Skip to main content
Erschienen in: Computational Mechanics 3/2018

16.08.2017 | Review Paper

Adjoint shape optimization for fluid–structure interaction of ducted flows

verfasst von: J. P. Heners, L. Radtke, M. Hinze, A. Düster

Erschienen in: Computational Mechanics | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Based on the coupled problem of time-dependent fluid–structure interaction, equations for an appropriate adjoint problem are derived by the consequent use of the formal Lagrange calculus. Solutions of both primal and adjoint equations are computed in a partitioned fashion and enable the formulation of a surface sensitivity. This sensitivity is used in the context of a steepest descent algorithm for the computation of the required gradient of an appropriate cost functional. The efficiency of the developed optimization approach is demonstrated by minimization of the pressure drop in a simple two-dimensional channel flow and in a three-dimensional ducted flow surrounded by a thin-walled structure.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Farhat C, van der Zee K, Geuzaine P (2006) Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity. Comput Methods Appl Mech Eng 195:1973–2001MathSciNetCrossRefMATH Farhat C, van der Zee K, Geuzaine P (2006) Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity. Comput Methods Appl Mech Eng 195:1973–2001MathSciNetCrossRefMATH
2.
Zurück zum Zitat Willcox K, Paduano J, Peraire J (1999) Low order aerodynamic models for aeroelastic control of turbomachines. In: Proceedings of 40thAIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials(SDM) Conference St. Louis, USA, pp 1–11 Willcox K, Paduano J, Peraire J (1999) Low order aerodynamic models for aeroelastic control of turbomachines. In: Proceedings of 40thAIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials(SDM) Conference St. Louis, USA, pp 1–11
3.
Zurück zum Zitat Tezduyar T, Aliabadi S, Behr M, Johnson A, Kalro V, Litke M (1996) Flow simulation and high performance computing. Comput Mech 18:397–412CrossRefMATH Tezduyar T, Aliabadi S, Behr M, Johnson A, Kalro V, Litke M (1996) Flow simulation and high performance computing. Comput Mech 18:397–412CrossRefMATH
4.
Zurück zum Zitat Johnson AA, Tezduyar TE (1999) Advanced mesh generation and update methods for 3D flow simulations. Comput Mech 23:130–143CrossRefMATH Johnson AA, Tezduyar TE (1999) Advanced mesh generation and update methods for 3D flow simulations. Comput Mech 23:130–143CrossRefMATH
5.
Zurück zum Zitat Jameson A (1995) Optimum aerodynamic design using CFD and control theory. AIAA-95-1729-CP Jameson A (1995) Optimum aerodynamic design using CFD and control theory. AIAA-95-1729-CP
6.
7.
Zurück zum Zitat Jameson A, Shankaran S, Martinelli L (2003) An unstructured adjoint method for transonic flows. AIAA paper, 16th AIAA CFD Conference Orlando Jameson A, Shankaran S, Martinelli L (2003) An unstructured adjoint method for transonic flows. AIAA paper, 16th AIAA CFD Conference Orlando
8.
Zurück zum Zitat Jameson A (2003) Aerodynamic shape optimization using the adjoint method, 11–14. Department of Aeronautics and Astronautics Stanford University, Von Karman Institute Brussels Jameson A (2003) Aerodynamic shape optimization using the adjoint method, 11–14. Department of Aeronautics and Astronautics Stanford University, Von Karman Institute Brussels
9.
Zurück zum Zitat Othmer C (2008) A continuous adjoint formulation for the computation of topological and surface sensitivities of ducted flows. Int J Numer Methods Fluids 58:861–877MathSciNetCrossRefMATH Othmer C (2008) A continuous adjoint formulation for the computation of topological and surface sensitivities of ducted flows. Int J Numer Methods Fluids 58:861–877MathSciNetCrossRefMATH
10.
Zurück zum Zitat Soto O, Löhner R (2004) On the computation of flow sensitivities from boundary integrals. In: 42nd AIAA aerospace sciences meeting and exhibit, Reno, NV Soto O, Löhner R (2004) On the computation of flow sensitivities from boundary integrals. In: 42nd AIAA aerospace sciences meeting and exhibit, Reno, NV
11.
Zurück zum Zitat Quarteroni A, Rozza G (2003) Optimal control and shape optimization of aorto-coronaric bypass anastomoses. Math Models Methods Appl Sci 13(12):1801–1823MathSciNetCrossRefMATH Quarteroni A, Rozza G (2003) Optimal control and shape optimization of aorto-coronaric bypass anastomoses. Math Models Methods Appl Sci 13(12):1801–1823MathSciNetCrossRefMATH
12.
Zurück zum Zitat Lincke A, Rung T (2012) Adjoint-based Sensitivity Analysis for buoyancy-driven incompressible Navier–Stokes equations with heat transfer. In: Proceedings of 8th international conference on engineering computational technology Lincke A, Rung T (2012) Adjoint-based Sensitivity Analysis for buoyancy-driven incompressible Navier–Stokes equations with heat transfer. In: Proceedings of 8th international conference on engineering computational technology
13.
Zurück zum Zitat Bazilevs Y, Hsu M-C, Bement MT (2013) Adjoint-based control of fluid–structure interaction for computational steering applications. Proc Comput Sci 18:1989–1998CrossRef Bazilevs Y, Hsu M-C, Bement MT (2013) Adjoint-based control of fluid–structure interaction for computational steering applications. Proc Comput Sci 18:1989–1998CrossRef
14.
Zurück zum Zitat Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid-structure interaction (methods and applications). Wiley, HobokenCrossRefMATH Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid-structure interaction (methods and applications). Wiley, HobokenCrossRefMATH
15.
Zurück zum Zitat Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid-structure interaction: theory, algorithms, and computations. Comput Mech 43:3–37MathSciNetCrossRefMATH Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid-structure interaction: theory, algorithms, and computations. Comput Mech 43:3–37MathSciNetCrossRefMATH
16.
Zurück zum Zitat Tröltzsch F (2010) Optimal control of partial differential equations: theory, methods and applications. AMS, ProvidenceCrossRefMATH Tröltzsch F (2010) Optimal control of partial differential equations: theory, methods and applications. AMS, ProvidenceCrossRefMATH
17.
Zurück zum Zitat Hinze M et al (2009) Optimization with PDE Constraints. Springer, BerlinMATH Hinze M et al (2009) Optimization with PDE Constraints. Springer, BerlinMATH
18.
Zurück zum Zitat Degroote J, Bathe KJ, Vierendeels J (2009) Performance of a new partitioned procedure versus a monolithic procedure in fluid–structure interaction. Comput Struct 87:793–801CrossRef Degroote J, Bathe KJ, Vierendeels J (2009) Performance of a new partitioned procedure versus a monolithic procedure in fluid–structure interaction. Comput Struct 87:793–801CrossRef
20.
Zurück zum Zitat Issa RI (1986) Solution of the implicitly discretized fluid flow equations by operator-splitting. J Comput Phys 62(1):40–65MathSciNetCrossRefMATH Issa RI (1986) Solution of the implicitly discretized fluid flow equations by operator-splitting. J Comput Phys 62(1):40–65MathSciNetCrossRefMATH
21.
Zurück zum Zitat Düster A, Hartmann S, Rank E (2003) p-FEM applied to finite isotropic hyperelastic bodies. Comput Methods Appl Mech Eng 192:5147–5166CrossRefMATH Düster A, Hartmann S, Rank E (2003) p-FEM applied to finite isotropic hyperelastic bodies. Comput Methods Appl Mech Eng 192:5147–5166CrossRefMATH
22.
Zurück zum Zitat Netz T, Düster A, Hartmann S (2013) High-Order finite elements compared to low-order mixed element formulations. ZAMM-Z Ang Math Mech 93:163–176MathSciNetCrossRefMATH Netz T, Düster A, Hartmann S (2013) High-Order finite elements compared to low-order mixed element formulations. ZAMM-Z Ang Math Mech 93:163–176MathSciNetCrossRefMATH
23.
Zurück zum Zitat Radtke L, Larena-Avellaneda A, Debus ES, Düster A (2016) Convergence acceleration for partitioned simulations of the fluid-structure interaction in arteries. Comput Mech 57:901–920MathSciNetCrossRefMATH Radtke L, Larena-Avellaneda A, Debus ES, Düster A (2016) Convergence acceleration for partitioned simulations of the fluid-structure interaction in arteries. Comput Mech 57:901–920MathSciNetCrossRefMATH
24.
Zurück zum Zitat König M, Radtke L, Düster A (2016) A flexible C++ framework for the partitioned solution of strongly coupled multifield problems. Comput Math Appl 72:1764–1789MathSciNetCrossRefMATH König M, Radtke L, Düster A (2016) A flexible C++ framework for the partitioned solution of strongly coupled multifield problems. Comput Math Appl 72:1764–1789MathSciNetCrossRefMATH
25.
Zurück zum Zitat Brändli S, Düster A (2012) A flexible multi-physics coupling interface for partitioned solution approaches. Proc Appl Math Mech 12:363–364CrossRef Brändli S, Düster A (2012) A flexible multi-physics coupling interface for partitioned solution approaches. Proc Appl Math Mech 12:363–364CrossRef
26.
Zurück zum Zitat Lincke A, Rung T, Hinze M (2014) An efficient line search technique and its application to adjoint topology optimization. In: 85th annual meeting international association of applied mathematics and mechanics (GAMM) Lincke A, Rung T, Hinze M (2014) An efficient line search technique and its application to adjoint topology optimization. In: 85th annual meeting international association of applied mathematics and mechanics (GAMM)
27.
Zurück zum Zitat Galvez M, Badilla L, Valencia A, Zarate A (2005) Non-Newtonian blood flow dynamics in a right internal carotid artery with a saccular aneurysm. Int J Numer Methods 50:751–764MATH Galvez M, Badilla L, Valencia A, Zarate A (2005) Non-Newtonian blood flow dynamics in a right internal carotid artery with a saccular aneurysm. Int J Numer Methods 50:751–764MATH
28.
Zurück zum Zitat Radtke L (2013) Ein partitionierter Ansatz zur Simulation der Fluid-Struktur-Interaktion an der Schnittstelle zu künstlichen Blutgefäßen und endoluminalen Gefäßstützen, Master thesis TU Hamburg-Harburg Radtke L (2013) Ein partitionierter Ansatz zur Simulation der Fluid-Struktur-Interaktion an der Schnittstelle zu künstlichen Blutgefäßen und endoluminalen Gefäßstützen, Master thesis TU Hamburg-Harburg
Metadaten
Titel
Adjoint shape optimization for fluid–structure interaction of ducted flows
verfasst von
J. P. Heners
L. Radtke
M. Hinze
A. Düster
Publikationsdatum
16.08.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 3/2018
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-017-1465-5

Weitere Artikel der Ausgabe 3/2018

Computational Mechanics 3/2018 Zur Ausgabe