kim, H.-E.: Piezoelectric and magnetoelectric properties of lead zirconate titanate/ni-ferrite particulate composites. J. Electroceram. 7, 17–24 (2001)CrossRef
39.
Zurück zum Zitat Ryu, J., Priya, S., Uchino, K., Kim, H.E.: Magnetoelectric effect in composites of magnetostrictive and piezoelectric materials. J. Electroceram. 8, 107–119 (2002)CrossRef Ryu, J., Priya, S., Uchino, K., Kim, H.E.: Magnetoelectric effect in composites of magnetostrictive and piezoelectric materials. J. Electroceram. 8, 107–119 (2002)CrossRef
40.
Zurück zum Zitat Schmid, H.: Multi-ferroic magnetoelectrics. Ferroelectrics 162, 317–338 (1994)CrossRef Schmid, H.: Multi-ferroic magnetoelectrics. Ferroelectrics 162, 317–338 (1994)CrossRef
41.
Zurück zum Zitat Schmitz-Antoniak, C., Schmitz, D., Borisov, P., de Groot, F.M.F., Stienen, S., Warland, A., Krumme, B., Feyerherm, R., Dudzik, E., Kleemann, W., Wende, H.: Electric in-plane polarization in multiferroic \(\text{ CoFe }_2\text{ O }_4\)-\(\text{ BaTiO }_3\) nanocomposite tuned by magnetic fields. Nat. Commun. 4, 1–8 (2013)CrossRef Schmitz-Antoniak, C., Schmitz, D., Borisov, P., de Groot, F.M.F., Stienen, S., Warland, A., Krumme, B., Feyerherm, R., Dudzik, E., Kleemann, W., Wende, H.: Electric in-plane polarization in multiferroic \(\text{ CoFe }_2\text{ O }_4\)-\(\text{ BaTiO }_3\) nanocomposite tuned by magnetic fields. Nat. Commun. 4, 1–8 (2013)CrossRef
42.
Zurück zum Zitat Schröder, J.: Homogenisierungsmethoden der nichtlinearen Kontinuumsmechanik unter Beachtung von Instabilitäten. Habilitation, Bericht aus der Forschungsreihe des Instituts für Mechanik (Bauwesen), Lehrstuhl I, Universität Stuttgart (2000) Schröder, J.: Homogenisierungsmethoden der nichtlinearen Kontinuumsmechanik unter Beachtung von Instabilitäten. Habilitation, Bericht aus der Forschungsreihe des Instituts für Mechanik (Bauwesen), Lehrstuhl I, Universität Stuttgart (2000)
43.
Zurück zum Zitat Schröder, J.: Derivation of the localization and homogenization conditions for electro-mechanically coupled problems. Comput. Mater. Sci. 46(3), 595–599 (2009)CrossRef Schröder, J.: Derivation of the localization and homogenization conditions for electro-mechanically coupled problems. Comput. Mater. Sci. 46(3), 595–599 (2009)CrossRef
44.
Zurück zum Zitat Schröder, J., Gross, D.: Invariant formulation of the electromechanical enthalpy function of transversely isotropic piezoelectric materials. Arch. Appl. Mech. 73, 533–552 (2004)CrossRefMATH Schröder, J., Gross, D.: Invariant formulation of the electromechanical enthalpy function of transversely isotropic piezoelectric materials. Arch. Appl. Mech. 73, 533–552 (2004)CrossRefMATH
45.
Zurück zum Zitat Schröder, J., Labusch, M., Keip, M.-A., Kiefer, B., Brands, D., Lupascu, D.C.: Computation of non-linear magneto-electric product properties of 0–3 composites. GAMM-Mitteilungen 38(1), 1–8 (2015)MathSciNet Schröder, J., Labusch, M., Keip, M.-A., Kiefer, B., Brands, D., Lupascu, D.C.: Computation of non-linear magneto-electric product properties of 0–3 composites. GAMM-Mitteilungen 38(1), 1–8 (2015)MathSciNet
46.
Zurück zum Zitat Schröder, J., Labusch, M., Keip, M.-A.: Algorithmic two-scale transition for magneto–electro-mechanically coupled problems - \(\text{ FE }^2\)-scheme: localization and homogenization. Comput. Methods Appl. Mech. Eng. 302, 253–280 (2016)CrossRef Schröder, J., Labusch, M., Keip, M.-A.: Algorithmic two-scale transition for magneto–electro-mechanically coupled problems - \(\text{ FE }^2\)-scheme: localization and homogenization. Comput. Methods Appl. Mech. Eng. 302, 253–280 (2016)CrossRef
47.
Zurück zum Zitat Shvartsman, V.V., Alawneh, F., Borisov, P., Kozodaev, D., Lupascu, D.C.: Converse magnetoelectric effect in \(\text{ CoFe }_2\text{ O }_4\)-\(\text{ BaTiO }_3\) composites with a core-shell structure. Smart Mater. Struct. 20, 075006 (2011)CrossRef Shvartsman, V.V., Alawneh, F., Borisov, P., Kozodaev, D., Lupascu, D.C.: Converse magnetoelectric effect in \(\text{ CoFe }_2\text{ O }_4\)-\(\text{ BaTiO }_3\) composites with a core-shell structure. Smart Mater. Struct. 20, 075006 (2011)CrossRef
48.
Zurück zum Zitat Spaldin, N.A., Fiebig, M.: The renaissance of magnetoelectric multiferroics. Science 309, 391–392 (2005)CrossRef Spaldin, N.A., Fiebig, M.: The renaissance of magnetoelectric multiferroics. Science 309, 391–392 (2005)CrossRef
49.
Zurück zum Zitat Srinivasan, G.: Magnetoelectric composites. Ann. Rev. Mater. Res. 40, 1–26 (2010)CrossRef Srinivasan, G.: Magnetoelectric composites. Ann. Rev. Mater. Res. 40, 1–26 (2010)CrossRef
50.
Zurück zum Zitat Van Den Boomgaard, J., Born, R.A.J.: A sintered magnetoelectric composite material \(\text{ BaTiO }_3\)–\(\text{ Ni(Co,Mn) }\) \(\text{ Fe }_2\text{ O }_4\). J. Mater. Sci. 13, 1538–1548 (1978)CrossRef Van Den Boomgaard, J., Born, R.A.J.: A sintered magnetoelectric composite material \(\text{ BaTiO }_3\)\(\text{ Ni(Co,Mn) }\) \(\text{ Fe }_2\text{ O }_4\). J. Mater. Sci. 13, 1538–1548 (1978)CrossRef
51.
Zurück zum Zitat Van den Boomgaard, J., Van Run, A.M.J.G., Van Suchtelen, J.: Magnetoelectricity in piezoelectric–magnetostrictive composites. Ferroelectrics 10, 295–298 (1976)CrossRef Van den Boomgaard, J., Van Run, A.M.J.G., Van Suchtelen, J.: Magnetoelectricity in piezoelectric–magnetostrictive composites. Ferroelectrics 10, 295–298 (1976)CrossRef
52.
Zurück zum Zitat Van den Boomgard, J., Terrell, D.R., Born, R.A.J., Giller, H.F.J.I.: An in situ grown eutectic magnetoelectric composite material. J. Mater. Sci. 9, 1705–1709 (1974)CrossRef Van den Boomgard, J., Terrell, D.R., Born, R.A.J., Giller, H.F.J.I.: An in situ grown eutectic magnetoelectric composite material. J. Mater. Sci. 9, 1705–1709 (1974)CrossRef
53.
Zurück zum Zitat Van Run, A.M.J.G., Terrell, D.R., Scholing, J.H.: An in situ grown eutectic magnetoelectric composite material. J. Mater. Sci. 9, 1710–1714 (1974)CrossRef Van Run, A.M.J.G., Terrell, D.R., Scholing, J.H.: An in situ grown eutectic magnetoelectric composite material. J. Mater. Sci. 9, 1710–1714 (1974)CrossRef
54.
Zurück zum Zitat van Suchtelen, J.: Product properties: a new application of composite materials. Philips Res. Rep. 27, 28–37 (1972) van Suchtelen, J.: Product properties: a new application of composite materials. Philips Res. Rep. 27, 28–37 (1972)
55.
Zurück zum Zitat Vaz, C.A.F., Hoffman, J., Ahn, C.H., Ramesh, R.: Magnetoelectric coupling effects in multiferroic complex oxide composite structures. Adv. Mater. 22, 2900–2918 (2010)CrossRef Vaz, C.A.F., Hoffman, J., Ahn, C.H., Ramesh, R.: Magnetoelectric coupling effects in multiferroic complex oxide composite structures. Adv. Mater. 22, 2900–2918 (2010)CrossRef
56.
Zurück zum Zitat Wang, Y., Hu, J., Lin, Y., Nan, C.-W.: Multiferroic magnetoelectric composite nanostructures. Nat. Asia-Pac. Asia Mater. 2, 61–68 (2010) Wang, Y., Hu, J., Lin, Y., Nan, C.-W.: Multiferroic magnetoelectric composite nanostructures. Nat. Asia-Pac. Asia Mater. 2, 61–68 (2010)
57.
Zurück zum Zitat Ye, Z.-G., Rivera, J.-P., Schmid, H., Haida, M., Kohn, K.: Magnetoelectric effect and magnetic torque of chromium chlorine boracite \(\text{ Cr }_3{\text{ B }}_7{\text{ O }}_{13}\text{ Cl }\). Ferroelectrics 161, 99–110 (1994)CrossRef Ye, Z.-G., Rivera, J.-P., Schmid, H., Haida, M., Kohn, K.: Magnetoelectric effect and magnetic torque of chromium chlorine boracite \(\text{ Cr }_3{\text{ B }}_7{\text{ O }}_{13}\text{ Cl }\). Ferroelectrics 161, 99–110 (1994)CrossRef
58.
Zurück zum Zitat Zohdi, T.I.: Simulation of coupled microscale multiphysical-fields in particulate-doped dielectrics with staggered adaptive fdtd. Comput. Methods Appl. Mech. Eng. 199, 3250–3269 (2010)MathSciNetCrossRefMATH Zohdi, T.I.: Simulation of coupled microscale multiphysical-fields in particulate-doped dielectrics with staggered adaptive fdtd. Comput. Methods Appl. Mech. Eng. 199, 3250–3269 (2010)MathSciNetCrossRefMATH
59.
Zurück zum Zitat Zohdi, T.I.: Electromagnetic Properties of Multiphase Dielectrics. Springer, Berlin (2012)CrossRefMATH Zohdi, T.I.: Electromagnetic Properties of Multiphase Dielectrics. Springer, Berlin (2012)CrossRefMATH
Metadaten
Titel
A two-scale homogenization analysis of porous magneto-electric two-phase composites
verfasst von
Matthias Labusch
Jörg Schröder
Doru C. Lupascu
Publikationsdatum
08.02.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Archive of Applied Mechanics / Ausgabe 6/2019
Print ISSN: 0939-1533
Elektronische ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-018-01500-1

Weitere Artikel der Ausgabe 6/2019

Archive of Applied Mechanics 6/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.