Skip to main content
Erschienen in: Computational Mechanics 2/2016

01.02.2016 | Original Paper

Mixed boundary conditions for FFT-based homogenization at finite strains

verfasst von: Matthias Kabel, Sascha Fliegener, Matti Schneider

Erschienen in: Computational Mechanics | Ausgabe 2/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this article we introduce a Lippmann–Schwinger formulation for the unit cell problem of periodic homogenization of elasticity at finite strains incorporating arbitrary mixed boundary conditions. Such problems occur frequently, for instance when validating computational results with tensile tests, where the deformation gradient in loading direction is fixed, as is the stress in the corresponding orthogonal plane. Previous Lippmann–Schwinger formulations involving mixed boundary can only describe tensile tests where the vector of applied force is proportional to a coordinate direction. Utilizing suitable orthogonal projectors we develop a Lippmann–Schwinger framework for arbitrary mixed boundary conditions. The resulting fixed point and Newton–Krylov algorithms preserve the positive characteristics of existing FFT-algorithms. We demonstrate the power of the proposed methods with a series of numerical examples, including continuous fiber reinforced laminates and a complex nonwoven structure of a long fiber reinforced thermoplastic, resulting in a speed-up of some computations by a factor of 1000.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
Literatur
1.
3.
Zurück zum Zitat Anderson Y, Mikelsons M, Tamuzh V, Tarashch I (1991) Fatigue failure of laminated carbon-fiber-reinforced plastic. Mech Compos Mater 27(1):58–62. doi:10.1007/BF00630720 CrossRef Anderson Y, Mikelsons M, Tamuzh V, Tarashch I (1991) Fatigue failure of laminated carbon-fiber-reinforced plastic. Mech Compos Mater 27(1):58–62. doi:10.​1007/​BF00630720 CrossRef
4.
Zurück zum Zitat Andrä H, Combaret N, Dvorkin J, Glatt E, Han J, Kabel M, Keehm Y, Krzikalla F, Lee M, Madonna C, Marsh M, Mukerji T, Saenger E, Sain R, Saxena N, Ricker S, Wiegmann A, Zhan X (2013) Digital rock physics benchmarks—Part II: computing effective properties. Comput Geosci 50:33–43. doi:10.1016/j.cageo.2012.09.008 CrossRef Andrä H, Combaret N, Dvorkin J, Glatt E, Han J, Kabel M, Keehm Y, Krzikalla F, Lee M, Madonna C, Marsh M, Mukerji T, Saenger E, Sain R, Saxena N, Ricker S, Wiegmann A, Zhan X (2013) Digital rock physics benchmarks—Part II: computing effective properties. Comput Geosci 50:33–43. doi:10.​1016/​j.​cageo.​2012.​09.​008 CrossRef
6.
Zurück zum Zitat ASTM International (2013) Standard Test Method for In-Plane Shear Response of Polymer Matrix Composite Materials by Tensile Test of a +/- 45 \(^{\circ }\) Laminate. ASTM International, West Conshohocken. www.astm.org/Standards/D3518.htm ASTM International (2013) Standard Test Method for In-Plane Shear Response of Polymer Matrix Composite Materials by Tensile Test of a +/- 45 \(^{\circ }\) Laminate. ASTM International, West Conshohocken. www.​astm.​org/​Standards/​D3518.​htm
9.
Zurück zum Zitat Bonet J, Wood R (1997) Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, CambridgeMATH Bonet J, Wood R (1997) Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, CambridgeMATH
10.
11.
13.
Zurück zum Zitat Chen L, Chen J, Lebensohn R, Ji Y, Heo T, Bhattacharyya S, Chang K, Mathaudhu S, Liu Z, Chen LQ (2015) An integrated fast fourier transform-based phase-field and crystal plasticity approach to model recrystallization of three dimensional polycrystals. Comput Methods Appl Mech Eng 285:829–848. doi:10.1016/j.cma.2014.12.007 CrossRefMathSciNet Chen L, Chen J, Lebensohn R, Ji Y, Heo T, Bhattacharyya S, Chang K, Mathaudhu S, Liu Z, Chen LQ (2015) An integrated fast fourier transform-based phase-field and crystal plasticity approach to model recrystallization of three dimensional polycrystals. Comput Methods Appl Mech Eng 285:829–848. doi:10.​1016/​j.​cma.​2014.​12.​007 CrossRefMathSciNet
16.
Zurück zum Zitat Fliegener S Micromechanical finite element modeling of long fiber reinforced thermoplastics. Ph.D. thesis, Karlsruhe Institute of Technology (KIT) (to appear) Fliegener S Micromechanical finite element modeling of long fiber reinforced thermoplastics. Ph.D. thesis, Karlsruhe Institute of Technology (KIT) (to appear)
19.
Zurück zum Zitat Geymonat G, Müller S, Triantafyllidis N (1993) Homogenization of nonlinearly elastic materials, microscopic bifurcation and macroscopic loss of rank-one convexity. Arch Ration Mech Anal 122(3):231–290. doi:10.1007/BF00380256 CrossRefMATH Geymonat G, Müller S, Triantafyllidis N (1993) Homogenization of nonlinearly elastic materials, microscopic bifurcation and macroscopic loss of rank-one convexity. Arch Ration Mech Anal 122(3):231–290. doi:10.​1007/​BF00380256 CrossRefMATH
21.
24.
Zurück zum Zitat Hoffmann S (2012) Computational homogenization of short fiber reinforced thermoplastic materials. Ph.D. thesis, University Kaiserslautern, LTM Hoffmann S (2012) Computational homogenization of short fiber reinforced thermoplastic materials. Ph.D. thesis, University Kaiserslautern, LTM
26.
Zurück zum Zitat Kanit T, Forest S, Galliet I, Mounoury V, Jeulin D (2003) Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int J Solids Struct 40:3647–3679. doi:10.1016/S0020-7683(03)00143-4 CrossRefMATH Kanit T, Forest S, Galliet I, Mounoury V, Jeulin D (2003) Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int J Solids Struct 40:3647–3679. doi:10.​1016/​S0020-7683(03)00143-4 CrossRefMATH
27.
Zurück zum Zitat Kanjarla A, Lebensohn R, Balogh L, Tomé C (2012) Study of internal lattice strain distributions in stainless steel using a full-field elasto-viscoplastic formulation based on fast fourier transforms. Acta Mater 60(6–7):3094–3106. doi:10.1016/j.actamat.2012.02.014 Kanjarla A, Lebensohn R, Balogh L, Tomé C (2012) Study of internal lattice strain distributions in stainless steel using a full-field elasto-viscoplastic formulation based on fast fourier transforms. Acta Mater 60(6–7):3094–3106. doi:10.​1016/​j.​actamat.​2012.​02.​014
31.
Zurück zum Zitat Lahellec N, Michel J, Moulinec H, Suquet P (2003) Analysis of inhomogeneous materials at large strains using fast fourier transforms. In: Miehe C (ed) IUTAM symposium on computational mechanics of solid materials at large strains, solid mechanics and its applications. Springer, Netherlands, pp 247–258. doi:10.1007/978-94-017-0297-3_22 Lahellec N, Michel J, Moulinec H, Suquet P (2003) Analysis of inhomogeneous materials at large strains using fast fourier transforms. In: Miehe C (ed) IUTAM symposium on computational mechanics of solid materials at large strains, solid mechanics and its applications. Springer, Netherlands, pp 247–258. doi:10.​1007/​978-94-017-0297-3_​22
34.
Zurück zum Zitat Lebensohn R, Kanjarla A, Eisenlohr P (2012) An elasto-viscoplastic formulation based on fast fourier transforms for the prediction of micromechanical fields in polycrystalline materials. Int J Plast 32–33:59–69. doi:10.1016/j.ijplas.2011.12.005 Lebensohn R, Kanjarla A, Eisenlohr P (2012) An elasto-viscoplastic formulation based on fast fourier transforms for the prediction of micromechanical fields in polycrystalline materials. Int J Plast 32–33:59–69. doi:10.​1016/​j.​ijplas.​2011.​12.​005
39.
42.
Zurück zum Zitat Moore E (1920) On the reciprocal of the general algebraic matrix. Bull Am Math Soc 26:394–395 Moore E (1920) On the reciprocal of the general algebraic matrix. Bull Am Math Soc 26:394–395
43.
Zurück zum Zitat Moulinec H, Suquet P (1994) A fast numerical method for computing the linear and nonlinear mechanical properties of composites. Comptes rendus de l’Académie des sciences. Série II, Mécanique, physique, chimie, astronomie 318(11):1417–1423MATH Moulinec H, Suquet P (1994) A fast numerical method for computing the linear and nonlinear mechanical properties of composites. Comptes rendus de l’Académie des sciences. Série II, Mécanique, physique, chimie, astronomie 318(11):1417–1423MATH
44.
Zurück zum Zitat Moulinec H, Suquet P (1998) A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput Methods Appl Mech Eng 157(1–2):69–94CrossRefMathSciNetMATH Moulinec H, Suquet P (1998) A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput Methods Appl Mech Eng 157(1–2):69–94CrossRefMathSciNetMATH
48.
Zurück zum Zitat Ortega J, Rheinboldt W (1970) Iterative solution of nonlinear equations in several variables. Academic Press, New YorkMATH Ortega J, Rheinboldt W (1970) Iterative solution of nonlinear equations in several variables. Academic Press, New YorkMATH
50.
Zurück zum Zitat Peterson C, Ehnert G, Liebold R, Kühfusz R (2001) Compression molding. In: Miracle D, Donaldson S (eds) Composites, ASM handbook, vol 21. Springer, Netherlands, pp 516–535 Peterson C, Ehnert G, Liebold R, Kühfusz R (2001) Compression molding. In: Miracle D, Donaldson S (eds) Composites, ASM handbook, vol 21. Springer, Netherlands, pp 516–535
52.
Zurück zum Zitat R&G Faserverbundwerkstoffe GmbH (2009) Faserverbundwerkstoffe Handbuch—composite materials handbook, R&G Faserverbundwerkstoffe GmbH, Waldenbuch R&G Faserverbundwerkstoffe GmbH (2009) Faserverbundwerkstoffe Handbuch—composite materials handbook, R&G Faserverbundwerkstoffe GmbH, Waldenbuch
54.
Zurück zum Zitat Schneider M, Ospald F, Kabel M (2015) Computational homogenization of elasticity on a staggered grid. Int J Numer Methods Eng. doi:10.1002/nme.5008 Schneider M, Ospald F, Kabel M (2015) Computational homogenization of elasticity on a staggered grid. Int J Numer Methods Eng. doi:10.​1002/​nme.​5008
58.
Zurück zum Zitat Suchocki C (2011) A Finite element implementation of knowles stored-energy function: theory, coding and applications. Arch Mech Eng 58(3):319–346. doi:10.2478/v10180-011-0021-7 Suchocki C (2011) A Finite element implementation of knowles stored-energy function: theory, coding and applications. Arch Mech Eng 58(3):319–346. doi:10.​2478/​v10180-011-0021-7
Metadaten
Titel
Mixed boundary conditions for FFT-based homogenization at finite strains
verfasst von
Matthias Kabel
Sascha Fliegener
Matti Schneider
Publikationsdatum
01.02.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 2/2016
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-015-1227-1

Weitere Artikel der Ausgabe 2/2016

Computational Mechanics 2/2016 Zur Ausgabe

Neuer Inhalt