Skip to main content
Erschienen in: Microsystem Technologies 1/2012

01.01.2012 | Technical Paper

Design, fabrication and testing of a high performance silicon piezoresistive Z-axis accelerometer with proof mass-edge-aligned-flexures

verfasst von: A. Ravi Sankar, J. Grace Jency, S. Das

Erschienen in: Microsystem Technologies | Ausgabe 1/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents design, fabrication and testing of a quad beam silicon piezoresistive Z-axis accelerometer with very low cross-axis sensitivity. The accelerometer device proposed in the present work consists of a thick proof mass supported by four thin beams (also called as flexures) that are connected to an outer supporting rim. Cross-axis sensitivity in piezoresistive accelerometers is an important issue particularly for high performance applications. In the present study, low cross-axis sensitivity is achieved by improving the device stability by placing the four flexures in line with the proof mass edges. Various modules of a finite element method based software called CoventorWare was used for design optimization. Based on the simulation results, a flexure thickness of 30 μm and a diffused resistor doping concentration of 5 × 1018 atoms/cm3 were fixed to achieve a high prime-axis sensitivity of 122 μV/Vg, low cross-axis sensitivity of 27 ppm and a relatively higher bandwidth of 2.89 kHz. The designed accelerometer was realized by a complementary metal oxide semiconductor compatible bulk micromachining process using a dual doped tetra methyl ammonium hydroxide etching solution. The fabricated accelerometer devices were tested up to 13 g static acceleration using a rate table. Test results of fabricated devices with 30 μm flexure thickness show an average prime axis sensitivity of 111 μV/Vg with very low cross-axis sensitivities of 0.652 and 0.688 μV/Vg along X-axis and Y-axis, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Allen HV, Terry SC, Bruin DWD (1989) Accelerometer systems with self-testable features. Sens Actuators A 20:153–161CrossRef Allen HV, Terry SC, Bruin DWD (1989) Accelerometer systems with self-testable features. Sens Actuators A 20:153–161CrossRef
Zurück zum Zitat Amarasinghe R, Dao DV, Toriyama T, Sugiyama S (2005) Design and fabrications of a miniaturized six-degree-of-freedom piezoresistive accelerometer. J Micromech Microeng 15:1745–1753CrossRef Amarasinghe R, Dao DV, Toriyama T, Sugiyama S (2005) Design and fabrications of a miniaturized six-degree-of-freedom piezoresistive accelerometer. J Micromech Microeng 15:1745–1753CrossRef
Zurück zum Zitat Burrer C, Esteve J, Plaza JA, Bao M, Ruiz O, Samitier J (1994) Fabrication and characterization of a twin-mass accelerometer. Sens Actuators A 43:115–119CrossRef Burrer C, Esteve J, Plaza JA, Bao M, Ruiz O, Samitier J (1994) Fabrication and characterization of a twin-mass accelerometer. Sens Actuators A 43:115–119CrossRef
Zurück zum Zitat Chen H, Bao M, Zhu H, Shen S (1997) A piezoresistive accelerometer with a novel vertical beam structure. Sens Actuators A 63:19–25CrossRef Chen H, Bao M, Zhu H, Shen S (1997) A piezoresistive accelerometer with a novel vertical beam structure. Sens Actuators A 63:19–25CrossRef
Zurück zum Zitat Dong P, Li X, Yang H, Bao H, Zhou W, Li S, Feng S (2008) High performance monolithic triaxial piezoresistive shock accelerometers. Sens Actuators A 141:339–346CrossRef Dong P, Li X, Yang H, Bao H, Zhou W, Li S, Feng S (2008) High performance monolithic triaxial piezoresistive shock accelerometers. Sens Actuators A 141:339–346CrossRef
Zurück zum Zitat Eklund J, Shkel AM (2007) Single-mask fabrication of high-g piezoresistive accelerometers with extended temperature range. J Micromech Microeng 17:730–736CrossRef Eklund J, Shkel AM (2007) Single-mask fabrication of high-g piezoresistive accelerometers with extended temperature range. J Micromech Microeng 17:730–736CrossRef
Zurück zum Zitat Engesser M, Franke AR, Maute M, Meisel DC, Korvink JG (2009) Miniaturization limits of piezoresistive MEMS accelerometers. Microsystem Technologies J 15:1835–1844CrossRef Engesser M, Franke AR, Maute M, Meisel DC, Korvink JG (2009) Miniaturization limits of piezoresistive MEMS accelerometers. Microsystem Technologies J 15:1835–1844CrossRef
Zurück zum Zitat Farahani H, Mills JK, Cleghorn WL (2009) Design, fabrication and analysis of micromachined high sensitivity and 0% cross-axis sensitivity capacitive accelerometers. Microsystem Technologies J 15:1815–1826CrossRef Farahani H, Mills JK, Cleghorn WL (2009) Design, fabrication and analysis of micromachined high sensitivity and 0% cross-axis sensitivity capacitive accelerometers. Microsystem Technologies J 15:1815–1826CrossRef
Zurück zum Zitat Hsien LC, Barzilai AM, Reynolds JK, Partridge A, Kenny TW, Grade JD, Rockstad HK (1998) Characterization of a high-sensitivity micromachined tunneling accelerometer with micro-g resolution. J Microelectromech Syst 7:235–244CrossRef Hsien LC, Barzilai AM, Reynolds JK, Partridge A, Kenny TW, Grade JD, Rockstad HK (1998) Characterization of a high-sensitivity micromachined tunneling accelerometer with micro-g resolution. J Microelectromech Syst 7:235–244CrossRef
Zurück zum Zitat Hsu CP, Yip MC, Fang W (2009) Implementation of gap-closing differential capacitive sensing z-axis accelerometer on SOI wafer. J Micromech Microeng 19:075006CrossRef Hsu CP, Yip MC, Fang W (2009) Implementation of gap-closing differential capacitive sensing z-axis accelerometer on SOI wafer. J Micromech Microeng 19:075006CrossRef
Zurück zum Zitat Huang S, Li X, Song Z, Wang Y, Yang H, Che L, Jiao J (2005) A high-performance micromachined piezoresistive accelerometer with axially stressed tiny beams. J Micromech Microeng 17:730–736 Huang S, Li X, Song Z, Wang Y, Yang H, Che L, Jiao J (2005) A high-performance micromachined piezoresistive accelerometer with axially stressed tiny beams. J Micromech Microeng 17:730–736
Zurück zum Zitat Kal S, Das S, Maurya DK, Biswas K, Ravi Sankar A, Lahiri SK (2006) CMOS compatible bulk micromachined silicon piezoresistive accelerometer with low off-axis sensitivity. Microelectron J 37:22–30CrossRef Kal S, Das S, Maurya DK, Biswas K, Ravi Sankar A, Lahiri SK (2006) CMOS compatible bulk micromachined silicon piezoresistive accelerometer with low off-axis sensitivity. Microelectron J 37:22–30CrossRef
Zurück zum Zitat Kanda Y (1991) Piezoresistance effect of silicon. Sens Actuators A 28:83–91CrossRef Kanda Y (1991) Piezoresistance effect of silicon. Sens Actuators A 28:83–91CrossRef
Zurück zum Zitat Kim KH, Ko JS, Cho Young-Ho, Lee K, Kwak BM, Park K (1995) A skew-symmetric cantilever accelerometer for automotive airbag applications. Sens Actuators A 50:121–126CrossRef Kim KH, Ko JS, Cho Young-Ho, Lee K, Kwak BM, Park K (1995) A skew-symmetric cantilever accelerometer for automotive airbag applications. Sens Actuators A 50:121–126CrossRef
Zurück zum Zitat Kobayashi T, Okada H, Masuda T, Maeda R, Itoh T (2010) A digital output piezoelectric accelerometer using a Pb(Zr, Ti)O3 thin film array electrically connected in series. Smart Mater Struct 19:105030CrossRef Kobayashi T, Okada H, Masuda T, Maeda R, Itoh T (2010) A digital output piezoelectric accelerometer using a Pb(Zr, Ti)O3 thin film array electrically connected in series. Smart Mater Struct 19:105030CrossRef
Zurück zum Zitat Kwon K, Park S (1998) A bulk micromachined three-axis accelerometer using silicon direct bonding technology and polysilicon layer. Sens Actuators A 66:250–255CrossRef Kwon K, Park S (1998) A bulk micromachined three-axis accelerometer using silicon direct bonding technology and polysilicon layer. Sens Actuators A 66:250–255CrossRef
Zurück zum Zitat Madou MJ (2002) Fundamentals of microfabrication—the science of miniaturization. CRC Press, New York Madou MJ (2002) Fundamentals of microfabrication—the science of miniaturization. CRC Press, New York
Zurück zum Zitat Pak JJ, Kabir AE, Neudeck GW, Logsdon JH (1996) A bridge-type piezoresistive accelerometer using merged epitaxial lateral overgrowth for thin silicon beam formation. Sens Actuators A 56:267–271CrossRef Pak JJ, Kabir AE, Neudeck GW, Logsdon JH (1996) A bridge-type piezoresistive accelerometer using merged epitaxial lateral overgrowth for thin silicon beam formation. Sens Actuators A 56:267–271CrossRef
Zurück zum Zitat Park WT, Partridge A, Candler RN, Vitikkate VA, Yama G, Lutz M, Kenny TW (2006) Encapsulated sub-millimeter piezoresistive accelerometers. J Microelectromech Syst 15:507–514CrossRef Park WT, Partridge A, Candler RN, Vitikkate VA, Yama G, Lutz M, Kenny TW (2006) Encapsulated sub-millimeter piezoresistive accelerometers. J Microelectromech Syst 15:507–514CrossRef
Zurück zum Zitat Patridge A, Reynolds JK, Benjamin WC, Chow EM, Fitzgerald AM, Zhang L, Maluf NI, Kenny TW (2000) A high-performance planar piezoresistive accelerometer. J Microelectromech Syst 9:58–66CrossRef Patridge A, Reynolds JK, Benjamin WC, Chow EM, Fitzgerald AM, Zhang L, Maluf NI, Kenny TW (2000) A high-performance planar piezoresistive accelerometer. J Microelectromech Syst 9:58–66CrossRef
Zurück zum Zitat Plaza JA, Chen H, Esteve J, Lora-tamayo E (1998) New bulk accelerometer for triaxial detection. Sens Actuators A 66:105–108CrossRef Plaza JA, Chen H, Esteve J, Lora-tamayo E (1998) New bulk accelerometer for triaxial detection. Sens Actuators A 66:105–108CrossRef
Zurück zum Zitat Ravi Sankar A, Das S, Lahiri SK (2009a) Cross-axis sensitivity reduction of a silicon MEMS piezoresistive accelerometer. Microsyst Technol 15:511–518CrossRef Ravi Sankar A, Das S, Lahiri SK (2009a) Cross-axis sensitivity reduction of a silicon MEMS piezoresistive accelerometer. Microsyst Technol 15:511–518CrossRef
Zurück zum Zitat Ravi Sankar A, Lahiri SK, Das S (2009b) Performance enhancement of a silicon MEMS piezoresistive single axis accelerometer with electroplated gold on a proof mass. J Micromech Microeng 19:1–10CrossRef Ravi Sankar A, Lahiri SK, Das S (2009b) Performance enhancement of a silicon MEMS piezoresistive single axis accelerometer with electroplated gold on a proof mass. J Micromech Microeng 19:1–10CrossRef
Zurück zum Zitat Ravi Sankar A, Swathi Sree Bindhu V, Das S (2011) Coupled effects of gold electroplating and electrochemical discharge machining processes on the performance improvement of a capacitive accelerometer. Microsyst Technol 17:1661–1670CrossRef Ravi Sankar A, Swathi Sree Bindhu V, Das S (2011) Coupled effects of gold electroplating and electrochemical discharge machining processes on the performance improvement of a capacitive accelerometer. Microsyst Technol 17:1661–1670CrossRef
Zurück zum Zitat Riethmuller W, Benecke W, Schnakenberg U, Wagner B (1992) A smart accelerometer with on-chip electronics fabricated by a commercial CMOS process. Sens Actuators A 50:121–126 Riethmuller W, Benecke W, Schnakenberg U, Wagner B (1992) A smart accelerometer with on-chip electronics fabricated by a commercial CMOS process. Sens Actuators A 50:121–126
Zurück zum Zitat Roylance LM, Angell JB (1979) A batch fabricated silicon accelerometer. IEEE Trans Electron Dev 26:1911–1917CrossRef Roylance LM, Angell JB (1979) A batch fabricated silicon accelerometer. IEEE Trans Electron Dev 26:1911–1917CrossRef
Zurück zum Zitat Sim J, Cho C, Kim J, Lee J, Lee J (1998) Eight-beam piezoresistive accelerometer fabricated by using a selective porous-silicon etching method. Sens Actuators A 66:273–278CrossRef Sim J, Cho C, Kim J, Lee J, Lee J (1998) Eight-beam piezoresistive accelerometer fabricated by using a selective porous-silicon etching method. Sens Actuators A 66:273–278CrossRef
Zurück zum Zitat Spangler LC, Kemp CJ (1996) ISAAC: integrated silicon automotive accelerometer. Sens Actuators A 54:523–529CrossRef Spangler LC, Kemp CJ (1996) ISAAC: integrated silicon automotive accelerometer. Sens Actuators A 54:523–529CrossRef
Zurück zum Zitat Takao H, Matsumoto Y, Ishida M (1998) Stress-sensitive differential amplifiers using piezoresistive effects of MOSFETs and their application to three-axial accelerometers. Sens Actuators A 65:61–68CrossRef Takao H, Matsumoto Y, Ishida M (1998) Stress-sensitive differential amplifiers using piezoresistive effects of MOSFETs and their application to three-axial accelerometers. Sens Actuators A 65:61–68CrossRef
Zurück zum Zitat Takao H, Fukumoto H, Ishida M (2001) A CMOS integrated three-axis accelerometer fabricated with commercial submicrometer CMOS technology and bulk-micromachinig. IEEE Trans Electron Devices 48:1961–1968CrossRef Takao H, Fukumoto H, Ishida M (2001) A CMOS integrated three-axis accelerometer fabricated with commercial submicrometer CMOS technology and bulk-micromachinig. IEEE Trans Electron Devices 48:1961–1968CrossRef
Zurück zum Zitat Tschan T, Rooij ND, Bezinge A, Ansermet S, Berthoud J (1991) Characterization and modelling of silicon piezoresistive accelerometers fabricated by a bipolar-compatible process. Sens Actuators A 27:605–609CrossRef Tschan T, Rooij ND, Bezinge A, Ansermet S, Berthoud J (1991) Characterization and modelling of silicon piezoresistive accelerometers fabricated by a bipolar-compatible process. Sens Actuators A 27:605–609CrossRef
Zurück zum Zitat Tufte ON, Stelzer EL (1963) Piezoresistive properties of silicon diffused layers. J Appl Phys 34:3322–3327CrossRef Tufte ON, Stelzer EL (1963) Piezoresistive properties of silicon diffused layers. J Appl Phys 34:3322–3327CrossRef
Zurück zum Zitat Van Kampen RP, Wolffenbutte RF (1998) Modeling the mechanical behavior of bulk micromachined silicon accelerometers. Sens Actuators A 64:137–150CrossRef Van Kampen RP, Wolffenbutte RF (1998) Modeling the mechanical behavior of bulk micromachined silicon accelerometers. Sens Actuators A 64:137–150CrossRef
Zurück zum Zitat Yan G, Chan PCH, Hsing IM, Sharma RK, Sin JKO, Wang Y (2001) An improved TMAH Si-etching solution without attacking exposed aluminum. Sens Actuators A 89:135–141CrossRef Yan G, Chan PCH, Hsing IM, Sharma RK, Sin JKO, Wang Y (2001) An improved TMAH Si-etching solution without attacking exposed aluminum. Sens Actuators A 89:135–141CrossRef
Metadaten
Titel
Design, fabrication and testing of a high performance silicon piezoresistive Z-axis accelerometer with proof mass-edge-aligned-flexures
verfasst von
A. Ravi Sankar
J. Grace Jency
S. Das
Publikationsdatum
01.01.2012
Verlag
Springer-Verlag
Erschienen in
Microsystem Technologies / Ausgabe 1/2012
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-011-1371-2

Weitere Artikel der Ausgabe 1/2012

Microsystem Technologies 1/2012 Zur Ausgabe

Neuer Inhalt