Skip to main content
Erschienen in: Computational Mechanics 6/2013

01.12.2013 | Review Paper

On numerical modeling of animal swimming and flight

verfasst von: Hong-Bin Deng, Yuan-Qing Xu, Duan-Duan Chen, Hu Dai, Jian Wu, Fang-Bao Tian

Erschienen in: Computational Mechanics | Ausgabe 6/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Aquatic and aerial animals have developed their superior and complete mechanisms of swimming and flight. These mechanisms bring excellent locomotion performances to natural creatures, including high efficiency, long endurance ability, high maneuverability and low noise, and can potentially provide inspiration for the design of the man-made vehicles. As an efficient research approach, numerical modeling becomes more and more important in studying the mechanisms of swimming and flight. This review is focused on assessing the recent progress in numerical techniques of solving animal swimming and flight problems. According to the complexity of the problems considered, numerical studies are classified into five stages, of which the main characteristics and the numerical strategies are described and discussed. In addition, the body-conformal mesh, Cartesian-mesh, overset-grid, and meshfree methods are briefly introduced. Finally, several open issues in numerical modeling in this field are highlighted.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lighthill MJ (1969) Hydromechanics of aquatic animal propulsion. Annu Rev Fluid Mech 1:413–446CrossRef Lighthill MJ (1969) Hydromechanics of aquatic animal propulsion. Annu Rev Fluid Mech 1:413–446CrossRef
3.
Zurück zum Zitat Triantafyllou MS, Triantafyllou GS, Yue DKP (2000) Hydrodynamics of fish swimming. Annu Rev Fluid Mech 32:33–53MathSciNetCrossRef Triantafyllou MS, Triantafyllou GS, Yue DKP (2000) Hydrodynamics of fish swimming. Annu Rev Fluid Mech 32:33–53MathSciNetCrossRef
4.
Zurück zum Zitat Wu TY (2001) On theoretical modeling of aquatic and aerial animal locomotion. Adv Appl Mech 38:291–353CrossRef Wu TY (2001) On theoretical modeling of aquatic and aerial animal locomotion. Adv Appl Mech 38:291–353CrossRef
5.
Zurück zum Zitat Videler JJ (2005) Avian flight. Oxford University Press, Oxford Videler JJ (2005) Avian flight. Oxford University Press, Oxford
6.
Zurück zum Zitat Wang ZJ (2005) Dissecting insect flight. Annu Rev Fluid Mech 37:183–210CrossRef Wang ZJ (2005) Dissecting insect flight. Annu Rev Fluid Mech 37:183–210CrossRef
7.
Zurück zum Zitat Fish FE, Lauder GV (2006) Passive and active flow control by swimming fishes and mammals. Annu Rev Fluid Mech 38: 193–224 Fish FE, Lauder GV (2006) Passive and active flow control by swimming fishes and mammals. Annu Rev Fluid Mech 38: 193–224
8.
Zurück zum Zitat Shyy W, Lian Y, Tang J, Viieru D, Liu H (2008) Aerodynamics of low Reynolds number flyers. Cambridge University Press, New York Shyy W, Lian Y, Tang J, Viieru D, Liu H (2008) Aerodynamics of low Reynolds number flyers. Cambridge University Press, New York
9.
Zurück zum Zitat Platzer MF, Jones KD, Young J, Lai JCS (2008) Flapping wing aerodynamics: progress and challenges. AIAA J 46: 2136–2149 Platzer MF, Jones KD, Young J, Lai JCS (2008) Flapping wing aerodynamics: progress and challenges. AIAA J 46: 2136–2149
10.
Zurück zum Zitat Shyy W, Aono H, Chimakurthi SK, Trizila P, Kang CK, Cesnik CES, Liu H (2010) Recent progress in flapping wing aerodynamics and aeroelasticity. Prog Aerosp Sci 46:284–327CrossRef Shyy W, Aono H, Chimakurthi SK, Trizila P, Kang CK, Cesnik CES, Liu H (2010) Recent progress in flapping wing aerodynamics and aeroelasticity. Prog Aerosp Sci 46:284–327CrossRef
11.
Zurück zum Zitat Tytell ED, Borazjani I, Sotiropoulos F, Baker TV, Anderson EJ, Lauder GV (2010) Disentangling the functional roles of morphology and motion in the swimming of fish. Integr Comput Biol 50:1140–1154CrossRef Tytell ED, Borazjani I, Sotiropoulos F, Baker TV, Anderson EJ, Lauder GV (2010) Disentangling the functional roles of morphology and motion in the swimming of fish. Integr Comput Biol 50:1140–1154CrossRef
12.
Zurück zum Zitat Wu TY (2011) Fish swimming and bird/insect flight. Annu Rev Fluid Mech 43:25–58CrossRef Wu TY (2011) Fish swimming and bird/insect flight. Annu Rev Fluid Mech 43:25–58CrossRef
13.
Zurück zum Zitat Hertel H (1966) Structure, form, movement. Reinhold, New York Hertel H (1966) Structure, form, movement. Reinhold, New York
14.
Zurück zum Zitat Ellington CP (1984) The aerodynamics of hovering insect flight. II. Morphological parameters. Philos Trans R Soc Lond B 305: 17–40 Ellington CP (1984) The aerodynamics of hovering insect flight. II. Morphological parameters. Philos Trans R Soc Lond B 305: 17–40
15.
Zurück zum Zitat Ellington CP (1984) The aerodynamics of hovering insect flight. III. Kinematics. Philos Trans R Soc Lond B 305:41–78CrossRef Ellington CP (1984) The aerodynamics of hovering insect flight. III. Kinematics. Philos Trans R Soc Lond B 305:41–78CrossRef
16.
Zurück zum Zitat Foreman MB, Eaton RC (1993) The direction change concept for reticulospinal control of goldfish escape. J Neurosci 13: 4101–4113 Foreman MB, Eaton RC (1993) The direction change concept for reticulospinal control of goldfish escape. J Neurosci 13: 4101–4113
17.
Zurück zum Zitat Jayne BC, Lauder GV (1993) Red and white muscle activity and kinematics of the escape response of the bluegill sunfish during swimming. J Comput Physiol A 173:495–508 Jayne BC, Lauder GV (1993) Red and white muscle activity and kinematics of the escape response of the bluegill sunfish during swimming. J Comput Physiol A 173:495–508
18.
Zurück zum Zitat Dickinson MH, Lighton JRB (1995) Muscle efficiency and elastic storage in the flight motor of Drosophila. Science 268:87–90CrossRef Dickinson MH, Lighton JRB (1995) Muscle efficiency and elastic storage in the flight motor of Drosophila. Science 268:87–90CrossRef
19.
Zurück zum Zitat Wootton RJ (1999) Invertebrate paraxial locomotory appendages: design, deformation and control. J Exp Biol 202:3333–3345 Wootton RJ (1999) Invertebrate paraxial locomotory appendages: design, deformation and control. J Exp Biol 202:3333–3345
20.
Zurück zum Zitat Dickinson MH, Lighton JRB (2000) How animals move: an integrative view. Science 288:100–106CrossRef Dickinson MH, Lighton JRB (2000) How animals move: an integrative view. Science 288:100–106CrossRef
21.
Zurück zum Zitat Tytell ED, Lauder GV (2002) The C-start escape response of Polypterus senegalus: bilateral muscle activity and variation during stage 1 and 2. J Exp Biol 205:2591–2603 Tytell ED, Lauder GV (2002) The C-start escape response of Polypterus senegalus: bilateral muscle activity and variation during stage 1 and 2. J Exp Biol 205:2591–2603
22.
Zurück zum Zitat Wootton RJ, Herbert RC, Young PG, Evans KE (2003) Approaches to the structural modelling of insect wings. Philos Trans R Soc Lond B 358:1577–1587CrossRef Wootton RJ, Herbert RC, Young PG, Evans KE (2003) Approaches to the structural modelling of insect wings. Philos Trans R Soc Lond B 358:1577–1587CrossRef
23.
Zurück zum Zitat Sane SP (2003) The aerodynamics of insect flight. J Exp Biol 206:4191–4208CrossRef Sane SP (2003) The aerodynamics of insect flight. J Exp Biol 206:4191–4208CrossRef
24.
Zurück zum Zitat Fry SN, Sayaman R, Dickinson MH (2003) The aerodynamics of free-flight maneuvers in Drosophila. Science 200:495–498CrossRef Fry SN, Sayaman R, Dickinson MH (2003) The aerodynamics of free-flight maneuvers in Drosophila. Science 200:495–498CrossRef
25.
Zurück zum Zitat Liao JC, Beal DN, Lauder GV, Triantafyllou MS (2003) Fish exploiting vortices decrease muscle activity. Science 302: 1566–1569 Liao JC, Beal DN, Lauder GV, Triantafyllou MS (2003) Fish exploiting vortices decrease muscle activity. Science 302: 1566–1569
26.
Zurück zum Zitat Lauder GV, Madden PGA (2008) Dissecting insect flight. Annu Rev Physiol 70:143–163CrossRef Lauder GV, Madden PGA (2008) Dissecting insect flight. Annu Rev Physiol 70:143–163CrossRef
27.
Zurück zum Zitat Iosilevskii G, Joel DM (2013) Aerodynamic trapping effect and its implications for capture of flying insects by carnivorous pitcher plants. Eur J Mech B 38:65–72CrossRef Iosilevskii G, Joel DM (2013) Aerodynamic trapping effect and its implications for capture of flying insects by carnivorous pitcher plants. Eur J Mech B 38:65–72CrossRef
28.
Zurück zum Zitat Lighthill MJ (1975) Biofluiddynamics. Society for Industrial and Applied Mathematics, PhiladelphiaCrossRefMATH Lighthill MJ (1975) Biofluiddynamics. Society for Industrial and Applied Mathematics, PhiladelphiaCrossRefMATH
29.
Zurück zum Zitat Childress S (1981) Mechanics of swimming and flying. Cambridge University Press, New YorkCrossRefMATH Childress S (1981) Mechanics of swimming and flying. Cambridge University Press, New YorkCrossRefMATH
30.
Zurück zum Zitat Alexander RM (1993) Principles of animal locomotion. Princeton University Press, Princeton Alexander RM (1993) Principles of animal locomotion. Princeton University Press, Princeton
31.
Zurück zum Zitat Vogel S (1994) Life in moving fluids, 2nd edn. Princeton University Press, Princeton Vogel S (1994) Life in moving fluids, 2nd edn. Princeton University Press, Princeton
32.
Zurück zum Zitat Romanenko EV (2002) Fish and dolphin swimming. Pensoft, Sofia Romanenko EV (2002) Fish and dolphin swimming. Pensoft, Sofia
33.
Zurück zum Zitat Helfman GS, Collette BB, Facey DF, Bowen BW (2009) The diversity of fishes: biology, evolution and ecology, 2nd edn. Wiley-Blackwell, Chichester Helfman GS, Collette BB, Facey DF, Bowen BW (2009) The diversity of fishes: biology, evolution and ecology, 2nd edn. Wiley-Blackwell, Chichester
34.
Zurück zum Zitat Ellington CP, van den Berg C, Willmott A, Thomas ALR (1996) Leading-edge vortices in insect flight. Nature 384:626–630CrossRef Ellington CP, van den Berg C, Willmott A, Thomas ALR (1996) Leading-edge vortices in insect flight. Nature 384:626–630CrossRef
35.
Zurück zum Zitat Dickinson MH, Lehmann FO, Sane SP (1999) Wing rotation and the aerodynamic basis of insect flight. Science 284:1954–1960CrossRef Dickinson MH, Lehmann FO, Sane SP (1999) Wing rotation and the aerodynamic basis of insect flight. Science 284:1954–1960CrossRef
36.
Zurück zum Zitat Birch JM, Dickinson MH (2002) Spanwise flow and the attachment of the leading-edge vortex on insect wings. Nature 412: 729–733 Birch JM, Dickinson MH (2002) Spanwise flow and the attachment of the leading-edge vortex on insect wings. Nature 412: 729–733
37.
Zurück zum Zitat Prempraneerach P, Hover FS, Triantafyllou MS. The effect of chordwise flexibility on the thrust and efficiency of a flapping foil. In: Proceedings of the 13th international symposium on unmanned untethered submersible technology Prempraneerach P, Hover FS, Triantafyllou MS. The effect of chordwise flexibility on the thrust and efficiency of a flapping foil. In: Proceedings of the 13th international symposium on unmanned untethered submersible technology
38.
Zurück zum Zitat Triantafyllou MS, Techet AH, Hover FS (2004) Review of experimental work in biomimetic foils. IEEE J Ocean Eng 29:585–594CrossRef Triantafyllou MS, Techet AH, Hover FS (2004) Review of experimental work in biomimetic foils. IEEE J Ocean Eng 29:585–594CrossRef
39.
Zurück zum Zitat Taylor G (1951) Analysis of the swimming of microscopic organisms. Proc R Soc Lond A 209:447–461CrossRefMATH Taylor G (1951) Analysis of the swimming of microscopic organisms. Proc R Soc Lond A 209:447–461CrossRefMATH
40.
Zurück zum Zitat Taylor G (1952) The action of waving cylindrical tails in propelling microscopic organisms. Proc R Soc Lond A 211:225–239CrossRefMATH Taylor G (1952) The action of waving cylindrical tails in propelling microscopic organisms. Proc R Soc Lond A 211:225–239CrossRefMATH
41.
Zurück zum Zitat Taylor G (1952) Analysis of the swimming of long and narrow animals. Proc R Soc Lond A 214:158–183CrossRefMATH Taylor G (1952) Analysis of the swimming of long and narrow animals. Proc R Soc Lond A 214:158–183CrossRefMATH
43.
Zurück zum Zitat Lighthill MJ (1970) Aquatic animal propulsion of high hydromechanical efficiency. J Fluid Mech 44:265–301CrossRefMATH Lighthill MJ (1970) Aquatic animal propulsion of high hydromechanical efficiency. J Fluid Mech 44:265–301CrossRefMATH
44.
Zurück zum Zitat Jones RT (1946) Properties of low-aspect-ratio pointed wings at speeds below and above the speed of sound. NACA rep 835 Jones RT (1946) Properties of low-aspect-ratio pointed wings at speeds below and above the speed of sound. NACA rep 835
45.
Zurück zum Zitat Lighthill MJ (1971) Large-amplitude elongated-body theory of fish locomotion. Proc R Soc Lond B 179:125–138CrossRef Lighthill MJ (1971) Large-amplitude elongated-body theory of fish locomotion. Proc R Soc Lond B 179:125–138CrossRef
46.
Zurück zum Zitat Wu TY (1971) Hydromechanics of swimming propulsion. Part 3. Swimming and optimum movements of slender fish with side fins. J Fluid Mech 46:545–568CrossRef Wu TY (1971) Hydromechanics of swimming propulsion. Part 3. Swimming and optimum movements of slender fish with side fins. J Fluid Mech 46:545–568CrossRef
47.
Zurück zum Zitat Lighthill MJ, Blake R (1990) Biofluiddynamics of balistiform and gymnotiform locomotion. Part 1. Biological background, and analysis by elongated-body theory. J Fluid Mech 212:183–207MathSciNetCrossRef Lighthill MJ, Blake R (1990) Biofluiddynamics of balistiform and gymnotiform locomotion. Part 1. Biological background, and analysis by elongated-body theory. J Fluid Mech 212:183–207MathSciNetCrossRef
48.
Zurück zum Zitat Candelier F, Boyer F, Leroyer A (2011) Three-dimensional extension of Lighthill’s large-amplitude elongated-body theory of fish locomotion. J Fluid Mech 674:196–226MathSciNetCrossRefMATH Candelier F, Boyer F, Leroyer A (2011) Three-dimensional extension of Lighthill’s large-amplitude elongated-body theory of fish locomotion. J Fluid Mech 674:196–226MathSciNetCrossRefMATH
49.
Zurück zum Zitat Wu TY (1961) Swimming of a waving plate. J Fluid Mech 10: 321–344 Wu TY (1961) Swimming of a waving plate. J Fluid Mech 10: 321–344
50.
51.
Zurück zum Zitat Lighthill MJ (1973) On the Weis-Fogh mechanism of lift generation. J Fluid Mech 60:1–17CrossRefMATH Lighthill MJ (1973) On the Weis-Fogh mechanism of lift generation. J Fluid Mech 60:1–17CrossRefMATH
52.
Zurück zum Zitat Edwards RH, Cheng HK (1981) The separation vortex in the Weis-Fogh circulation-generation mechanism. J Fluid Mech 120: 463–473 Edwards RH, Cheng HK (1981) The separation vortex in the Weis-Fogh circulation-generation mechanism. J Fluid Mech 120: 463–473
53.
Zurück zum Zitat Weis-Fogh T (1973) Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. J Exp Biol 59:169–230 Weis-Fogh T (1973) Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. J Exp Biol 59:169–230
54.
Zurück zum Zitat Ellington CP (1984) The aerodynamics of hovering insect flight. I. The quasi-steady analysis. Philos Trans R Soc Lond B 305:1–15CrossRef Ellington CP (1984) The aerodynamics of hovering insect flight. I. The quasi-steady analysis. Philos Trans R Soc Lond B 305:1–15CrossRef
55.
Zurück zum Zitat Van Eysden CA, Sader JE (2006) Small amplitude oscillations of a flexible thin blade in a viscous fluid: exact analytical solution. Phys Fluids 18:123102CrossRef Van Eysden CA, Sader JE (2006) Small amplitude oscillations of a flexible thin blade in a viscous fluid: exact analytical solution. Phys Fluids 18:123102CrossRef
57.
Zurück zum Zitat Azuma A (2006) The biokinetics of flying and swimming, 2nd edn. AIAA, Virginia Azuma A (2006) The biokinetics of flying and swimming, 2nd edn. AIAA, Virginia
58.
Zurück zum Zitat Childress S, Dudley R (2004) Transition from ciliary to flapping mode in a swimming mollusc: flapping flight as a bifurcation in \(\text{ Re }_{\omega }\). J Fluid Mech 498:257–288MathSciNetCrossRefMATH Childress S, Dudley R (2004) Transition from ciliary to flapping mode in a swimming mollusc: flapping flight as a bifurcation in \(\text{ Re }_{\omega }\). J Fluid Mech 498:257–288MathSciNetCrossRefMATH
59.
Zurück zum Zitat Wu JZ, Ma HY, Zhou MD (2006) Vorticity and vortex dynamics. Springer, BerlinCrossRef Wu JZ, Ma HY, Zhou MD (2006) Vorticity and vortex dynamics. Springer, BerlinCrossRef
61.
Zurück zum Zitat Tian FB, Lu XY, Luo H (2012) Propulsive performance of a body with a traveling wave surface. Phys Rev E 86:016304CrossRef Tian FB, Lu XY, Luo H (2012) Propulsive performance of a body with a traveling wave surface. Phys Rev E 86:016304CrossRef
62.
Zurück zum Zitat Seo JH, Moon YJ (2006) Linearized perturbed compressible equations for low Mach number aeroacoustics. J Comput Phys 218:702–719MathSciNetCrossRefMATH Seo JH, Moon YJ (2006) Linearized perturbed compressible equations for low Mach number aeroacoustics. J Comput Phys 218:702–719MathSciNetCrossRefMATH
63.
Zurück zum Zitat Bae Y, Moon YJ (2008) Aerodynamic sound generation of flapping wing. J Acoust Soc Am 124:72–81CrossRef Bae Y, Moon YJ (2008) Aerodynamic sound generation of flapping wing. J Acoust Soc Am 124:72–81CrossRef
64.
Zurück zum Zitat Seo JH, Mittal R (2011) A sharp-interface immersed boundary method with improved mass conservation and reduced spurious pressure oscillations. J Comput Phys 230:7347–7363MathSciNetCrossRefMATH Seo JH, Mittal R (2011) A sharp-interface immersed boundary method with improved mass conservation and reduced spurious pressure oscillations. J Comput Phys 230:7347–7363MathSciNetCrossRefMATH
65.
Zurück zum Zitat Liu H, Wassersug R, Kawachi K (1996) A computational fluid dynamics study of tadpole swimming. J Exp Biol 199:1245–1260 Liu H, Wassersug R, Kawachi K (1996) A computational fluid dynamics study of tadpole swimming. J Exp Biol 199:1245–1260
66.
Zurück zum Zitat Alben S, Shelley M (2005) Coherent locomotion as an attracting state for a free flapping body. Proc Natl Acad Sci USA 102: 11163–11166 Alben S, Shelley M (2005) Coherent locomotion as an attracting state for a free flapping body. Proc Natl Acad Sci USA 102: 11163–11166
67.
Zurück zum Zitat Lu XY, Liao Q (2006) Dynamic responses of a two-dimensional flapping foil motion. Phys Fluids 18:098104CrossRef Lu XY, Liao Q (2006) Dynamic responses of a two-dimensional flapping foil motion. Phys Fluids 18:098104CrossRef
68.
Zurück zum Zitat Yang Y, Wu GH, Yu YL, Tong BG (2008) Two-dimensional self-propelled fish motion in medium: an integrated method for deforming body dynamics and unsteady fluid dynamics. Chin Phys Lett 25:597CrossRef Yang Y, Wu GH, Yu YL, Tong BG (2008) Two-dimensional self-propelled fish motion in medium: an integrated method for deforming body dynamics and unsteady fluid dynamics. Chin Phys Lett 25:597CrossRef
70.
Zurück zum Zitat Spagnolie SE, Moret L, Shelley M, Zhang J (2010) Surprising behaviors in flapping locomotion with passive pitching. Phys Fluids 22:041903CrossRef Spagnolie SE, Moret L, Shelley M, Zhang J (2010) Surprising behaviors in flapping locomotion with passive pitching. Phys Fluids 22:041903CrossRef
71.
Zurück zum Zitat Liu G, Yu YL, Tong BG (2011) Flow control by means of a traveling curvature wave in fishlike escape responses. Phys Rev E 84:056312CrossRef Liu G, Yu YL, Tong BG (2011) Flow control by means of a traveling curvature wave in fishlike escape responses. Phys Rev E 84:056312CrossRef
72.
Zurück zum Zitat Zhang X, Ni S, Wang S, He G (2009) Effects of geometric shape on the hydrodynamics of a self-propelled flapping foil. Phys Fluids 21:103302CrossRef Zhang X, Ni S, Wang S, He G (2009) Effects of geometric shape on the hydrodynamics of a self-propelled flapping foil. Phys Fluids 21:103302CrossRef
73.
Zurück zum Zitat Yin B, Luo H (2010) Effect of wing inertia on hovering performance of flexible flapping wings. Phys Fluids 22:111902CrossRef Yin B, Luo H (2010) Effect of wing inertia on hovering performance of flexible flapping wings. Phys Fluids 22:111902CrossRef
74.
Zurück zum Zitat Tian FB, Luo H, Song J, Lu XY (2013) Force production and asymmetric deformation of a flexible flapping wing in forward flight. J Fluids Struct 36:149–161CrossRef Tian FB, Luo H, Song J, Lu XY (2013) Force production and asymmetric deformation of a flexible flapping wing in forward flight. J Fluids Struct 36:149–161CrossRef
75.
76.
Zurück zum Zitat Qi D, Liu Y, Shyy W, Aono H (2010) Simulations of dynamics of plunge and pitch of a three-dimensional flexible wing in a low Reynolds number. Phys Fluids 22:091901CrossRef Qi D, Liu Y, Shyy W, Aono H (2010) Simulations of dynamics of plunge and pitch of a three-dimensional flexible wing in a low Reynolds number. Phys Fluids 22:091901CrossRef
77.
Zurück zum Zitat Kang CK, Aono H, Cesnik CES, Shyy W (2011) Effects of flexibility on the aerodynamic performance of flapping wings. J Fluid Mech 689:32–74CrossRefMATH Kang CK, Aono H, Cesnik CES, Shyy W (2011) Effects of flexibility on the aerodynamic performance of flapping wings. J Fluid Mech 689:32–74CrossRefMATH
78.
Zurück zum Zitat Tian FB, Lu XY, Luo H (2012) Onset of instability of a flag in uniform flow. Theor Appl Mech Lett 2:022005CrossRef Tian FB, Lu XY, Luo H (2012) Onset of instability of a flag in uniform flow. Theor Appl Mech Lett 2:022005CrossRef
79.
Zurück zum Zitat Dai H, Luo H, Doyle JF (2012) Dynamic pitching of an elastic rectangular wing in hovering motion. J Fluid Mech 693:473–499CrossRefMATH Dai H, Luo H, Doyle JF (2012) Dynamic pitching of an elastic rectangular wing in hovering motion. J Fluid Mech 693:473–499CrossRefMATH
80.
Zurück zum Zitat Nakata T, Liu H (2012) A fluid–structure interaction model of insect flight with flexible wings. J Comput Phys 231:1822–1847MathSciNetCrossRefMATH Nakata T, Liu H (2012) A fluid–structure interaction model of insect flight with flexible wings. J Comput Phys 231:1822–1847MathSciNetCrossRefMATH
81.
Zurück zum Zitat Nakata T, Liu H (2011) Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach. Proc R Soc B 279:722–731CrossRef Nakata T, Liu H (2011) Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach. Proc R Soc B 279:722–731CrossRef
82.
Zurück zum Zitat Song F, Lee KL, Soh AK, Zhu F, Bai YL (2004) Experimental studies of the material properties of the forewing of cicada (Homóptera, Cicàdidae). J Exp Biol 207:3035–3042CrossRef Song F, Lee KL, Soh AK, Zhu F, Bai YL (2004) Experimental studies of the material properties of the forewing of cicada (Homóptera, Cicàdidae). J Exp Biol 207:3035–3042CrossRef
83.
Zurück zum Zitat Lauder GV, Tytell ED (2005) Hydrodynamics of undulatory propulsion. In: Shadwick RE, Lauder GV (eds) Fish biomechanics, vol 23. Academic Press, San Diego, pp 425–468CrossRef Lauder GV, Tytell ED (2005) Hydrodynamics of undulatory propulsion. In: Shadwick RE, Lauder GV (eds) Fish biomechanics, vol 23. Academic Press, San Diego, pp 425–468CrossRef
84.
Zurück zum Zitat Bao L, Hu JS, Yu YL, Cheng P, Xu BQ, Tong BG (2006) Viscoelastic constitutive model related to deformation of insect wing under loading in flapping motion. Appl Math Mech 27:741–748CrossRefMATH Bao L, Hu JS, Yu YL, Cheng P, Xu BQ, Tong BG (2006) Viscoelastic constitutive model related to deformation of insect wing under loading in flapping motion. Appl Math Mech 27:741–748CrossRefMATH
85.
Zurück zum Zitat Levental I, Georges PC, Janmey PA (2007) Soft biological materials and their impact on cell function. Soft Matter 3:299–306CrossRef Levental I, Georges PC, Janmey PA (2007) Soft biological materials and their impact on cell function. Soft Matter 3:299–306CrossRef
86.
Zurück zum Zitat Doyle JF (ed) (2009) Guided explorations of the mechanics of solids and structures. Cambridge University Press, New York Doyle JF (ed) (2009) Guided explorations of the mechanics of solids and structures. Cambridge University Press, New York
87.
Zurück zum Zitat Tian FB, Dai H, Luo H, Doyle JF, Rousseau B (under review) Fluid–structure interaction involving large deformations: 3D simulations and applications to biological systems. J Comput Phys Tian FB, Dai H, Luo H, Doyle JF, Rousseau B (under review) Fluid–structure interaction involving large deformations: 3D simulations and applications to biological systems. J Comput Phys
88.
Zurück zum Zitat Tian FB, Dai H, Luo H, Doyle JF, Rousseau B (2013) Computational fluid–structure interaction for biological and biomedical flows. In: Proceedings of the ASME 2013 fluids engineering division summer meeting . Incline Village, Nevada, p 16408 Tian FB, Dai H, Luo H, Doyle JF, Rousseau B (2013) Computational fluid–structure interaction for biological and biomedical flows. In: Proceedings of the ASME 2013 fluids engineering division summer meeting . Incline Village, Nevada, p 16408
89.
Zurück zum Zitat Tian FB, Chang S, Luo H, Rousseau B (2013) A 3D numerical simulation of wave propagation on the vocal fold surface. In: Proceedings of the 10th international conference on advances in quantitative laryngology, voice and speech research, Cincinnati, OH, p 94921483 Tian FB, Chang S, Luo H, Rousseau B (2013) A 3D numerical simulation of wave propagation on the vocal fold surface. In: Proceedings of the 10th international conference on advances in quantitative laryngology, voice and speech research, Cincinnati, OH, p 94921483
90.
Zurück zum Zitat Mittal R, Dong H, Bozkurttas M, Najjar FM, Vargas A, von Loebbecke A (2008) A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries. J Comput Phys 227:4825–4852MathSciNetCrossRefMATH Mittal R, Dong H, Bozkurttas M, Najjar FM, Vargas A, von Loebbecke A (2008) A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries. J Comput Phys 227:4825–4852MathSciNetCrossRefMATH
91.
Zurück zum Zitat Luo H, Mittal R, Zheng X, Bielamowicz S, Walsh R, Hahn J (2008) An immersed-boundary method for flow–structure interaction in biological systems with application to phonation. J Comput Phys 227:9303–9332MathSciNetCrossRefMATH Luo H, Mittal R, Zheng X, Bielamowicz S, Walsh R, Hahn J (2008) An immersed-boundary method for flow–structure interaction in biological systems with application to phonation. J Comput Phys 227:9303–9332MathSciNetCrossRefMATH
92.
Zurück zum Zitat Tian FB, Luo H, Zhu L, Liao JC, Lu XY (2011) An immersed boundary-lattice Boltzmann method for elastic boundaries with mass. J Comput Phys 230:7266–7283MathSciNetCrossRefMATH Tian FB, Luo H, Zhu L, Liao JC, Lu XY (2011) An immersed boundary-lattice Boltzmann method for elastic boundaries with mass. J Comput Phys 230:7266–7283MathSciNetCrossRefMATH
93.
Zurück zum Zitat Luo H, Dai H, Ferreira de Sousa P, Bo Y (2012) On numerical oscillation of the direct-forcing immersed-boundary method for moving boundaries. Comput Fluids 56:61–76MathSciNetCrossRef Luo H, Dai H, Ferreira de Sousa P, Bo Y (2012) On numerical oscillation of the direct-forcing immersed-boundary method for moving boundaries. Comput Fluids 56:61–76MathSciNetCrossRef
95.
Zurück zum Zitat Mittal S, Tezduyar T (1992) A finite element study of incompressible flows past oscillating cylinders and airfoils. Int J Numer Methods Fluids 15:1073–1118CrossRef Mittal S, Tezduyar T (1992) A finite element study of incompressible flows past oscillating cylinders and airfoils. Int J Numer Methods Fluids 15:1073–1118CrossRef
96.
Zurück zum Zitat Mittal S, Tezduyar TE (1995) Parallel finite element simulation of 3D incompressible flows–fluid–structure interactions. Int J Numer Methods Fluids 21:933–953CrossRefMATH Mittal S, Tezduyar TE (1995) Parallel finite element simulation of 3D incompressible flows–fluid–structure interactions. Int J Numer Methods Fluids 21:933–953CrossRefMATH
97.
Zurück zum Zitat Gustafson K (1996) Biological dynamical subsystems of hovering flight. Math Comput Simulat 40:397–410CrossRef Gustafson K (1996) Biological dynamical subsystems of hovering flight. Math Comput Simulat 40:397–410CrossRef
98.
Zurück zum Zitat Liu H, Ellington CP, Kawachi K, van den Berg C, Willmott AP (1998) A computational fluid dynamics study of hawkmoth hovering. J Exp Biol 206:461–477 Liu H, Ellington CP, Kawachi K, van den Berg C, Willmott AP (1998) A computational fluid dynamics study of hawkmoth hovering. J Exp Biol 206:461–477
99.
Zurück zum Zitat Liu H, Kawachi K (1998) A numerical study of insect flight. J Comput Phys 146:124–156 Liu H, Kawachi K (1998) A numerical study of insect flight. J Comput Phys 146:124–156
100.
Zurück zum Zitat Wang ZJ (2000) Two dimensional mechanism for insect hovering. Phys Rev Lett 85:2216–2219CrossRef Wang ZJ (2000) Two dimensional mechanism for insect hovering. Phys Rev Lett 85:2216–2219CrossRef
101.
Zurück zum Zitat Wang ZJ (2000) Vortex shedding and frequency selection in flapping flight. J Fluid Mech 410:323–341CrossRefMATH Wang ZJ (2000) Vortex shedding and frequency selection in flapping flight. J Fluid Mech 410:323–341CrossRefMATH
102.
Zurück zum Zitat Ramamurti R, Sandberg WC, Löhner R, Walker JA, Westneat MW (2002) Fluid dynamics of flapping aquatic flight in the bird wrasse: three-dimensional unsteady computations with fin deformation. J Exp Biol 205:2997–3008 Ramamurti R, Sandberg WC, Löhner R, Walker JA, Westneat MW (2002) Fluid dynamics of flapping aquatic flight in the bird wrasse: three-dimensional unsteady computations with fin deformation. J Exp Biol 205:2997–3008
103.
Zurück zum Zitat Ramamurti R, Sandberg WC (2002) A three-dimensional computational study of the aerodynamic mechanisms of insect flight. J Exp Biol 205:1507–1518 Ramamurti R, Sandberg WC (2002) A three-dimensional computational study of the aerodynamic mechanisms of insect flight. J Exp Biol 205:1507–1518
104.
Zurück zum Zitat Sun M, Tang J (2002) Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion. J Exp Biol 205:55–70 Sun M, Tang J (2002) Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion. J Exp Biol 205:55–70
105.
Zurück zum Zitat Lu XY, Yang JM, Yin XZ (2003) Propulsive performance and vortex shedding of a foil in flapping flight. Acta Mech 165: 189–206 Lu XY, Yang JM, Yin XZ (2003) Propulsive performance and vortex shedding of a foil in flapping flight. Acta Mech 165: 189–206
106.
Zurück zum Zitat Sun M, Wu JH (2003) Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion. J Exp Biol 206:3065–3083CrossRef Sun M, Wu JH (2003) Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion. J Exp Biol 206:3065–3083CrossRef
107.
Zurück zum Zitat Young J, Lai JCS (2004) Oscillation frequency and amplitude effects on the wake of a plunging airfoil. AIAA J 42:2042–2052CrossRef Young J, Lai JCS (2004) Oscillation frequency and amplitude effects on the wake of a plunging airfoil. AIAA J 42:2042–2052CrossRef
108.
Zurück zum Zitat Guglielmini L, Blondeaux P (2004) Propulsive efficiency of oscillating foils. Eur J Mech B 23:255–278CrossRefMATH Guglielmini L, Blondeaux P (2004) Propulsive efficiency of oscillating foils. Eur J Mech B 23:255–278CrossRefMATH
109.
Zurück zum Zitat Wang ZJ, Birch JM, Dickinson MH (2004) Unsteady forces and flows in low Reynolds number hovering flight: two-dimensional computations vs robotic wing experiments. J Exp Biol 207: 449–460 Wang ZJ, Birch JM, Dickinson MH (2004) Unsteady forces and flows in low Reynolds number hovering flight: two-dimensional computations vs robotic wing experiments. J Exp Biol 207: 449–460
110.
Zurück zum Zitat Blondeaux P, Fornarelli F, Guglielmini L, Triantafyllou MS, Verzicco R (2005) Numerical experiments on flapping foils mimicking fish-like locomotion. Phys Fluids 17:113601CrossRef Blondeaux P, Fornarelli F, Guglielmini L, Triantafyllou MS, Verzicco R (2005) Numerical experiments on flapping foils mimicking fish-like locomotion. Phys Fluids 17:113601CrossRef
111.
Zurück zum Zitat Sengupta TK, Vikas V, Johri A (2005) An improved method for calculating flow past flapping and hovering airfoils. Theor Comput Fluid Dyn 19:417–440CrossRefMATH Sengupta TK, Vikas V, Johri A (2005) An improved method for calculating flow past flapping and hovering airfoils. Theor Comput Fluid Dyn 19:417–440CrossRefMATH
112.
Zurück zum Zitat Dong H, Mittal R, Najjar FM (2006) Wake topology and hydrodynamic performance of low aspect-ratio flapping foils. J Fluid Mech 556:309–343MathSciNetCrossRef Dong H, Mittal R, Najjar FM (2006) Wake topology and hydrodynamic performance of low aspect-ratio flapping foils. J Fluid Mech 556:309–343MathSciNetCrossRef
113.
Zurück zum Zitat Ramamurti R, Sandberg WC (2007) A computational investigation of the three-dimensional unsteady aerodynamics of Drosophila hovering and maneuvering. J Exp Biol 210:881–896CrossRef Ramamurti R, Sandberg WC (2007) A computational investigation of the three-dimensional unsteady aerodynamics of Drosophila hovering and maneuvering. J Exp Biol 210:881–896CrossRef
114.
Zurück zum Zitat Young J, Lai JCS (2007) Vortex lock-in phenomenon in the wake of a plunging airfoil. AIAA J 45:485–490CrossRef Young J, Lai JCS (2007) Vortex lock-in phenomenon in the wake of a plunging airfoil. AIAA J 45:485–490CrossRef
115.
Zurück zum Zitat Young J, Lai JCS (2007) Mechanisms influencing the efficiency of oscillating airfoil propulsion. AIAA J 45:1695–1702CrossRef Young J, Lai JCS (2007) Mechanisms influencing the efficiency of oscillating airfoil propulsion. AIAA J 45:1695–1702CrossRef
116.
Zurück zum Zitat Young J, Lai JCS (2007) On the aerodynamic forces of a plunging airfoil. J Mech Sci Technol 21:1388–1397CrossRef Young J, Lai JCS (2007) On the aerodynamic forces of a plunging airfoil. J Mech Sci Technol 21:1388–1397CrossRef
117.
Zurück zum Zitat Young J, Lai JCS, Germain C (2008) Simulation and parameter variation of flapping-wing motion based on dragonfly hovering. AIAA J 46:918–924CrossRef Young J, Lai JCS, Germain C (2008) Simulation and parameter variation of flapping-wing motion based on dragonfly hovering. AIAA J 46:918–924CrossRef
118.
Zurück zum Zitat Zhu Q, Peng Z (2009) Mode coupling and flow energy harvesting by a flapping foil. Phys Fluids 21:033601CrossRef Zhu Q, Peng Z (2009) Mode coupling and flow energy harvesting by a flapping foil. Phys Fluids 21:033601CrossRef
119.
120.
Zurück zum Zitat Guglielmini L, Blondeaux P (2009) Numerical experiments on the transient motions of a flapping foil. Eur J Mech B 28: 136–145 Guglielmini L, Blondeaux P (2009) Numerical experiments on the transient motions of a flapping foil. Eur J Mech B 28: 136–145
121.
Zurück zum Zitat Zhu Q (2011) Optimal frequency for flow energy harvesting of a flapping foil. J Fluid Mech 675:495–517CrossRefMATH Zhu Q (2011) Optimal frequency for flow energy harvesting of a flapping foil. J Fluid Mech 675:495–517CrossRefMATH
122.
Zurück zum Zitat Sarkar S, Chajjed S, Krishnan A (2013) Study of asymmetric hovering in flapping flight. Eur J Mech B 37:72–89MathSciNetCrossRef Sarkar S, Chajjed S, Krishnan A (2013) Study of asymmetric hovering in flapping flight. Eur J Mech B 37:72–89MathSciNetCrossRef
123.
Zurück zum Zitat Wang YX, Lu XY, Zhuang LX, Tang ZM, Hu WR (2004) Numerical simulation of drop Marangoni migration under microgravity. Acta Astronaut 54:325–335 Wang YX, Lu XY, Zhuang LX, Tang ZM, Hu WR (2004) Numerical simulation of drop Marangoni migration under microgravity. Acta Astronaut 54:325–335
124.
125.
126.
Zurück zum Zitat Peskin CS (1972) Flow patterns around heart valves: a digital computer method for solving the equations of motion. Ph.D. thesis, Yeshiva University Peskin CS (1972) Flow patterns around heart valves: a digital computer method for solving the equations of motion. Ph.D. thesis, Yeshiva University
130.
Zurück zum Zitat Hirt CW, Amsden AA, Cook JL (1974) An arbitrary Lagrangian–Eulerian computing method for all flow speeds. J Comput Phys 14:227–253CrossRefMATH Hirt CW, Amsden AA, Cook JL (1974) An arbitrary Lagrangian–Eulerian computing method for all flow speeds. J Comput Phys 14:227–253CrossRefMATH
131.
Zurück zum Zitat Heil M, Hazel AL, Boyle J (2008) Solvers for large-displacement fluid–structure interaction problems: segregated versus monolithic approaches. Comput Mech 43:91–101CrossRefMATH Heil M, Hazel AL, Boyle J (2008) Solvers for large-displacement fluid–structure interaction problems: segregated versus monolithic approaches. Comput Mech 43:91–101CrossRefMATH
132.
Zurück zum Zitat Sahin M, Mohseni K (2009) An arbitrary Lagrangian–Eulerian formulation for the numerical simulation of flow patterns generated by the hydromedusa Aequorea victoria. J Comput Phys 228:4588–4605MathSciNetCrossRefMATH Sahin M, Mohseni K (2009) An arbitrary Lagrangian–Eulerian formulation for the numerical simulation of flow patterns generated by the hydromedusa Aequorea victoria. J Comput Phys 228:4588–4605MathSciNetCrossRefMATH
134.
135.
Zurück zum Zitat Hunt JCR, Wray A, Moin P (1988) Eddies, stream, and convergence zones in turbulent flows. Center for Turbulence Research, Report CTR-S88 Hunt JCR, Wray A, Moin P (1988) Eddies, stream, and convergence zones in turbulent flows. Center for Turbulence Research, Report CTR-S88
136.
Zurück zum Zitat Taylor GK, Nudds RL, Thomas ALR (2003) Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency. Nature 425:707–711CrossRef Taylor GK, Nudds RL, Thomas ALR (2003) Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency. Nature 425:707–711CrossRef
137.
Zurück zum Zitat Liao Q, Dong GJ, Lu XY (2004) Vortex formation and force characteristics of a foil in the wake of a circular cylinder. J Fluids Struct 19:491–510CrossRef Liao Q, Dong GJ, Lu XY (2004) Vortex formation and force characteristics of a foil in the wake of a circular cylinder. J Fluids Struct 19:491–510CrossRef
138.
Zurück zum Zitat Borazjani I, Sotiropoulos F (2008) Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes. J Exp Biol 211:1541–1558CrossRef Borazjani I, Sotiropoulos F (2008) Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes. J Exp Biol 211:1541–1558CrossRef
139.
Zurück zum Zitat Borazjani I, Sotiropoulos F (2009) Numerical investigation of the hydrodynamics of anguilliform swimming in the transitional and inertial flow regimes. J Exp Biol 212:576–592CrossRef Borazjani I, Sotiropoulos F (2009) Numerical investigation of the hydrodynamics of anguilliform swimming in the transitional and inertial flow regimes. J Exp Biol 212:576–592CrossRef
140.
Zurück zum Zitat Borazjani I, Sotiropoulos F (2010) On the role of form and kinematics on the hydrodynamics of self-propelled body/caudal fin swimming. J Exp Biol 213:89–107CrossRef Borazjani I, Sotiropoulos F (2010) On the role of form and kinematics on the hydrodynamics of self-propelled body/caudal fin swimming. J Exp Biol 213:89–107CrossRef
141.
Zurück zum Zitat Guerrero JE (2010) Wake signature and Strouhal number dependence of finite-span flapping wings. J Bionic Eng 7:S109–S122MathSciNetCrossRef Guerrero JE (2010) Wake signature and Strouhal number dependence of finite-span flapping wings. J Bionic Eng 7:S109–S122MathSciNetCrossRef
142.
Zurück zum Zitat Triantafyllou MS, Triantafyllou GS, Gopalkrishnan R (1991) Wake mechanics for thrust generation in oscillating foils. Phys Fluids A 3:2835–2837CrossRef Triantafyllou MS, Triantafyllou GS, Gopalkrishnan R (1991) Wake mechanics for thrust generation in oscillating foils. Phys Fluids A 3:2835–2837CrossRef
143.
Zurück zum Zitat Triantafyllou GS, Triantafyllou MS, Grosenbaugh MA (1993) Optimal thrust development in oscillating foils with application to fish propulsion. J Fluids Struct 7:205–224CrossRef Triantafyllou GS, Triantafyllou MS, Grosenbaugh MA (1993) Optimal thrust development in oscillating foils with application to fish propulsion. J Fluids Struct 7:205–224CrossRef
144.
Zurück zum Zitat Tian FB (2011) Numerical investigation of bio-inspired flow–structure interaction. Ph.D. thesis, University of Science and Technology of China (in Chinese) Tian FB (2011) Numerical investigation of bio-inspired flow–structure interaction. Ph.D. thesis, University of Science and Technology of China (in Chinese)
145.
Zurück zum Zitat Blake RW (ed) (1983) Fish locomotion. Cambridge University Press, Cambridge Blake RW (ed) (1983) Fish locomotion. Cambridge University Press, Cambridge
146.
Zurück zum Zitat Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interface. Comput Methods Appl Mech Eng 119:73–94CrossRefMATH Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interface. Comput Methods Appl Mech Eng 119:73–94CrossRefMATH
147.
Zurück zum Zitat Combes SA, Daniel TL (2001) Shape, flapping and flexion: wing and fin design for forward flight. J Exp Biol 204:2073–2085 Combes SA, Daniel TL (2001) Shape, flapping and flexion: wing and fin design for forward flight. J Exp Biol 204:2073–2085
148.
Zurück zum Zitat Zhu Q, Wolfgang M, Yue DKP, Triantafyllou MS (2002) Three-dimensional flow structures and vorticity control in fish-like swimming. J Fluid Mech 468:1–28MathSciNetMATH Zhu Q, Wolfgang M, Yue DKP, Triantafyllou MS (2002) Three-dimensional flow structures and vorticity control in fish-like swimming. J Fluid Mech 468:1–28MathSciNetMATH
149.
Zurück zum Zitat Combes SA, Daniel TL (2003) Flexural stiffness in insect wings I. Scaling and the influence of wing venation. J Exp Biol 206: 2979–2987 Combes SA, Daniel TL (2003) Flexural stiffness in insect wings I. Scaling and the influence of wing venation. J Exp Biol 206: 2979–2987
150.
Zurück zum Zitat Combes SA, Daniel TL (2003) Flexural stiffness in insect wings II. Spatial distribution and dynamic wing bending. J Exp Biol 206:2989–2997CrossRef Combes SA, Daniel TL (2003) Flexural stiffness in insect wings II. Spatial distribution and dynamic wing bending. J Exp Biol 206:2989–2997CrossRef
151.
Zurück zum Zitat Combes SA, Daniel TL (2003) Into thin air: contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Manduca sexta. J Exp Biol 206:2999–3006CrossRef Combes SA, Daniel TL (2003) Into thin air: contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Manduca sexta. J Exp Biol 206:2999–3006CrossRef
152.
Zurück zum Zitat Dong GJ, Lu XY (2007) Characteristics of flow over traveling-wavy foils in a side-by-side arrangement. Phys Fluids 19: 057107CrossRef Dong GJ, Lu XY (2007) Characteristics of flow over traveling-wavy foils in a side-by-side arrangement. Phys Fluids 19: 057107CrossRef
153.
Zurück zum Zitat Takizawa K, Henicke B, Puntel A, Kostov N, Tezduyar TE (2012) Space–time techniques for computational aerodynamics modeling of flapping wings of an actual locust. Comput Mech 50: 743–760 Takizawa K, Henicke B, Puntel A, Kostov N, Tezduyar TE (2012) Space–time techniques for computational aerodynamics modeling of flapping wings of an actual locust. Comput Mech 50: 743–760
154.
Zurück zum Zitat Takizawa K, Kostov N, Puntel A, Henicke B, Tezduyar TE (2012) Space–time computational analysis of bio-inspired flapping-wing aerodynamics of a micro aerial vehicle. Comput Mech 50: 761–778 Takizawa K, Kostov N, Puntel A, Henicke B, Tezduyar TE (2012) Space–time computational analysis of bio-inspired flapping-wing aerodynamics of a micro aerial vehicle. Comput Mech 50: 761–778
156.
Zurück zum Zitat Takizawa K, Henicke B, Puntel A, Spielman T, Tezduyar TE (2012) Space–time computational techniques for the aerodynamics of flapping wings. J Appl Mech 79:010903CrossRef Takizawa K, Henicke B, Puntel A, Spielman T, Tezduyar TE (2012) Space–time computational techniques for the aerodynamics of flapping wings. J Appl Mech 79:010903CrossRef
157.
Zurück zum Zitat Liu H, Wassersug R, Kawachi K (1997) The three-dimensional hydrodynamics of tadpole locomotion. J Exp Biol 200:2807–2819 Liu H, Wassersug R, Kawachi K (1997) The three-dimensional hydrodynamics of tadpole locomotion. J Exp Biol 200:2807–2819
158.
Zurück zum Zitat Liu H, Kawachi K (1999) A numerical study of undulatory swimming. J Comput Phys 155:223–247CrossRefMATH Liu H, Kawachi K (1999) A numerical study of undulatory swimming. J Comput Phys 155:223–247CrossRefMATH
159.
Zurück zum Zitat Shu C, Liu N, Chew Y, Lu Z (2007) Numerical simulation of fish motion by using lattice Boltzmann-immersed boundary velocity correction method. J Mech Sci Technol 21:1139–1149CrossRef Shu C, Liu N, Chew Y, Lu Z (2007) Numerical simulation of fish motion by using lattice Boltzmann-immersed boundary velocity correction method. J Mech Sci Technol 21:1139–1149CrossRef
160.
Zurück zum Zitat Shirgaonkar AA, MacIver MA, Patankar NA (2009) A new mathematical formulation and fast algorithm for fully resolved simulation of self-propulsion. J Comput Phys 228:2366–2390MathSciNetCrossRefMATH Shirgaonkar AA, MacIver MA, Patankar NA (2009) A new mathematical formulation and fast algorithm for fully resolved simulation of self-propulsion. J Comput Phys 228:2366–2390MathSciNetCrossRefMATH
161.
Zurück zum Zitat Noor DZ, Chern MJ, Horng TL (2009) An immersed boundary method to solve fluid–solid interaction problems. Comput Mech 44:447–453CrossRefMATH Noor DZ, Chern MJ, Horng TL (2009) An immersed boundary method to solve fluid–solid interaction problems. Comput Mech 44:447–453CrossRefMATH
163.
Zurück zum Zitat Wang SY, Tian FB, Jia LB, Lu XY, Yin XZ (2010) The secondary vortex street in the wake of two tandem circular cylinders at low Reynolds number. Phys Rev E 81:036305CrossRef Wang SY, Tian FB, Jia LB, Lu XY, Yin XZ (2010) The secondary vortex street in the wake of two tandem circular cylinders at low Reynolds number. Phys Rev E 81:036305CrossRef
164.
Zurück zum Zitat Du G, Sun M (2010) Effects of wing deformation on aerodynamic forces in hovering hoverflies. J Exp Biol 213:2273–2283CrossRef Du G, Sun M (2010) Effects of wing deformation on aerodynamic forces in hovering hoverflies. J Exp Biol 213:2273–2283CrossRef
165.
Zurück zum Zitat Wang S, Zhang X (2011) An immersed boundary method based on discrete stream function formulation for two- and three-dimensional incompressible flows. J Comput Phys 230: 3479–3499 Wang S, Zhang X (2011) An immersed boundary method based on discrete stream function formulation for two- and three-dimensional incompressible flows. J Comput Phys 230: 3479–3499
166.
Zurück zum Zitat Ashraf MA, Young J, Lai JCS (2011) Reynolds number, thickness and camber effects on flapping airfoil propulsion. J Fluids Struct 27:145–160CrossRef Ashraf MA, Young J, Lai JCS (2011) Reynolds number, thickness and camber effects on flapping airfoil propulsion. J Fluids Struct 27:145–160CrossRef
168.
Zurück zum Zitat Xu YQ, Tian FB, Deng YL (2013) An efficient red blood cell model in the frame of IB-LBM and its application. Int J Biomath 6:1250061MathSciNetCrossRef Xu YQ, Tian FB, Deng YL (2013) An efficient red blood cell model in the frame of IB-LBM and its application. Int J Biomath 6:1250061MathSciNetCrossRef
169.
Zurück zum Zitat Tian FB, Luo H, Zhu L, Lu XY (2010) Interaction between a flexible filament and a downstream rigid body. Phys Rev E 82:026301CrossRef Tian FB, Luo H, Zhu L, Lu XY (2010) Interaction between a flexible filament and a downstream rigid body. Phys Rev E 82:026301CrossRef
170.
Zurück zum Zitat Tian FB, Luo H, Lu XY (2011) Coupling modes of three filaments in side-by-side arrangement. Phys Fluids 23:111903CrossRef Tian FB, Luo H, Lu XY (2011) Coupling modes of three filaments in side-by-side arrangement. Phys Fluids 23:111903CrossRef
171.
Zurück zum Zitat Xu YQ, Tian FB, Li HJ, Deng YL (2012) Red blood cell partitioning and blood flux redistribution in microvascular bifurcation. Theor Appl Mech Lett 2:024001CrossRef Xu YQ, Tian FB, Li HJ, Deng YL (2012) Red blood cell partitioning and blood flux redistribution in microvascular bifurcation. Theor Appl Mech Lett 2:024001CrossRef
172.
173.
Zurück zum Zitat Dong GJ, Lu XY (2005) Numerical analysis on the propulsive performance and vortex shedding of fish-like travelling wavy plate. Int J Numer Methods Fluids 48:1351–1373CrossRefMATH Dong GJ, Lu XY (2005) Numerical analysis on the propulsive performance and vortex shedding of fish-like travelling wavy plate. Int J Numer Methods Fluids 48:1351–1373CrossRefMATH
174.
Zurück zum Zitat Wu JZ, Pan ZL, Lu XY (2005) Unsteady fluid-dynamic force solely in terms of control-surface integral. Phys Fluids 17:098102CrossRef Wu JZ, Pan ZL, Lu XY (2005) Unsteady fluid-dynamic force solely in terms of control-surface integral. Phys Fluids 17:098102CrossRef
175.
Zurück zum Zitat Wootton RJ (1992) Functional morphology of insect wings. Annu Rev Entomol 37:113–140CrossRef Wootton RJ (1992) Functional morphology of insect wings. Annu Rev Entomol 37:113–140CrossRef
176.
Zurück zum Zitat Biewener AA, Dial KP (1995) In vivo strain in the humerus of pigeons (Columba livia) during flight. J Morphol 225:61–75CrossRef Biewener AA, Dial KP (1995) In vivo strain in the humerus of pigeons (Columba livia) during flight. J Morphol 225:61–75CrossRef
177.
Zurück zum Zitat Zhu Q (2007) Numerical simulation of a flapping foil with chordwise or spanwise flexibility. AIAA J 45:2448–2457CrossRef Zhu Q (2007) Numerical simulation of a flapping foil with chordwise or spanwise flexibility. AIAA J 45:2448–2457CrossRef
178.
Zurück zum Zitat Zhu Q, Shoele K (2008) Propulsion performance of a skeleton-strengthened fin. J Exp Biol 211:2087–2100CrossRef Zhu Q, Shoele K (2008) Propulsion performance of a skeleton-strengthened fin. J Exp Biol 211:2087–2100CrossRef
179.
Zurück zum Zitat Ishihara D, Horie T, Denda M (2009) A two-dimensional computational study on the fluid–structure interaction cause of wing pitch changes in dipteran flapping flight. J Exp Biol 212:1–11CrossRef Ishihara D, Horie T, Denda M (2009) A two-dimensional computational study on the fluid–structure interaction cause of wing pitch changes in dipteran flapping flight. J Exp Biol 212:1–11CrossRef
180.
Zurück zum Zitat Vanella M, Fitzgerald T, Preidikman S, Balaras E, Balachandran B (2009) Influence of flexibility on the aerodynamic performance of a hovering wing. J Exp Biol 212:95–105CrossRef Vanella M, Fitzgerald T, Preidikman S, Balaras E, Balachandran B (2009) Influence of flexibility on the aerodynamic performance of a hovering wing. J Exp Biol 212:95–105CrossRef
181.
Zurück zum Zitat Bozkurttas M, Mittal R, Dong H, Lauder GV, Madden P (2009) Low-dimensional models and performance scaling of a highly deformable fish pectoral fin. J Fluid Mech 631:311–342CrossRefMATH Bozkurttas M, Mittal R, Dong H, Lauder GV, Madden P (2009) Low-dimensional models and performance scaling of a highly deformable fish pectoral fin. J Fluid Mech 631:311–342CrossRefMATH
182.
Zurück zum Zitat Shoele K, Zhu Q (2013) Performance of a wing with nonuniform flexibility in hovering flight. Phys Fluids 25:041901CrossRef Shoele K, Zhu Q (2013) Performance of a wing with nonuniform flexibility in hovering flight. Phys Fluids 25:041901CrossRef
183.
Zurück zum Zitat Zhu L, Peskin CS (2002) Simulation of a flapping flexible filament in a flowing soap film by the immersed boundary method. J Comput Phys 179:452–468 Zhu L, Peskin CS (2002) Simulation of a flapping flexible filament in a flowing soap film by the immersed boundary method. J Comput Phys 179:452–468
185.
Zurück zum Zitat Wu CJ, Wang L (2010) Where is the rudder of a fish?: the mechanism of swimming and control of self-propelled fish school. Acta Mech Sin 26:25–45 Wu CJ, Wang L (2010) Where is the rudder of a fish?: the mechanism of swimming and control of self-propelled fish school. Acta Mech Sin 26:25–45
186.
Zurück zum Zitat Shelley M, Zhang J (2011) Flapping and bending bodies interacting with fluid flows. Annu Rev Fluid Mech 43:449–465MathSciNetCrossRef Shelley M, Zhang J (2011) Flapping and bending bodies interacting with fluid flows. Annu Rev Fluid Mech 43:449–465MathSciNetCrossRef
187.
Zurück zum Zitat Zhu L, Peskin CS (2003) Interaction of two flapping filaments in a flowing soap film. Phys Fluids 15:1954–1960 Zhu L, Peskin CS (2003) Interaction of two flapping filaments in a flowing soap film. Phys Fluids 15:1954–1960
188.
189.
Zurück zum Zitat Kim Y, Peskin CS (2007) Penalty immersed boundary method for an elastic boundary with mass. Phys Fluids 19:053103CrossRef Kim Y, Peskin CS (2007) Penalty immersed boundary method for an elastic boundary with mass. Phys Fluids 19:053103CrossRef
190.
Zurück zum Zitat Heys JJ, Gedeon T, Knott BC, Kim Y (2008) Modeling arthropod filiform hair motion using the penalty immersed boundary method. J Biomech 41:977–984CrossRef Heys JJ, Gedeon T, Knott BC, Kim Y (2008) Modeling arthropod filiform hair motion using the penalty immersed boundary method. J Biomech 41:977–984CrossRef
191.
Zurück zum Zitat Huang WX, Chang CB, Sung HJ (2011) An improved penalty immersed boundary method for fluid–flexible body interaction. J Comput Phys 230:5061–5079 Huang WX, Chang CB, Sung HJ (2011) An improved penalty immersed boundary method for fluid–flexible body interaction. J Comput Phys 230:5061–5079
192.
Zurück zum Zitat Mittal R, Zheng X, Bhardwaj R, Seo JH, Xue Q, Bielamowicz S (2011) Toward a simulation-based tool for the treatment of vocal fold paralysis. Front Physiol 2:19 Mittal R, Zheng X, Bhardwaj R, Seo JH, Xue Q, Bielamowicz S (2011) Toward a simulation-based tool for the treatment of vocal fold paralysis. Front Physiol 2:19
193.
Zurück zum Zitat Bhardwaj R, Mittal R (2012) Benchmarking a coupled immersed-boundary-finite-element solver for large-scale flow-induced deformation. AIAA J 50:1638–1642CrossRef Bhardwaj R, Mittal R (2012) Benchmarking a coupled immersed-boundary-finite-element solver for large-scale flow-induced deformation. AIAA J 50:1638–1642CrossRef
194.
Zurück zum Zitat Hou G, Wang J, Layton A (2012) Numerical methods for fluid–structure interaction—a review. Commun Comput Phys 12: 337–377 Hou G, Wang J, Layton A (2012) Numerical methods for fluid–structure interaction—a review. Commun Comput Phys 12: 337–377
195.
Zurück zum Zitat Luo H, Dai H, Ferreira de Sousa P, Yin B (2012) On the numerical oscillation of the direct-forcing immersed-boundary method for moving boundaries. Comput Fluids 56:61–76MathSciNetCrossRef Luo H, Dai H, Ferreira de Sousa P, Yin B (2012) On the numerical oscillation of the direct-forcing immersed-boundary method for moving boundaries. Comput Fluids 56:61–76MathSciNetCrossRef
196.
Zurück zum Zitat LeVeque RJ, Li Z (1994) The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J Numer Anal 31:1019–1044MathSciNetCrossRefMATH LeVeque RJ, Li Z (1994) The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J Numer Anal 31:1019–1044MathSciNetCrossRefMATH
197.
Zurück zum Zitat Xu S, Wang ZJ (2006) An immersed interface method for simulating the interaction of a fluid with moving boundaries. J Comput Phys 216:454–493MathSciNetCrossRefMATH Xu S, Wang ZJ (2006) An immersed interface method for simulating the interaction of a fluid with moving boundaries. J Comput Phys 216:454–493MathSciNetCrossRefMATH
198.
Zurück zum Zitat Xu S (2011) A boundary condition capturing immersed interface method for 3D rigid objects in a flow. J Comput Phys 230: 7176–7190 Xu S (2011) A boundary condition capturing immersed interface method for 3D rigid objects in a flow. J Comput Phys 230: 7176–7190
199.
200.
Zurück zum Zitat Mittal S, Tezduyar TE (1994) Massively parallel finite element computation of incompressible flows involving fluid–body interactions. Comput Methods Appl Mech Eng 112:253–282 Mittal S, Tezduyar TE (1994) Massively parallel finite element computation of incompressible flows involving fluid–body interactions. Comput Methods Appl Mech Eng 112:253–282
201.
Zurück zum Zitat Tezduyar TE, Aliabadi SK, Behr M, Mittal S (1994) Massively parallel finite element simulation of compressible and incompressible flows. Comput Methods Appl Mech Eng 119: 157–177CrossRefMATH Tezduyar TE, Aliabadi SK, Behr M, Mittal S (1994) Massively parallel finite element simulation of compressible and incompressible flows. Comput Methods Appl Mech Eng 119: 157–177CrossRefMATH
202.
Zurück zum Zitat Johnson AA, Tezduyar TE (1996) Simulation of multiple spheres falling in a liquid-filled tube. Comput Methods Appl Mech Eng 134:351–373MathSciNetCrossRefMATH Johnson AA, Tezduyar TE (1996) Simulation of multiple spheres falling in a liquid-filled tube. Comput Methods Appl Mech Eng 134:351–373MathSciNetCrossRefMATH
203.
Zurück zum Zitat Tezduyar T, Aliabadi S, Behr M, Johnson A, Kalro V, Litke M (1996) Flow simulation and high performance computing. Comput Mech 18:397–412CrossRefMATH Tezduyar T, Aliabadi S, Behr M, Johnson A, Kalro V, Litke M (1996) Flow simulation and high performance computing. Comput Mech 18:397–412CrossRefMATH
204.
Zurück zum Zitat Johnson AA, Tezduyar TE (1997) 3D simulation of fluid–particle interactions with the number of particles reaching 100. Comput Methods Appl Mech Eng 145:301–321CrossRefMATH Johnson AA, Tezduyar TE (1997) 3D simulation of fluid–particle interactions with the number of particles reaching 100. Comput Methods Appl Mech Eng 145:301–321CrossRefMATH
205.
Zurück zum Zitat Johnson AA, Tezduyar TE (1999) Advanced mesh generation and update methods for 3D flow simulations. Comput Mech 23: 130–143 Johnson AA, Tezduyar TE (1999) Advanced mesh generation and update methods for 3D flow simulations. Comput Mech 23: 130–143
206.
Zurück zum Zitat Kalro V, Tezduyar TE (2000) A parallel 3D computational method for fluid–structure interactions in parachute systems. Comput Methods Appl Mech Eng 190:321–332CrossRefMATH Kalro V, Tezduyar TE (2000) A parallel 3D computational method for fluid–structure interactions in parachute systems. Comput Methods Appl Mech Eng 190:321–332CrossRefMATH
207.
Zurück zum Zitat Stein K, Benney R, Kalro V, Tezduyar TE, Leonard J, Accorsi M (2000) Parachute fluid–structure interactions: 3-D computation. Comput Methods Appl Mech Eng 190:373–386CrossRefMATH Stein K, Benney R, Kalro V, Tezduyar TE, Leonard J, Accorsi M (2000) Parachute fluid–structure interactions: 3-D computation. Comput Methods Appl Mech Eng 190:373–386CrossRefMATH
208.
Zurück zum Zitat Johnson A, Tezduyar T (2001) Methods for 3D computation of fluid–object interactions in spatially-periodic flows. Comput Methods Appl Mech Eng 190:3201–3221CrossRefMATH Johnson A, Tezduyar T (2001) Methods for 3D computation of fluid–object interactions in spatially-periodic flows. Comput Methods Appl Mech Eng 190:3201–3221CrossRefMATH
209.
Zurück zum Zitat Stein K, Benney R, Tezduyar T, Potvin J (2001) Fluid–structure interactions of a cross parachute: numerical simulation. Comput Methods Appl Mech Eng 191:673–687CrossRefMATH Stein K, Benney R, Tezduyar T, Potvin J (2001) Fluid–structure interactions of a cross parachute: numerical simulation. Comput Methods Appl Mech Eng 191:673–687CrossRefMATH
210.
Zurück zum Zitat Tezduyar T, Osawa Y (2001) Fluid–structure interactions of a parachute crossing the far wake of an aircraft. Comput Methods Appl Mech Eng 191:717–726CrossRefMATH Tezduyar T, Osawa Y (2001) Fluid–structure interactions of a parachute crossing the far wake of an aircraft. Comput Methods Appl Mech Eng 191:717–726CrossRefMATH
211.
Zurück zum Zitat Stein K, Tezduyar T, Benney R (2003) Computational methods for modeling parachute systems. Comput Sci Eng 5:39–46CrossRef Stein K, Tezduyar T, Benney R (2003) Computational methods for modeling parachute systems. Comput Sci Eng 5:39–46CrossRef
212.
Zurück zum Zitat Dunne T, Rannacher R (2006) Adaptive finite element approximation of fluid–structure interaction based on an Eulerian variational formulation. In: Bungartz HJ, Schäfer M (eds) Fluid–structure interaction: modelling, simulation, optimisation. Springer, Berlin, pp 110–145CrossRef Dunne T, Rannacher R (2006) Adaptive finite element approximation of fluid–structure interaction based on an Eulerian variational formulation. In: Bungartz HJ, Schäfer M (eds) Fluid–structure interaction: modelling, simulation, optimisation. Springer, Berlin, pp 110–145CrossRef
213.
Zurück zum Zitat Turek S, Hron J (2006) Proposal for numerical benchmarking of fluid–structure interaction between an elastic object and laminar incompressible flow. In: Bungartz HJ, Schäfer M (eds) Fluid–structure interaction: modelling, simulation, optimisation. Springer, Berlin, pp 371–385CrossRef Turek S, Hron J (2006) Proposal for numerical benchmarking of fluid–structure interaction between an elastic object and laminar incompressible flow. In: Bungartz HJ, Schäfer M (eds) Fluid–structure interaction: modelling, simulation, optimisation. Springer, Berlin, pp 371–385CrossRef
214.
Zurück zum Zitat Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space–time finite element techniques for computation of fluid–structure interactions. Comput Methods Appl Mech Eng 195:2002–2027MathSciNetCrossRefMATH Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space–time finite element techniques for computation of fluid–structure interactions. Comput Methods Appl Mech Eng 195:2002–2027MathSciNetCrossRefMATH
216.
Zurück zum Zitat Peng Z, Zhu Q (2009) Energy harvesting through flow-induced oscillations of a foil. Phys Fluids 21:123602CrossRef Peng Z, Zhu Q (2009) Energy harvesting through flow-induced oscillations of a foil. Phys Fluids 21:123602CrossRef
217.
Zurück zum Zitat Young J, Ashraf MA, Lai JCS (in press) Numerical simulation of fully passive flapping foil. AIAA J Young J, Ashraf MA, Lai JCS (in press) Numerical simulation of fully passive flapping foil. AIAA J
218.
Zurück zum Zitat Zhang J, Childress S, Libchaber A, Shelley M (2000) Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind. Nature 408:835–839CrossRef Zhang J, Childress S, Libchaber A, Shelley M (2000) Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind. Nature 408:835–839CrossRef
219.
220.
Zurück zum Zitat Shelley M, Vandenberghe N, Zhang J (2005) Heavy flags undergo spontaneous oscillations in flowing water. Phys Rev Lett 94:094302CrossRef Shelley M, Vandenberghe N, Zhang J (2005) Heavy flags undergo spontaneous oscillations in flowing water. Phys Rev Lett 94:094302CrossRef
221.
Zurück zum Zitat Hao J, Zhu L (2010) A lattice Boltzmann based implicit immersed boundary method for fluid–structure interaction. Comput Math Appl 59:185–193MathSciNetCrossRefMATH Hao J, Zhu L (2010) A lattice Boltzmann based implicit immersed boundary method for fluid–structure interaction. Comput Math Appl 59:185–193MathSciNetCrossRefMATH
222.
Zurück zum Zitat Zhu L, He G, Wang S, Miller L, Zhang X, You Q, Fang S (2011) An immersed boundary method by the lattice Boltzmann approach in three dimensions with application. Comput Math Appl 61: 3506–3518 Zhu L, He G, Wang S, Miller L, Zhang X, You Q, Fang S (2011) An immersed boundary method by the lattice Boltzmann approach in three dimensions with application. Comput Math Appl 61: 3506–3518
223.
Zurück zum Zitat Standen EM, Lauder GV (2005) Dorsal and anal fin function in bluegill sunfish Lepomis macrochirus: three-dimensional kinematics during propulsion and maneuvering. J Exp Biol 208: 2753–2763 Standen EM, Lauder GV (2005) Dorsal and anal fin function in bluegill sunfish Lepomis macrochirus: three-dimensional kinematics during propulsion and maneuvering. J Exp Biol 208: 2753–2763
224.
Zurück zum Zitat Cheng P, Hu J, Zhang G, Hou L, Xu B, Wu X (2007) Deformation measurements of dragonfly’s wings in free flight by using Windowed Fourier Transform. Opt Lasers Eng 46: 157–161 Cheng P, Hu J, Zhang G, Hou L, Xu B, Wu X (2007) Deformation measurements of dragonfly’s wings in free flight by using Windowed Fourier Transform. Opt Lasers Eng 46: 157–161
225.
Zurück zum Zitat Hedrick TL (2008) Software techniques for two- and three-dimensional kinematic measurements of biological and biomimetic systems. Bioinspiration Biomimetics 3:034001CrossRef Hedrick TL (2008) Software techniques for two- and three-dimensional kinematic measurements of biological and biomimetic systems. Bioinspiration Biomimetics 3:034001CrossRef
226.
Zurück zum Zitat Liu H, Aono H (2009) Size effects on insect hovering aerodynamics: an integrated computational study. Bioinspiration Biomimetics 4:1–13MATH Liu H, Aono H (2009) Size effects on insect hovering aerodynamics: an integrated computational study. Bioinspiration Biomimetics 4:1–13MATH
227.
Zurück zum Zitat Dong H, Koehler C, Liang Z, Wan H, Gaston Z. An integrated analysis of a dragonfly in free flight. AIAA paper 2010-4390 Dong H, Koehler C, Liang Z, Wan H, Gaston Z. An integrated analysis of a dragonfly in free flight. AIAA paper 2010-4390
228.
Zurück zum Zitat Luo H, Dai H, Mohd Adam Das SS, Song J, Doyle JF. Toward high-fidelity modeling of the fluid–structure interaction for insect wings. AIAA paper 2012-1212 Luo H, Dai H, Mohd Adam Das SS, Song J, Doyle JF. Toward high-fidelity modeling of the fluid–structure interaction for insect wings. AIAA paper 2012-1212
229.
Zurück zum Zitat Hedrick TL, Tobalske BW, Ros IG, Warrick DR, Biewener AA (2012) Morphological and kinematic basis of the hummingbird flight stroke: scaling of flight muscle transmission ratio. Proc R Soc B 279:1986–1992CrossRef Hedrick TL, Tobalske BW, Ros IG, Warrick DR, Biewener AA (2012) Morphological and kinematic basis of the hummingbird flight stroke: scaling of flight muscle transmission ratio. Proc R Soc B 279:1986–1992CrossRef
230.
Zurück zum Zitat Koehler C, Liang Z, Gaston Z, Wan H, Dong H (2012) 3D reconstruction and analysis of wing deformation in free-flying dragonflies. J Exp Biol 215:3018–3027CrossRef Koehler C, Liang Z, Gaston Z, Wan H, Dong H (2012) 3D reconstruction and analysis of wing deformation in free-flying dragonflies. J Exp Biol 215:3018–3027CrossRef
231.
Zurück zum Zitat Zheng L, Hedrick TL, Mittal R (2013) Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies. PLoS One 8:e53060CrossRef Zheng L, Hedrick TL, Mittal R (2013) Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies. PLoS One 8:e53060CrossRef
232.
Zurück zum Zitat Young J, Walker SM, Bomphrey RJ, Taylor GK, Thomas ALR (2009) Details of insect wing design and deformation enhance aerodynamic function and flight efficiency. Science 325: 1549–1552 Young J, Walker SM, Bomphrey RJ, Taylor GK, Thomas ALR (2009) Details of insect wing design and deformation enhance aerodynamic function and flight efficiency. Science 325: 1549–1552
233.
Zurück zum Zitat Tobing S, Young J, Lai JCS (2010) Effects of aeroelasticity on flapping wing propulsion. In: 17th Australasian fluid mechanics conference, Auckland, New Zealand Tobing S, Young J, Lai JCS (2010) Effects of aeroelasticity on flapping wing propulsion. In: 17th Australasian fluid mechanics conference, Auckland, New Zealand
234.
Zurück zum Zitat Drucker EG, Lauder GV (2001) Wake dynamics and fluid forces of turning maneuvers in sunfish. J Exp Biol 204:431–442 Drucker EG, Lauder GV (2001) Wake dynamics and fluid forces of turning maneuvers in sunfish. J Exp Biol 204:431–442
235.
Zurück zum Zitat Drucker EG, Lauder GV (2005) Locomotor function of the dorsal fin in rainbow trout: kinematic patterns and hydrodynamic forces. J Exp Biol 208:4479–4494CrossRef Drucker EG, Lauder GV (2005) Locomotor function of the dorsal fin in rainbow trout: kinematic patterns and hydrodynamic forces. J Exp Biol 208:4479–4494CrossRef
236.
Zurück zum Zitat Akhtar I, Mittal R, Lauder GV, Drucker E (2007) Hydrodynamic of biologically inspired tandem flapping foil configuration. Theor Comput Fluid Dyn 21:155–170CrossRefMATH Akhtar I, Mittal R, Lauder GV, Drucker E (2007) Hydrodynamic of biologically inspired tandem flapping foil configuration. Theor Comput Fluid Dyn 21:155–170CrossRefMATH
237.
Zurück zum Zitat Wang XX, Wu ZN (2012) Lift force reduction due to body image of vortex for a hovering flight model. J Fluid Mech 709: 648–658 Wang XX, Wu ZN (2012) Lift force reduction due to body image of vortex for a hovering flight model. J Fluid Mech 709: 648–658
238.
Zurück zum Zitat Wang S, Zhang X, He G (2012) Numerical simulation of a three-dimensional fish-like body swimming with finlets. Commun Comput Phys 11:1323–1333MathSciNet Wang S, Zhang X, He G (2012) Numerical simulation of a three-dimensional fish-like body swimming with finlets. Commun Comput Phys 11:1323–1333MathSciNet
239.
Zurück zum Zitat Vargas A, Mittal R, Dong H (2008) A computational study of the aerodynamic performance of a dragonfly wing section in gliding flight. Bioinspiration Biomimetics 3:026004CrossRef Vargas A, Mittal R, Dong H (2008) A computational study of the aerodynamic performance of a dragonfly wing section in gliding flight. Bioinspiration Biomimetics 3:026004CrossRef
240.
Zurück zum Zitat Oeffner J, Lauder GV (2012) The hydrodynamic function of shark skin and two biomimetic applications. J Exp Biol 215:785–795CrossRef Oeffner J, Lauder GV (2012) The hydrodynamic function of shark skin and two biomimetic applications. J Exp Biol 215:785–795CrossRef
241.
242.
Zurück zum Zitat van Wassenbergh S, Strother JA, Flammang BE, Ferry-Graham LA, Aerts P (2008) Extremely fast prey capture in pipefish is powered by elastic recoil. J R Soc Interface 5:285–296CrossRef van Wassenbergh S, Strother JA, Flammang BE, Ferry-Graham LA, Aerts P (2008) Extremely fast prey capture in pipefish is powered by elastic recoil. J R Soc Interface 5:285–296CrossRef
243.
Zurück zum Zitat Tytell ED, Hsu CY, Williams TL, Cohen AH, Fauci LJ (2010) Interactions between internal forces, body stiffness, and fluid environment in a neuromechanical model of lamprey swimming. Proc Natl Acad Sci USA 107:19832–19837CrossRef Tytell ED, Hsu CY, Williams TL, Cohen AH, Fauci LJ (2010) Interactions between internal forces, body stiffness, and fluid environment in a neuromechanical model of lamprey swimming. Proc Natl Acad Sci USA 107:19832–19837CrossRef
244.
Zurück zum Zitat Qian QJ, Sun DJ (2011) Numerical method for optimum motion of undulatory swimming plate in fluid flow. Appl Math Mech Engl Ed 32:339–348MathSciNetCrossRefMATH Qian QJ, Sun DJ (2011) Numerical method for optimum motion of undulatory swimming plate in fluid flow. Appl Math Mech Engl Ed 32:339–348MathSciNetCrossRefMATH
245.
Zurück zum Zitat Eloy C, Schouveiler L (2011) Optimisation of two-dimensional undulatory swimming at high Reynolds number. Int J Nonlinear Mech 46:568–576CrossRef Eloy C, Schouveiler L (2011) Optimisation of two-dimensional undulatory swimming at high Reynolds number. Int J Nonlinear Mech 46:568–576CrossRef
246.
Zurück zum Zitat Eloy C (2012) Optimal Strouhal number for swimming animals. J Fluids Struct 30:205–218CrossRef Eloy C (2012) Optimal Strouhal number for swimming animals. J Fluids Struct 30:205–218CrossRef
248.
Zurück zum Zitat van Rees WM, Gazzola M, Koumoutsakos P (2013) Optimal shapes for anguilliform swimmers at intermediate Reynolds numbers. J Fluid Mech 722:R3CrossRef van Rees WM, Gazzola M, Koumoutsakos P (2013) Optimal shapes for anguilliform swimmers at intermediate Reynolds numbers. J Fluid Mech 722:R3CrossRef
249.
Zurück zum Zitat McMillen T, Williams T, Holmes P (2008) Nonlinear muscles, passive viscoelasticity and body taper conspire to create neuromechanical phase lags in anguilliform swimmers. PLoS Comput Biol 4:e1000157MathSciNetCrossRef McMillen T, Williams T, Holmes P (2008) Nonlinear muscles, passive viscoelasticity and body taper conspire to create neuromechanical phase lags in anguilliform swimmers. PLoS Comput Biol 4:e1000157MathSciNetCrossRef
250.
Zurück zum Zitat Cendes ZJ, Shenton D, Shahnasser H. Adaptive finite element mesh generation using the Delaunay algorithm. Department of Electrical and Computer Engineering, Carnegie Institute of Technology paper 102 Cendes ZJ, Shenton D, Shahnasser H. Adaptive finite element mesh generation using the Delaunay algorithm. Department of Electrical and Computer Engineering, Carnegie Institute of Technology paper 102
251.
Zurück zum Zitat Baker T. Three-dimensional mesh generation by triangulation of arbitrary point sets. AIAA paper 87-1124 Baker T. Three-dimensional mesh generation by triangulation of arbitrary point sets. AIAA paper 87-1124
252.
Zurück zum Zitat George PL, Borouchaki H (1998) Delaunay triangulation and meshing: application to finite elements. Hermès Science, ParisMATH George PL, Borouchaki H (1998) Delaunay triangulation and meshing: application to finite elements. Hermès Science, ParisMATH
253.
Zurück zum Zitat Löhner R, Parikh P (1988) Three-dimensional grid generation by the advancing-front method. Int J Numer Methods Fluids 8: 1135–1149 Löhner R, Parikh P (1988) Three-dimensional grid generation by the advancing-front method. Int J Numer Methods Fluids 8: 1135–1149
254.
Zurück zum Zitat Mavriplis D (1995) An advancing front Delaunay triangulation algorithm designed for robustness. J Comput Phys 17:90–101MathSciNetCrossRef Mavriplis D (1995) An advancing front Delaunay triangulation algorithm designed for robustness. J Comput Phys 17:90–101MathSciNetCrossRef
255.
Zurück zum Zitat Marcum DL (2001) Efficient generation of high-quality unstructured surface and volume grids. Eng Comput 17:211–233CrossRefMATH Marcum DL (2001) Efficient generation of high-quality unstructured surface and volume grids. Eng Comput 17:211–233CrossRefMATH
256.
Zurück zum Zitat Thompson JF, Warsi ZA, Mastin CW (1985) Numerical grid generation: foundations and applications. North-Holland, New YorkMATH Thompson JF, Warsi ZA, Mastin CW (1985) Numerical grid generation: foundations and applications. North-Holland, New YorkMATH
257.
Zurück zum Zitat Thompson JF, Soni BK, Weatherill NP (1998) Handbook of grid generation. CRC Press, Boca Raton Thompson JF, Soni BK, Weatherill NP (1998) Handbook of grid generation. CRC Press, Boca Raton
258.
Zurück zum Zitat Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite element computation of 3D flows. Computer 26: 27–36 Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite element computation of 3D flows. Computer 26: 27–36
259.
Zurück zum Zitat Behr M, Tezduyar T (1999) The shear-slip mesh update method. Comput Methods Appl Mech Eng 174:261–274CrossRefMATH Behr M, Tezduyar T (1999) The shear-slip mesh update method. Comput Methods Appl Mech Eng 174:261–274CrossRefMATH
260.
Zurück zum Zitat Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Methods Eng 8:83–130CrossRefMATH Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Methods Eng 8:83–130CrossRefMATH
261.
Zurück zum Zitat Behr M, Tezduyar T (2001) Shear-slip mesh update in 3D computation of complex flow problems with rotating mechanical components. Comput Methods Appl Mech Eng 190:3189–3200CrossRefMATH Behr M, Tezduyar T (2001) Shear-slip mesh update in 3D computation of complex flow problems with rotating mechanical components. Comput Methods Appl Mech Eng 190:3189–3200CrossRefMATH
262.
Zurück zum Zitat Stein K, Tezduyar T, Benney R (2003) Mesh moving techniques for fluid–structure interactions with large displacements. J Appl Mech 70:58–63CrossRefMATH Stein K, Tezduyar T, Benney R (2003) Mesh moving techniques for fluid–structure interactions with large displacements. J Appl Mech 70:58–63CrossRefMATH
263.
Zurück zum Zitat Stein K, Tezduyar TE, Benney R (2004) Automatic mesh update with the solid-extension mesh moving technique. Comput Methods Appl Mech Eng 193:2019–2032CrossRefMATH Stein K, Tezduyar TE, Benney R (2004) Automatic mesh update with the solid-extension mesh moving technique. Comput Methods Appl Mech Eng 193:2019–2032CrossRefMATH
264.
Zurück zum Zitat Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space–time finite elements: solution techniques. Int J Numer Methods Fluids 54:855–900MathSciNetCrossRefMATH Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space–time finite elements: solution techniques. Int J Numer Methods Fluids 54:855–900MathSciNetCrossRefMATH
265.
Zurück zum Zitat Takizawa K, Montes D, Fritze M, McIntyre S, Boben J, Tezduyar TE (2013) Methods for FSI modeling of spacecraft parachute dynamics and cover separation. Math Models Methods Appl Sci 23:307–338MathSciNetCrossRefMATH Takizawa K, Montes D, Fritze M, McIntyre S, Boben J, Tezduyar TE (2013) Methods for FSI modeling of spacecraft parachute dynamics and cover separation. Math Models Methods Appl Sci 23:307–338MathSciNetCrossRefMATH
266.
Zurück zum Zitat Johnson AA, Tezduyar TE (1997) Parallel computation of incompressible flows with complex geometries. Int J Numer Methods Fluids 24:1321–1340CrossRefMATH Johnson AA, Tezduyar TE (1997) Parallel computation of incompressible flows with complex geometries. Int J Numer Methods Fluids 24:1321–1340CrossRefMATH
267.
Zurück zum Zitat Landau LD, Lifshitz EM (1986) Theory of elasticity. Pergamon, New York Landau LD, Lifshitz EM (1986) Theory of elasticity. Pergamon, New York
268.
Zurück zum Zitat Tang T (2005) Moving mesh methods for computational fluid dynamics. Contemp Math 383:141–173CrossRef Tang T (2005) Moving mesh methods for computational fluid dynamics. Contemp Math 383:141–173CrossRef
269.
Zurück zum Zitat Di Y, Li R, Tang T, Zhang P (2005) Moving mesh finite element methods for the incompressible Navier–Stokes equations. SIAM J Sci Comput 26:1036–1056MathSciNetCrossRefMATH Di Y, Li R, Tang T, Zhang P (2005) Moving mesh finite element methods for the incompressible Navier–Stokes equations. SIAM J Sci Comput 26:1036–1056MathSciNetCrossRefMATH
270.
Zurück zum Zitat Zhang Z (2006) Moving mesh method with conservative interpolation based on \(L^{2}\)-projection. Commun Comput Phys 1:930–944MATH Zhang Z (2006) Moving mesh method with conservative interpolation based on \(L^{2}\)-projection. Commun Comput Phys 1:930–944MATH
271.
Zurück zum Zitat Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space–time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94:353–371MathSciNetCrossRefMATH Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space–time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94:353–371MathSciNetCrossRefMATH
272.
Zurück zum Zitat Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space–time procedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94:339–351MathSciNetCrossRefMATH Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space–time procedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94:339–351MathSciNetCrossRefMATH
273.
Zurück zum Zitat Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43:555–575MathSciNetCrossRefMATH Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43:555–575MathSciNetCrossRefMATH
274.
Zurück zum Zitat Tezduyar TE, Sathe S, Stein K (2006) Solution techniques for the fully-discretized equations in computation of fluid–structure interactions with the space–time formulations. Comput Methods Appl Mech Eng 195:5743–5753MathSciNetCrossRefMATH Tezduyar TE, Sathe S, Stein K (2006) Solution techniques for the fully-discretized equations in computation of fluid–structure interactions with the space–time formulations. Comput Methods Appl Mech Eng 195:5743–5753MathSciNetCrossRefMATH
275.
Zurück zum Zitat Tezduyar TE (2006) Interface-tracking and interface-capturing techniques for finite element computation of moving boundaries and interfaces. Comput Methods Appl Mech Eng 195: 2983–3000MathSciNetCrossRefMATH Tezduyar TE (2006) Interface-tracking and interface-capturing techniques for finite element computation of moving boundaries and interfaces. Comput Methods Appl Mech Eng 195: 2983–3000MathSciNetCrossRefMATH
276.
Zurück zum Zitat Tezduyar TE (2007) Finite elements in fluids: stabilized formulations and moving boundaries and interfaces. Comput Fluids 36:191–206MathSciNetCrossRefMATH Tezduyar TE (2007) Finite elements in fluids: stabilized formulations and moving boundaries and interfaces. Comput Fluids 36:191–206MathSciNetCrossRefMATH
277.
278.
Zurück zum Zitat Takizawa K, Tezduyar TE (2012) Space–time fluid–structure interaction methods. Math Models Methods Appl Sci 22(supp 02):1230001MathSciNetCrossRef Takizawa K, Tezduyar TE (2012) Space–time fluid–structure interaction methods. Math Models Methods Appl Sci 22(supp 02):1230001MathSciNetCrossRef
279.
Zurück zum Zitat Bazilevs Y, Takizawa K, Tezduyar TE (2012) Challenges and directions in computational fluid–structure interaction. Math Models Methods Appl Sci 23:215–221MathSciNetCrossRef Bazilevs Y, Takizawa K, Tezduyar TE (2012) Challenges and directions in computational fluid–structure interaction. Math Models Methods Appl Sci 23:215–221MathSciNetCrossRef
280.
Zurück zum Zitat Chen D, Norris D, Ventikos Y (2009) The active and passive ciliary motion in the embryo node: a computational fluid dynamics model. J Biomech 42:210–216CrossRef Chen D, Norris D, Ventikos Y (2009) The active and passive ciliary motion in the embryo node: a computational fluid dynamics model. J Biomech 42:210–216CrossRef
281.
Zurück zum Zitat Chen D, Norris D, Ventikos Y (2011) Ciliary behaviour and mechano-transduction in the embryonic node: computational testing of hypotheses. Med Eng Phys 33:857–867CrossRef Chen D, Norris D, Ventikos Y (2011) Ciliary behaviour and mechano-transduction in the embryonic node: computational testing of hypotheses. Med Eng Phys 33:857–867CrossRef
282.
Zurück zum Zitat Stein E, de Borst R, Hughes TJR (2004) Encyclopedia of computational mechanics: fundamentals, vol 1. Wiley, ChichesterCrossRef Stein E, de Borst R, Hughes TJR (2004) Encyclopedia of computational mechanics: fundamentals, vol 1. Wiley, ChichesterCrossRef
283.
Zurück zum Zitat Tezduyar TE, Sathe S, Cragin T, Nanna B, Conklin BS, Pausewang J, Schwaab M (2007) Modeling of fluid–structure interactions with the space–time finite elements: arterial fluid mechanics. Int J Numer Methods Fluids 54:901–922MathSciNetCrossRefMATH Tezduyar TE, Sathe S, Cragin T, Nanna B, Conklin BS, Pausewang J, Schwaab M (2007) Modeling of fluid–structure interactions with the space–time finite elements: arterial fluid mechanics. Int J Numer Methods Fluids 54:901–922MathSciNetCrossRefMATH
284.
Zurück zum Zitat Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2010) Solution of linear systems in arterial fluid mechanics computations with boundary layer mesh refinement. Comput Mech 46: 83–89 Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2010) Solution of linear systems in arterial fluid mechanics computations with boundary layer mesh refinement. Comput Mech 46: 83–89
285.
Zurück zum Zitat Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Multiscale sequentially-coupled arterial FSI technique. Comput Mech 46:17–29MathSciNetCrossRefMATH Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Multiscale sequentially-coupled arterial FSI technique. Comput Mech 46:17–29MathSciNetCrossRefMATH
286.
Zurück zum Zitat Takizawa K, Moorman C, Wright S, Christopher J, Tezduyar TE (2010) Wall shear stress calculations in space–time finite element computation of arterial fluid–structure interactions. Comput Mech 46:31–41MathSciNetCrossRefMATH Takizawa K, Moorman C, Wright S, Christopher J, Tezduyar TE (2010) Wall shear stress calculations in space–time finite element computation of arterial fluid–structure interactions. Comput Mech 46:31–41MathSciNetCrossRefMATH
287.
Zurück zum Zitat Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2010) Role of 0D peripheral vasculature model in fluid–structure interaction modeling of aneurysms. Comput Mech 46: 43–52 Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2010) Role of 0D peripheral vasculature model in fluid–structure interaction modeling of aneurysms. Comput Mech 46: 43–52
288.
Zurück zum Zitat Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2011) A parallel sparse algorithm targeting arterial fluid mechanics computations. Comput Mech 48:377–384 Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2011) A parallel sparse algorithm targeting arterial fluid mechanics computations. Comput Mech 48:377–384
289.
Zurück zum Zitat Takizawa K, Bazilevs Y, Tezduyar TE (2012) Space–time and ALE-VMS techniques for patient-specific cardiovascular fluid–structure interaction modeling. Arch Comput Methods Eng 19:171–225MathSciNetCrossRef Takizawa K, Bazilevs Y, Tezduyar TE (2012) Space–time and ALE-VMS techniques for patient-specific cardiovascular fluid–structure interaction modeling. Arch Comput Methods Eng 19:171–225MathSciNetCrossRef
290.
Zurück zum Zitat Takizawa K, Schjodt K, Puntel A, Kostov N, Tezduyar TE (2012) Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms. Comput Mech. Published online. doi:10.1007/s00466-012-0790-y Takizawa K, Schjodt K, Puntel A, Kostov N, Tezduyar TE (2012) Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms. Comput Mech. Published online. doi:10.​1007/​s00466-012-0790-y
291.
Zurück zum Zitat Takizawa K, Schjodt K, Puntel A, Kostov N, Tezduyar TE (2012) Patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent. Comput Mech 50:675–686MathSciNetCrossRefMATH Takizawa K, Schjodt K, Puntel A, Kostov N, Tezduyar TE (2012) Patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent. Comput Mech 50:675–686MathSciNetCrossRefMATH
292.
Zurück zum Zitat Takizawa K, Brummer T, Tezduyar TE, Chen PR (2012) A comparative study based on patient-specific fluid–structure interaction modeling of cerebral aneurysms. J Appl Mech 79:010908CrossRef Takizawa K, Brummer T, Tezduyar TE, Chen PR (2012) A comparative study based on patient-specific fluid–structure interaction modeling of cerebral aneurysms. J Appl Mech 79:010908CrossRef
293.
Zurück zum Zitat Kalro V, Aliabadi S, Garrard W, Tezduyar T, Mittal S, Stein K (1997) Parallel finite element simulation of large ram-air parachutes. Int J Numer Methods Fluids 24:1353–1369CrossRefMATH Kalro V, Aliabadi S, Garrard W, Tezduyar T, Mittal S, Stein K (1997) Parallel finite element simulation of large ram-air parachutes. Int J Numer Methods Fluids 24:1353–1369CrossRefMATH
294.
Zurück zum Zitat Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods. Comput Mech 43:39–49CrossRefMATH Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods. Comput Mech 43:39–49CrossRefMATH
295.
Zurück zum Zitat Tezduyar TE, Sathe S, Schwaab M, Pausewang J, Christopher J, Crabtree J (2008) Fluid–structure interaction modeling of ringsail parachutes. Comput Mech 43:133–142CrossRefMATH Tezduyar TE, Sathe S, Schwaab M, Pausewang J, Christopher J, Crabtree J (2008) Fluid–structure interaction modeling of ringsail parachutes. Comput Mech 43:133–142CrossRefMATH
296.
Zurück zum Zitat Takizawa K, Spielman T, Tezduyar TE (2011) Space–time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters. Comput Mech 48:345–364CrossRefMATH Takizawa K, Spielman T, Tezduyar TE (2011) Space–time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters. Comput Mech 48:345–364CrossRefMATH
297.
Zurück zum Zitat Takizawa K, Fritze M, Montes D, Spielman T, Tezduyar TE (2012) Fluid–structure interaction modeling of ringsail parachutes with disreefing and modified geometric porosity. Comput Mech 50:835–854CrossRefMATH Takizawa K, Fritze M, Montes D, Spielman T, Tezduyar TE (2012) Fluid–structure interaction modeling of ringsail parachutes with disreefing and modified geometric porosity. Comput Mech 50:835–854CrossRefMATH
298.
Zurück zum Zitat Takizawa K, Tezduyar TE (2012) Computational methods for parachute fluid–structure interactions. Arch Comput Methods Eng 19:125–169MathSciNetCrossRef Takizawa K, Tezduyar TE (2012) Computational methods for parachute fluid–structure interactions. Arch Comput Methods Eng 19:125–169MathSciNetCrossRef
299.
Zurück zum Zitat Takizawa K, Spielman T, Moorman C, Tezduyar TE (2012) Fluid–structure interaction modeling of spacecraft parachutes for simulation-based design. J Appl Mech 79:010907CrossRef Takizawa K, Spielman T, Moorman C, Tezduyar TE (2012) Fluid–structure interaction modeling of spacecraft parachutes for simulation-based design. J Appl Mech 79:010907CrossRef
300.
Zurück zum Zitat Kim Y, Lai MC (2010) Simulating the dynamics of inextensible vesicles by the penalty immersed boundary method. J Comput Phys 229:4840–4853MathSciNetCrossRefMATH Kim Y, Lai MC (2010) Simulating the dynamics of inextensible vesicles by the penalty immersed boundary method. J Comput Phys 229:4840–4853MathSciNetCrossRefMATH
301.
Zurück zum Zitat Feng ZG, Michaelides EE (2005) Proteus: a direct forcing method in the simulations of particulate flows. J Comput Phys 202:20–51CrossRefMATH Feng ZG, Michaelides EE (2005) Proteus: a direct forcing method in the simulations of particulate flows. J Comput Phys 202:20–51CrossRefMATH
302.
Zurück zum Zitat Goldstein D, Handler R, Sirovich L (1993) Modeling a no-slip flow boundary with an external force field. J Comput Phys 105:354–366CrossRefMATH Goldstein D, Handler R, Sirovich L (1993) Modeling a no-slip flow boundary with an external force field. J Comput Phys 105:354–366CrossRefMATH
303.
Zurück zum Zitat Saiki EM, Biringen S (1996) Numerical simulation of a cylinder in uniform flow: application of a virtual boundary method. J Comput Phys 123:450–465CrossRefMATH Saiki EM, Biringen S (1996) Numerical simulation of a cylinder in uniform flow: application of a virtual boundary method. J Comput Phys 123:450–465CrossRefMATH
304.
Zurück zum Zitat Fadlun EA, Verzicco R, Orlandi P, Mohd-Yusof J (2003) Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J Comput Phys 161:35–60MathSciNetCrossRef Fadlun EA, Verzicco R, Orlandi P, Mohd-Yusof J (2003) Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J Comput Phys 161:35–60MathSciNetCrossRef
305.
Zurück zum Zitat Yang X, Zhang X, Li Z, He GW (2009) A smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations. J Comput Phys 228:7821–7836MathSciNetCrossRefMATH Yang X, Zhang X, Li Z, He GW (2009) A smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations. J Comput Phys 228:7821–7836MathSciNetCrossRefMATH
306.
Zurück zum Zitat Guo ZL, Zheng CG, Shi BC (2002) Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys Rev E 65:046308CrossRef Guo ZL, Zheng CG, Shi BC (2002) Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys Rev E 65:046308CrossRef
307.
Zurück zum Zitat Qian YH, D’Humières D, Lallemand P (1992) Lattice BGK models for Navier–Stokes equation. Europhys Lett 17:479–484CrossRefMATH Qian YH, D’Humières D, Lallemand P (1992) Lattice BGK models for Navier–Stokes equation. Europhys Lett 17:479–484CrossRefMATH
308.
Zurück zum Zitat He X, Luo LS, Dembo M (1996) Some progress in lattice Boltzmann method. Part I. Nonuniform mesh grids. J Comput Phys 129:357–363MathSciNetCrossRefMATH He X, Luo LS, Dembo M (1996) Some progress in lattice Boltzmann method. Part I. Nonuniform mesh grids. J Comput Phys 129:357–363MathSciNetCrossRefMATH
309.
Zurück zum Zitat Feng ZG, Michaelides EE (2004) The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems. J Comput Phys 195:602–628CrossRefMATH Feng ZG, Michaelides EE (2004) The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems. J Comput Phys 195:602–628CrossRefMATH
310.
Zurück zum Zitat Huang WX, Sung HJ (2009) An immersed boundary method for fluid–flexible structure interaction. Comput Methods Appl Mech Eng 198:2650–2661CrossRefMATH Huang WX, Sung HJ (2009) An immersed boundary method for fluid–flexible structure interaction. Comput Methods Appl Mech Eng 198:2650–2661CrossRefMATH
311.
Zurück zum Zitat Sui Y, Chew YT, Roy P, Low H (2008) A hybrid method to study flow-induced deformation of three-dimensional capsules. J Comput Phys 227:6351–6371MathSciNetCrossRefMATH Sui Y, Chew YT, Roy P, Low H (2008) A hybrid method to study flow-induced deformation of three-dimensional capsules. J Comput Phys 227:6351–6371MathSciNetCrossRefMATH
312.
Zurück zum Zitat Sun M, Lan SL (2004) A computational study of the aerodynamic forces and power requirements of dragonfly (Aeschna juncea) hovering. J Exp Biol 207:1887–1901CrossRef Sun M, Lan SL (2004) A computational study of the aerodynamic forces and power requirements of dragonfly (Aeschna juncea) hovering. J Exp Biol 207:1887–1901CrossRef
313.
314.
Zurück zum Zitat Liu G, Yu L, Tong BG (2011) A numerical simulation of a fishlike body’s selfpropelled C-start. In: AIP conference proceedings, vol 1376, pp 480–483 Liu G, Yu L, Tong BG (2011) A numerical simulation of a fishlike body’s selfpropelled C-start. In: AIP conference proceedings, vol 1376, pp 480–483
315.
Zurück zum Zitat Skorczewski T, Cheer A, Cheung S, Wainwright PC (2010) Use of computational fluid dynamics to study forces exerted on prey by aquatic suction feeders. J R Soc Interface 7:475–484CrossRef Skorczewski T, Cheer A, Cheung S, Wainwright PC (2010) Use of computational fluid dynamics to study forces exerted on prey by aquatic suction feeders. J R Soc Interface 7:475–484CrossRef
316.
Zurück zum Zitat Skorczewski T, Cheer A, Wainwright PC (2012) The benefits of planar circular mouths on suction feeding performance. J R Soc Interface 9:1767–1773CrossRef Skorczewski T, Cheer A, Wainwright PC (2012) The benefits of planar circular mouths on suction feeding performance. J R Soc Interface 9:1767–1773CrossRef
317.
Zurück zum Zitat Atta DH, Vadyak T. A grid interfacing zonal algorithm for three dimensional transonic flows about aircraft configurations. AIAA paper 82-1017 Atta DH, Vadyak T. A grid interfacing zonal algorithm for three dimensional transonic flows about aircraft configurations. AIAA paper 82-1017
318.
Zurück zum Zitat Benek JA, Steger JL, Dougherty FC. A flexible grid embedding technique with applications to the Euler equations. AIAA paper 83-1944 Benek JA, Steger JL, Dougherty FC. A flexible grid embedding technique with applications to the Euler equations. AIAA paper 83-1944
319.
Zurück zum Zitat Benek JA, Buning PG, Steger JL. A 3-D Chimera grid embedding technique. AIAA paper 85-1523 Benek JA, Buning PG, Steger JL. A 3-D Chimera grid embedding technique. AIAA paper 85-1523
320.
Zurück zum Zitat Sakata T, Jameson A. Multi-body flow field calculations with overlapping-mesh method. AIAA paper 89-2179 Sakata T, Jameson A. Multi-body flow field calculations with overlapping-mesh method. AIAA paper 89-2179
322.
Zurück zum Zitat Rai MM (1986) A conservative treatment of zonal boundary scheme for Euler equations calculations. J Comput Phys 62: 472–503 Rai MM (1986) A conservative treatment of zonal boundary scheme for Euler equations calculations. J Comput Phys 62: 472–503
324.
Zurück zum Zitat Tang HS, Jones SC, Sotiropoulos F (2003) An overset-grid method for 3D unsteady incompressible flows. J Comput Phys 191: 567–600 Tang HS, Jones SC, Sotiropoulos F (2003) An overset-grid method for 3D unsteady incompressible flows. J Comput Phys 191: 567–600
325.
Zurück zum Zitat Eldredge JD. Efficient tools for the simulation of flapping wing flows. AIAA paper 2005-85 Eldredge JD. Efficient tools for the simulation of flapping wing flows. AIAA paper 2005-85
326.
Zurück zum Zitat Eldredge JD (2007) Numerical simulation of the fluid dynamics of 2D rigid body motion with the vortex particle method. J Comput Phys 221:626–648MathSciNetCrossRefMATH Eldredge JD (2007) Numerical simulation of the fluid dynamics of 2D rigid body motion with the vortex particle method. J Comput Phys 221:626–648MathSciNetCrossRefMATH
327.
Zurück zum Zitat Hieber SE, Koumoutsakos P (2008) An immersed boundary method for smoothed particle hydrodynamics of self-propelled swimmers. J Comput Phys 227:8636–8654MathSciNetCrossRefMATH Hieber SE, Koumoutsakos P (2008) An immersed boundary method for smoothed particle hydrodynamics of self-propelled swimmers. J Comput Phys 227:8636–8654MathSciNetCrossRefMATH
328.
Zurück zum Zitat Cohen RCZ, Cleary PW, Mason B (2009) Simulations of human swimming using smoothed particle hydrodynamics. In: 7th International conference on CFD in the minerals and process industries, Melbourne, Australia Cohen RCZ, Cleary PW, Mason B (2009) Simulations of human swimming using smoothed particle hydrodynamics. In: 7th International conference on CFD in the minerals and process industries, Melbourne, Australia
329.
Zurück zum Zitat Cohen RCZ, Cleary PW, Mason BR (2012) Simulations of dolphin kick swimming using smoothed particle hydrodynamics. Hum Mov Sci 31:604–619 Cohen RCZ, Cleary PW, Mason BR (2012) Simulations of dolphin kick swimming using smoothed particle hydrodynamics. Hum Mov Sci 31:604–619
330.
Zurück zum Zitat Monaghan JJ (1992) Smoothed particle hydrodynamics. Annu Rev Astron Astrophys 30:543–574CrossRef Monaghan JJ (1992) Smoothed particle hydrodynamics. Annu Rev Astron Astrophys 30:543–574CrossRef
331.
Zurück zum Zitat Liu GR, Liu MB (2003) Smoothed particle hydrodynamics: a meshfree particle method. World Scientific, SingaporeCrossRef Liu GR, Liu MB (2003) Smoothed particle hydrodynamics: a meshfree particle method. World Scientific, SingaporeCrossRef
332.
Zurück zum Zitat Monaghan JJ (2005) Smoothed particle hydrodynamics. Rep Prog Phys 68:1703–1759MathSciNet Monaghan JJ (2005) Smoothed particle hydrodynamics. Rep Prog Phys 68:1703–1759MathSciNet
333.
Zurück zum Zitat Onate E, Idelsohn S, Zienkiewicz OC, Taylor RL (1996) A finite point method in computational mechanics applications to convective transport and fluid flow. Int J Numer Methods Eng 39: 3839–3866 Onate E, Idelsohn S, Zienkiewicz OC, Taylor RL (1996) A finite point method in computational mechanics applications to convective transport and fluid flow. Int J Numer Methods Eng 39: 3839–3866
334.
Zurück zum Zitat Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element methods: diffuse approximation and diffuse elements. Comput Mech 10:307–318CrossRefMATH Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element methods: diffuse approximation and diffuse elements. Comput Mech 10:307–318CrossRefMATH
336.
Zurück zum Zitat Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139:3–47CrossRefMATH Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139:3–47CrossRefMATH
337.
Zurück zum Zitat Belytschko T, Krongauz Y, Dolbow J, Gerlach C (1998) On the completeness of the meshfree particle methods. Int J Numer Methods Eng 43:785–819MathSciNetCrossRefMATH Belytschko T, Krongauz Y, Dolbow J, Gerlach C (1998) On the completeness of the meshfree particle methods. Int J Numer Methods Eng 43:785–819MathSciNetCrossRefMATH
338.
Zurück zum Zitat Chew CS, Yeo KS, Shu C (2006) A generalized finite-difference (GFD) ALE scheme for incompressible flows around moving solid bodies on hybrid meshfree-Cartesian grids. J Comput Phys 218:510–548MathSciNetCrossRefMATH Chew CS, Yeo KS, Shu C (2006) A generalized finite-difference (GFD) ALE scheme for incompressible flows around moving solid bodies on hybrid meshfree-Cartesian grids. J Comput Phys 218:510–548MathSciNetCrossRefMATH
339.
Zurück zum Zitat Yeo KS, Ang SJ, Shu C (2010) Simulation of fish swimming and manoeuvring by an SVD-GFD method on a hybrid meshfree-Cartesian grid. Comput Fluids 39:403–430CrossRefMATH Yeo KS, Ang SJ, Shu C (2010) Simulation of fish swimming and manoeuvring by an SVD-GFD method on a hybrid meshfree-Cartesian grid. Comput Fluids 39:403–430CrossRefMATH
340.
Zurück zum Zitat Yu P, Yeo KS, Sundar DS, Ang SJ (2011) A three-dimensional hybrid meshfree-Cartesian scheme for fluid–body interaction. Int J Numer Methods Eng 88:385–408CrossRefMATH Yu P, Yeo KS, Sundar DS, Ang SJ (2011) A three-dimensional hybrid meshfree-Cartesian scheme for fluid–body interaction. Int J Numer Methods Eng 88:385–408CrossRefMATH
Metadaten
Titel
On numerical modeling of animal swimming and flight
verfasst von
Hong-Bin Deng
Yuan-Qing Xu
Duan-Duan Chen
Hu Dai
Jian Wu
Fang-Bao Tian
Publikationsdatum
01.12.2013
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 6/2013
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-013-0875-2

Weitere Artikel der Ausgabe 6/2013

Computational Mechanics 6/2013 Zur Ausgabe

Neuer Inhalt