Skip to main content
Erschienen in: Neural Computing and Applications 9/2019

16.01.2019 | Original Article

New sinusoidal basis functions and a neural network approach to solve nonlinear Volterra–Fredholm integral equations

verfasst von: Stefania Tomasiello, Jorge E. Macías-Díaz, Alireza Khastan, Zahra Alijani

Erschienen in: Neural Computing and Applications | Ausgabe 9/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we present and investigate the analytical properties of a new set of orthogonal basis functions derived from the block-pulse functions. Also, we present a numerical method based on this new class of functions to solve nonlinear Volterra–Fredholm integral equations. In particular, an alternative and efficient method based on the formalism of artificial neural networks is discussed. The efficiency of the mentioned approach is theoretically justified and illustrated through several qualitative and quantitative examples.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Atkinson K (1997) The numerical solution of integral equations of the second kind. Cambridge University Press, CambridgeCrossRef Atkinson K (1997) The numerical solution of integral equations of the second kind. Cambridge University Press, CambridgeCrossRef
2.
Zurück zum Zitat Babolian E, Masouri Z, Hatamzadeh-Varmazyar S (2009) Numerical solution of nonlinear Volterra–Fredholm integro-differential equations via direct method using triangular functions. Comput Math Appl 58(2):239–247MathSciNetCrossRef Babolian E, Masouri Z, Hatamzadeh-Varmazyar S (2009) Numerical solution of nonlinear Volterra–Fredholm integro-differential equations via direct method using triangular functions. Comput Math Appl 58(2):239–247MathSciNetCrossRef
3.
Zurück zum Zitat Babolian E, Shahsavaran A (2009) Numerical solution of nonlinear Fredholm integral equations of the second kind using Haar wavelets. J Comput Appl Math 225(1):87–95MathSciNetCrossRef Babolian E, Shahsavaran A (2009) Numerical solution of nonlinear Fredholm integral equations of the second kind using Haar wavelets. J Comput Appl Math 225(1):87–95MathSciNetCrossRef
4.
Zurück zum Zitat Biazar J, Ghazvini H (2008) Numerical solution for special non-linear Fredholm integral equation by HPM. Appl Math Comput 195(2):681–687MathSciNetMATH Biazar J, Ghazvini H (2008) Numerical solution for special non-linear Fredholm integral equation by HPM. Appl Math Comput 195(2):681–687MathSciNetMATH
5.
Zurück zum Zitat Capuano N, DAniello G, Gaeta A, Miranda S (2015) A personality based adaptive approach for information systems. Comput Hum Behav 44:156–165CrossRef Capuano N, DAniello G, Gaeta A, Miranda S (2015) A personality based adaptive approach for information systems. Comput Hum Behav 44:156–165CrossRef
6.
Zurück zum Zitat Chen G (2004) Stability of nonlinear systems. In: Encyclopedia of RF and Microwave Engineering Chen G (2004) Stability of nonlinear systems. In: Encyclopedia of RF and Microwave Engineering
7.
Zurück zum Zitat Dastjerdi HL, Ghaini FM (2012) Numerical solution of Volterra-Fredholm integral equations by moving least square method and Chebyshev polynomials. Appl Math Model 36(7):3283–3288MathSciNetCrossRef Dastjerdi HL, Ghaini FM (2012) Numerical solution of Volterra-Fredholm integral equations by moving least square method and Chebyshev polynomials. Appl Math Model 36(7):3283–3288MathSciNetCrossRef
8.
Zurück zum Zitat Deb A, Dasgupta A, Sarkar G (2006) A new set of orthogonal functions and its application to the analysis of dynamic systems. J Frankl Inst 343(1):1–26MathSciNetCrossRef Deb A, Dasgupta A, Sarkar G (2006) A new set of orthogonal functions and its application to the analysis of dynamic systems. J Frankl Inst 343(1):1–26MathSciNetCrossRef
9.
Zurück zum Zitat Deb A, Roychoudhury S, Sarkar G (2016) Analysis and identification of time-invariant systems, time-varying systems, and multi-delay systems using orthogonal hybrid functions: theory and algorithms withMATLAB®, vol 46. Springer, KolkotaCrossRef Deb A, Roychoudhury S, Sarkar G (2016) Analysis and identification of time-invariant systems, time-varying systems, and multi-delay systems using orthogonal hybrid functions: theory and algorithms withMATLAB®, vol 46. Springer, KolkotaCrossRef
10.
Zurück zum Zitat Deb A, Sarkar G, Sengupta A (2011) Triangular orthogonal functions for the analysis of continuous time systems. Anthem Press, LondonMATH Deb A, Sarkar G, Sengupta A (2011) Triangular orthogonal functions for the analysis of continuous time systems. Anthem Press, LondonMATH
11.
Zurück zum Zitat Effati S, Buzhabadi R (2012) A neural network approach for solving Fredholm integral equations of the second kind. Neural Comput Appl 21(5):843–852CrossRef Effati S, Buzhabadi R (2012) A neural network approach for solving Fredholm integral equations of the second kind. Neural Comput Appl 21(5):843–852CrossRef
12.
Zurück zum Zitat Gaeta M, Loia V, Tomasiello S (2013) A generalized functional network for a classifier-quantifiers scheme in a gas-sensing system. Int J Intell Syst 28(10):988–1009CrossRef Gaeta M, Loia V, Tomasiello S (2013) A generalized functional network for a classifier-quantifiers scheme in a gas-sensing system. Int J Intell Syst 28(10):988–1009CrossRef
14.
15.
Zurück zum Zitat Han Z, Li S, Cao Q (2012) Triangular orthogonal functions for nonlinear constrained optimal control problems. Res J Appl Sci Eng Technol 4(12):1822–1827 Han Z, Li S, Cao Q (2012) Triangular orthogonal functions for nonlinear constrained optimal control problems. Res J Appl Sci Eng Technol 4(12):1822–1827
16.
Zurück zum Zitat Haykin S (1999) Neural networks a comprehensive foundation, 2nd edn. Pretice Hall International, New YorkMATH Haykin S (1999) Neural networks a comprehensive foundation, 2nd edn. Pretice Hall International, New YorkMATH
17.
Zurück zum Zitat Jafarian A, Measoomy S, Abbasbandy S (2015) Artificial neural networks based modeling for solving Volterra integral equations system. Appl Soft Comput 27:391–398CrossRef Jafarian A, Measoomy S, Abbasbandy S (2015) Artificial neural networks based modeling for solving Volterra integral equations system. Appl Soft Comput 27:391–398CrossRef
18.
Zurück zum Zitat Khalil HK (1988) Nonlinear systems. McMillan, New York Khalil HK (1988) Nonlinear systems. McMillan, New York
19.
Zurück zum Zitat Lagaris IE, Likas A, Fotiadis DI (1998) Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans Neural Netw 9(5):987–1000CrossRef Lagaris IE, Likas A, Fotiadis DI (1998) Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans Neural Netw 9(5):987–1000CrossRef
20.
Zurück zum Zitat Marcus C, Westervelt R (1989) Dynamics of iterated-map neural networks. Phys Rev A 40(1):501CrossRef Marcus C, Westervelt R (1989) Dynamics of iterated-map neural networks. Phys Rev A 40(1):501CrossRef
21.
Zurück zum Zitat Michel AN, Farrell JA, Porod W (1989) Qualitative analysis of neural networks. IEEE Trans Circuits Syst 36(2):229–243MathSciNetCrossRef Michel AN, Farrell JA, Porod W (1989) Qualitative analysis of neural networks. IEEE Trans Circuits Syst 36(2):229–243MathSciNetCrossRef
22.
Zurück zum Zitat Mirzaee F (2017) Numerical solution of nonlinear Fredholm–Volterra integral equations via Bell polynomials. Comput Methods Differ Equ 5(2):88–102MathSciNetMATH Mirzaee F (2017) Numerical solution of nonlinear Fredholm–Volterra integral equations via Bell polynomials. Comput Methods Differ Equ 5(2):88–102MathSciNetMATH
23.
Zurück zum Zitat Mirzaee F, Hadadiyan E (2012) Approximate solutions for mixed nonlinear Volterra–Fredholm type integral equations via modified block-pulse functions. J Assoc Arab Univ Basic Appl Sci 12(1):65–73MATH Mirzaee F, Hadadiyan E (2012) Approximate solutions for mixed nonlinear Volterra–Fredholm type integral equations via modified block-pulse functions. J Assoc Arab Univ Basic Appl Sci 12(1):65–73MATH
24.
Zurück zum Zitat Mirzaee F, Hadadiyan E (2016) Numerical solution of Volterra–Fredholm integral equations via modification of hat functions. Appl Math Comput 280:110–123MathSciNetMATH Mirzaee F, Hadadiyan E (2016) Numerical solution of Volterra–Fredholm integral equations via modification of hat functions. Appl Math Comput 280:110–123MathSciNetMATH
25.
Zurück zum Zitat Mirzaee F, Hadadiyan E (2017) Using operational matrix for solving nonlinear class of mixed Volterra–Fredholm integral equations. Math Methods Appl Sci 40(10):3433–3444MathSciNetCrossRef Mirzaee F, Hadadiyan E (2017) Using operational matrix for solving nonlinear class of mixed Volterra–Fredholm integral equations. Math Methods Appl Sci 40(10):3433–3444MathSciNetCrossRef
26.
Zurück zum Zitat Mirzaee F, Hoseini AA (2013) Numerical solution of nonlinear Volterra-Fredholm integral equations using hybrid of block-pulse functions and Taylor series. Alex Eng J 52(3):551–555CrossRef Mirzaee F, Hoseini AA (2013) Numerical solution of nonlinear Volterra-Fredholm integral equations using hybrid of block-pulse functions and Taylor series. Alex Eng J 52(3):551–555CrossRef
27.
Zurück zum Zitat Mirzaee F, Hoseini SF (2016) Application of Fibonacci collocation method for solving Volterra–Fredholm integral equations. Appl Math Comput 273:637–644MathSciNetMATH Mirzaee F, Hoseini SF (2016) Application of Fibonacci collocation method for solving Volterra–Fredholm integral equations. Appl Math Comput 273:637–644MathSciNetMATH
28.
Zurück zum Zitat Ordokhani Y, Razzaghi M (2008) Solution of nonlinear Volterra–Fredholm–Hammerstein integral equations via a collocation method and rationalized Haar functions. Appl Math Lett 21(1):4–9MathSciNetCrossRef Ordokhani Y, Razzaghi M (2008) Solution of nonlinear Volterra–Fredholm–Hammerstein integral equations via a collocation method and rationalized Haar functions. Appl Math Lett 21(1):4–9MathSciNetCrossRef
29.
Zurück zum Zitat Paripour M, Kamyar M (2013) Numerical solution of nonlinear Volterra–Fredholm integral equations by using new basis functions. Commun Numer Anal 1(17):1–12MathSciNet Paripour M, Kamyar M (2013) Numerical solution of nonlinear Volterra–Fredholm integral equations by using new basis functions. Commun Numer Anal 1(17):1–12MathSciNet
30.
Zurück zum Zitat Rampone S, Pierro V, Troiano L, Pinto IM (2013) Neural network aided glitch-burst discrimination and glitch classification. Int J Mod Phys C 24(11):1350,084CrossRef Rampone S, Pierro V, Troiano L, Pinto IM (2013) Neural network aided glitch-burst discrimination and glitch classification. Int J Mod Phys C 24(11):1350,084CrossRef
Metadaten
Titel
New sinusoidal basis functions and a neural network approach to solve nonlinear Volterra–Fredholm integral equations
verfasst von
Stefania Tomasiello
Jorge E. Macías-Díaz
Alireza Khastan
Zahra Alijani
Publikationsdatum
16.01.2019
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 9/2019
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-018-03984-y

Weitere Artikel der Ausgabe 9/2019

Neural Computing and Applications 9/2019 Zur Ausgabe

S.I. : Emergence in Human-like Intelligence towards Cyber-Physical Systems

Spark-based intelligent parameter inversion method for prestack seismic data

S.I. : Emergence in Human-like Intelligence towards Cyber-Physical Systems

Research on partial fingerprint recognition algorithm based on deep learning

Premium Partner