Skip to main content
Erschienen in: Neural Computing and Applications 6/2018

27.12.2016 | Original Article

Heat transfer analysis in ferromagnetic viscoelastic fluid flow over a stretching sheet with suction

verfasst von: Aaqib Majeed, Ahmad Zeeshan, Sultan Z. Alamri, Rahmat Ellahi

Erschienen in: Neural Computing and Applications | Ausgabe 6/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this article, an investigation has been performed to explore the two-dimensional boundary layer flow problem and heat transfer characteristic of ferromagnetic viscoelastic fluid flow over a stretching surface with a linear velocity under the impact of magnetic dipole and suction. The governing PDEs are converted into a system of nonlinear ODEs by applying appropriate similarity approach. The modelled equations are then solved numerically by utilizing efficient Runge–Kutta–Fehlberg procedure based on shooting algorithm. Influence of pertinent flow parameter involved, such as ferromagnetic interaction parameter, suction parameter, viscoelastic parameter, Prandtl number on dimensionless velocity, temperature, skin friction, and Nusselt inside the boundary layer, are portrayed graphically and discussed. The results show that pressure profile and skin friction coefficient increase with the variation of ferromagnetic interaction parameter and opposite behaviour is noted for local Nusselt number.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Crane LJ (1970) Flow past a stretching plate. J Appl Math Phys (ZAMP) 21:645–647CrossRef Crane LJ (1970) Flow past a stretching plate. J Appl Math Phys (ZAMP) 21:645–647CrossRef
2.
Zurück zum Zitat Chakrabarti A, Gupta AS (1979) Hydromagnetic flow and heat transfer over a stretching sheet. Q J Appl Math 37:73–78CrossRefMATH Chakrabarti A, Gupta AS (1979) Hydromagnetic flow and heat transfer over a stretching sheet. Q J Appl Math 37:73–78CrossRefMATH
3.
Zurück zum Zitat Chen CH (1998) Laminar mixed convection adjacent to vertical continuously stretching sheets. Heat Mass Transf 33(5–6):471–476CrossRef Chen CH (1998) Laminar mixed convection adjacent to vertical continuously stretching sheets. Heat Mass Transf 33(5–6):471–476CrossRef
4.
Zurück zum Zitat Fan J, Shi J, Xu X (1999) Similarity solution of free convective boundary layer behaviour at a stretching surface. Heat Mass Transf 35:191–196CrossRef Fan J, Shi J, Xu X (1999) Similarity solution of free convective boundary layer behaviour at a stretching surface. Heat Mass Transf 35:191–196CrossRef
5.
Zurück zum Zitat Sajid M, Hayat T (2007) Non-similar series solution for boundary layer flow of a third-order fluid over a stretching sheet. Appl Math Comput 189:1576–1585MathSciNetMATH Sajid M, Hayat T (2007) Non-similar series solution for boundary layer flow of a third-order fluid over a stretching sheet. Appl Math Comput 189:1576–1585MathSciNetMATH
6.
Zurück zum Zitat Xu H, Liao SJ (2009) Laminar flow and heat transfer in the boundary layer of non-Newtonian fluids over a stretching flat sheet. Comput Math Appl 57:1425–1431MathSciNetCrossRefMATH Xu H, Liao SJ (2009) Laminar flow and heat transfer in the boundary layer of non-Newtonian fluids over a stretching flat sheet. Comput Math Appl 57:1425–1431MathSciNetCrossRefMATH
7.
Zurück zum Zitat Ishak A, Jafar K, Nazar R, Pop I (2009) MHD stagnation point flow towards a stretching sheet. Phys A 388:3377–3383CrossRef Ishak A, Jafar K, Nazar R, Pop I (2009) MHD stagnation point flow towards a stretching sheet. Phys A 388:3377–3383CrossRef
8.
Zurück zum Zitat Ishak A, Nazar A, Pop I (2010) MHD mixed convection boundary layer flow towards a stretching surface with constant wall temperature. Int J Heat Mass Transf 53:5330–5334CrossRefMATH Ishak A, Nazar A, Pop I (2010) MHD mixed convection boundary layer flow towards a stretching surface with constant wall temperature. Int J Heat Mass Transf 53:5330–5334CrossRefMATH
9.
Zurück zum Zitat Salleh MZ, Nazar R, Pop I (2010) Boundary layer flow and heat transfer over a stretching sheet with Newtonian heating. J Taiwan Inst Chem Eng 41:651–655CrossRef Salleh MZ, Nazar R, Pop I (2010) Boundary layer flow and heat transfer over a stretching sheet with Newtonian heating. J Taiwan Inst Chem Eng 41:651–655CrossRef
10.
Zurück zum Zitat Ali FM, Nazar R, Arifin NM, Pop I (2011) MHD boundary layer flow and heat transfer over a stretching sheet with induced magnetic field. Heat Mass Transf 47:155–162CrossRefMATH Ali FM, Nazar R, Arifin NM, Pop I (2011) MHD boundary layer flow and heat transfer over a stretching sheet with induced magnetic field. Heat Mass Transf 47:155–162CrossRefMATH
11.
Zurück zum Zitat Rashidi MM, Ferdows M, Parsa AB, Abelman S (2014) MHD natural convection with convective surface boundary condition over a flat plate. Abstr Appl Anal 2014:1–10 Rashidi MM, Ferdows M, Parsa AB, Abelman S (2014) MHD natural convection with convective surface boundary condition over a flat plate. Abstr Appl Anal 2014:1–10
12.
Zurück zum Zitat Rajagopal KR, Na TY, Gupta AS (1984) Flow of a viscoelastic fluid over a stretching sheet. Rheol Acta 23(2):213–215CrossRef Rajagopal KR, Na TY, Gupta AS (1984) Flow of a viscoelastic fluid over a stretching sheet. Rheol Acta 23(2):213–215CrossRef
13.
Zurück zum Zitat Rashidi MM, Momoniat E, Rostami B (2012) Analytic approximate solutions for MHD boundary-layer viscoelastic fluid flow over continuously moving stretching surface by Homotopy Analysis Method with two auxiliary parameters. J Appl Math 2012:1–9 Rashidi MM, Momoniat E, Rostami B (2012) Analytic approximate solutions for MHD boundary-layer viscoelastic fluid flow over continuously moving stretching surface by Homotopy Analysis Method with two auxiliary parameters. J Appl Math 2012:1–9
15.
Zurück zum Zitat Rashidi MM, Ali M, Freidoonimehr N, Rostami B, Hossain MA (2014) Mixed convective heat transfer for MHD viscoelastic fluid flow over a porous wedge with thermal radiation. Adv Mech Eng 6:735939CrossRef Rashidi MM, Ali M, Freidoonimehr N, Rostami B, Hossain MA (2014) Mixed convective heat transfer for MHD viscoelastic fluid flow over a porous wedge with thermal radiation. Adv Mech Eng 6:735939CrossRef
16.
Zurück zum Zitat Abel MS, Joshi A, Sonth RM (2001) Heat transfer in MHD visco-elastic fluid flow over a stretching surface. J Appl Math Mech 81:691–698MATH Abel MS, Joshi A, Sonth RM (2001) Heat transfer in MHD visco-elastic fluid flow over a stretching surface. J Appl Math Mech 81:691–698MATH
17.
Zurück zum Zitat Cortell R (2006) A note on flow and heat transfer of a viscoelastic fluid over a stretching sheet. Int J Non-Linear Mech 41:78–85CrossRefMATH Cortell R (2006) A note on flow and heat transfer of a viscoelastic fluid over a stretching sheet. Int J Non-Linear Mech 41:78–85CrossRefMATH
18.
Zurück zum Zitat Rashidi S, Abolfazli Esfahani J, Valipour MS, Bovand M, Pop I (2016) Magnetohydrodynamic effects on flow structures and heat transfer over two cylinders wrapped with a porous layer in side. Int J Numer Methods Heat Fluid Flow 26(5):1416–1432 Rashidi S, Abolfazli Esfahani J, Valipour MS, Bovand M, Pop I (2016) Magnetohydrodynamic effects on flow structures and heat transfer over two cylinders wrapped with a porous layer in side. Int J Numer Methods Heat Fluid Flow 26(5):1416–1432
19.
Zurück zum Zitat Ellahi R, Hassan M, Zeeshan A (2015) Study of natural convection MHD nanofluid by means of single and multi-walled carbon nanotubes suspended in a salt-water solution. IEEE Trans Nanotechnol 14(4):726–734CrossRef Ellahi R, Hassan M, Zeeshan A (2015) Study of natural convection MHD nanofluid by means of single and multi-walled carbon nanotubes suspended in a salt-water solution. IEEE Trans Nanotechnol 14(4):726–734CrossRef
20.
Zurück zum Zitat Zeeshan A, Majeed A (2016) Heat transfer analysis of Jeffery fluid flow over a stretching sheet with suction/injection and magnetic dipole effect. Alexandria Eng J 55(3):2171–2181CrossRef Zeeshan A, Majeed A (2016) Heat transfer analysis of Jeffery fluid flow over a stretching sheet with suction/injection and magnetic dipole effect. Alexandria Eng J 55(3):2171–2181CrossRef
21.
Zurück zum Zitat Jafari A, Tynjala T, Mousavi S, Sarkomaa P (2008) CFD simulation and evaluation of controllable parameters effect on thermomagnetic convection in ferrofluids using Taguchi technique. Comput Fluids 37:1344–1353CrossRefMATH Jafari A, Tynjala T, Mousavi S, Sarkomaa P (2008) CFD simulation and evaluation of controllable parameters effect on thermomagnetic convection in ferrofluids using Taguchi technique. Comput Fluids 37:1344–1353CrossRefMATH
22.
Zurück zum Zitat Selimefendigil F, Oztop HF (2015) Numerical study and pod-based prediction of natural convection in ferrofluids filled triangular cavity with generalized neural networks. Numer Heat Transf Part A 67(10):1136–1161CrossRef Selimefendigil F, Oztop HF (2015) Numerical study and pod-based prediction of natural convection in ferrofluids filled triangular cavity with generalized neural networks. Numer Heat Transf Part A 67(10):1136–1161CrossRef
23.
Zurück zum Zitat Bissell P, Bates P, Chantrell R, Raj K, Wyman J (1983) Cavity magnetic field measurements in ferrofluids. J Magn Magn Mater 39:27–29CrossRef Bissell P, Bates P, Chantrell R, Raj K, Wyman J (1983) Cavity magnetic field measurements in ferrofluids. J Magn Magn Mater 39:27–29CrossRef
24.
Zurück zum Zitat Vales-Pinzon C, Alvarado-Gil J, Medina-Esquivel R, Martinez-Torres P (2014) Polarized light transmission in ferrofluids loaded with carbon nanotubes in the presence of a uniform magnetic field. J Magn Magn Mater 369:114–121CrossRef Vales-Pinzon C, Alvarado-Gil J, Medina-Esquivel R, Martinez-Torres P (2014) Polarized light transmission in ferrofluids loaded with carbon nanotubes in the presence of a uniform magnetic field. J Magn Magn Mater 369:114–121CrossRef
25.
Zurück zum Zitat Yellen BB, Friedman G (2004) Ferrofluid lithography. Nanotechnology 15:S562CrossRef Yellen BB, Friedman G (2004) Ferrofluid lithography. Nanotechnology 15:S562CrossRef
26.
Zurück zum Zitat Li Q, Xuan Y (2009) Experimental investigation on heat transfer characteristics of magnetic fluid flow around a fine wire under the influence of an external magnetic field. Exp Therm Fluid 33:91–596 Li Q, Xuan Y (2009) Experimental investigation on heat transfer characteristics of magnetic fluid flow around a fine wire under the influence of an external magnetic field. Exp Therm Fluid 33:91–596
27.
Zurück zum Zitat Sheikholeslami M, Ganji DD (2014) Ferrohydrodynamic and magnetohydrodynamic effects on ferrofluid flow and convective heat transfer. Energy 75:400–410CrossRef Sheikholeslami M, Ganji DD (2014) Ferrohydrodynamic and magnetohydrodynamic effects on ferrofluid flow and convective heat transfer. Energy 75:400–410CrossRef
28.
Zurück zum Zitat Kefayati G (2014) Natural convection of ferrofluid in a linearly heated cavity utilizing LBM. J Mol Liq 191:1–9CrossRef Kefayati G (2014) Natural convection of ferrofluid in a linearly heated cavity utilizing LBM. J Mol Liq 191:1–9CrossRef
29.
Zurück zum Zitat Sheikholeslami M, Rashidi MM, Ganji D (2015) Effect of non-uniform magnetic field on forced convection heat transfer of–water nanofluid. Comput Methods Appl Mech Eng 294:299–312CrossRef Sheikholeslami M, Rashidi MM, Ganji D (2015) Effect of non-uniform magnetic field on forced convection heat transfer of–water nanofluid. Comput Methods Appl Mech Eng 294:299–312CrossRef
30.
Zurück zum Zitat Bovand M, Rashidi S, Esfahani JA, Saha SC, Gu YT, Dehesht M (2016) Control of flow around a circular cylinder wrapped with a porous layer by magnetohydrodynamic. J Magn Magn Mater 401:1078–1087CrossRef Bovand M, Rashidi S, Esfahani JA, Saha SC, Gu YT, Dehesht M (2016) Control of flow around a circular cylinder wrapped with a porous layer by magnetohydrodynamic. J Magn Magn Mater 401:1078–1087CrossRef
31.
Zurück zum Zitat Rashidi S, Bovand M, Esfahani JA (2016) Opposition of magnetohydrodynamic and Al2O3–water nanofluid flow around a vertex facing triangular obstacle. J Mol Liq 215:276–284CrossRef Rashidi S, Bovand M, Esfahani JA (2016) Opposition of magnetohydrodynamic and Al2O3–water nanofluid flow around a vertex facing triangular obstacle. J Mol Liq 215:276–284CrossRef
32.
Zurück zum Zitat Bovand M, Rashidi S, Esfahani JA, Masoodi R (2016) Control of wake destructive behavior for different bluff bodies in channel flow by magnetohydrodynamics. Eur Phys J Plus 131(6):1–13CrossRef Bovand M, Rashidi S, Esfahani JA, Masoodi R (2016) Control of wake destructive behavior for different bluff bodies in channel flow by magnetohydrodynamics. Eur Phys J Plus 131(6):1–13CrossRef
33.
Zurück zum Zitat Bovand M, Rashidi S, Esfahani JA (2016) Optimum interaction between magnetohydrodynamics and nanofluid for thermal and drag management. J Thermophys Heat Trans 1–12 Bovand M, Rashidi S, Esfahani JA (2016) Optimum interaction between magnetohydrodynamics and nanofluid for thermal and drag management. J Thermophys Heat Trans 1–12
34.
Zurück zum Zitat Sheikholeslami M, Ganji DD, Rashidi MM (2015) Ferrofluid flow and heat transfer in semi annulus enclosure in the presence of magnetic source considering thermal radiation. J Taiwan Inst Chem Eng 47:6–17CrossRef Sheikholeslami M, Ganji DD, Rashidi MM (2015) Ferrofluid flow and heat transfer in semi annulus enclosure in the presence of magnetic source considering thermal radiation. J Taiwan Inst Chem Eng 47:6–17CrossRef
35.
Zurück zum Zitat Andersson HI, Valnes OA (1998) Flow of a heated Ferrofluid over a stretching sheet in the presence of a magnetic dipole. Acta Mech 128:39–47CrossRefMATH Andersson HI, Valnes OA (1998) Flow of a heated Ferrofluid over a stretching sheet in the presence of a magnetic dipole. Acta Mech 128:39–47CrossRefMATH
Metadaten
Titel
Heat transfer analysis in ferromagnetic viscoelastic fluid flow over a stretching sheet with suction
verfasst von
Aaqib Majeed
Ahmad Zeeshan
Sultan Z. Alamri
Rahmat Ellahi
Publikationsdatum
27.12.2016
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 6/2018
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-016-2830-6

Weitere Artikel der Ausgabe 6/2018

Neural Computing and Applications 6/2018 Zur Ausgabe

Premium Partner