Skip to main content
Erschienen in: Microsystem Technologies 7/2016

31.12.2015 | Technical Paper

Harvesting of river flow energy for wireless sensor network technology

verfasst von: Ervin Kamenar, Saša Zelenika, David Blažević, Senka Maćešić, Goran Gregov, Kristina Marković, Vladimir Glažar

Erschienen in: Microsystem Technologies | Ausgabe 7/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

River courses play a vital role in preserving unpolluted ecosystems. On the other hand, networks of sensor nodes can be used to measure characteristic parameters in the environment such as temperature, pressure, humidity or the concentration of pollutants. In the framework of the EU FP7 project “GOLDFISH”, technical competences of a consortium of 11 institutions are hence employed in designing, manufacturing, validating and operating wireless sensors nodes for tracking pollution in remote rivers. The sensor network is composed of sensor clusters located underwater and gateways on the riverbank with long-distance communication links to the central management and monitoring station. Each sensor node is composed of active electronic devices that have to be constantly powered. Batteries can generally be used for this purpose, but problems may occur when they are to be recharged or replaced, especially in the case of large networks placed in scarcely accessible locations. State-of-the-art energy harvesting technologies can hence constitute a viable powering solution. The possibility to use different small-scale river flow energy harvesting principles is thoroughly studied in this work by the University of Rijeka GOLDFISH team: a miniaturized hydro-generator, a ‘piezoelectric eel’ and a hybrid solution of a rotating shaft plucking a piezoelectric beam. The first two concepts are validated experimentally in a flow channel and in real river conditions. The miniaturized hydro-generator with suitable power management electronics is finally embedded into the wireless sensor node deployed into the river, allowing the GSM transmission of collected data to be successfully performed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abramson MA, Audet C, Chrissis JW, Walston JG (2009) Mesh adaptive direct search algorithms for mixed variable optimization. Opt Lett 3(1):35–47MathSciNetCrossRefMATH Abramson MA, Audet C, Chrissis JW, Walston JG (2009) Mesh adaptive direct search algorithms for mixed variable optimization. Opt Lett 3(1):35–47MathSciNetCrossRefMATH
Zurück zum Zitat AIMdyn Inc. (2015) Report on the sensitivity and optimization results obtained by the GoSUMD software to maximize the produced voltage by piezoelectric eel. AIMdyn Inc., Santa Barbara AIMdyn Inc. (2015) Report on the sensitivity and optimization results obtained by the GoSUMD software to maximize the produced voltage by piezoelectric eel. AIMdyn Inc., Santa Barbara
Zurück zum Zitat Akcabay DT, Young YL (2013) Hydroelastic response and energy harvesting potential of flexible piezoelectric beams in viscous flow. Phys Fluids 24:054106CrossRef Akcabay DT, Young YL (2013) Hydroelastic response and energy harvesting potential of flexible piezoelectric beams in viscous flow. Phys Fluids 24:054106CrossRef
Zurück zum Zitat Allen JJ, Smits AJ (2001) Energy harvesting eel. J Fluids Struct 15(3–4):629–640CrossRef Allen JJ, Smits AJ (2001) Energy harvesting eel. J Fluids Struct 15(3–4):629–640CrossRef
Zurück zum Zitat Beeby SP, Zhu D (2015) Vibration energy harvesting: fabrication, miniaturisation and applications. Proc SPIE 9517A:9517031–9517038 Beeby SP, Zhu D (2015) Vibration energy harvesting: fabrication, miniaturisation and applications. Proc SPIE 9517A:9517031–9517038
Zurück zum Zitat Blažević D, Zelenika S (2015) Nonlinear numerical modelling and experimental validation of multilayer piezoelectric vibration energy scavengers. Proc SPIE 9517A:95171F1–5171F13 Blažević D, Zelenika S (2015) Nonlinear numerical modelling and experimental validation of multilayer piezoelectric vibration energy scavengers. Proc SPIE 9517A:95171F1–5171F13
Zurück zum Zitat Carrol CB (2002) Energy harvesting eel. US Patent 6,424,079 B1 Carrol CB (2002) Energy harvesting eel. US Patent 6,424,079 B1
Zurück zum Zitat Doare O, Michelin S (2011) Piezoelectric coupling in energy-harvesting fluttering flexible plates: linear stability analysis and conversion efficiency. J Fluids Struct 27(8):1357–1375CrossRef Doare O, Michelin S (2011) Piezoelectric coupling in energy-harvesting fluttering flexible plates: linear stability analysis and conversion efficiency. J Fluids Struct 27(8):1357–1375CrossRef
Zurück zum Zitat Erturk A, Inman D (2011) Piezoelectric energy harvesting. Wiley, ChichesterCrossRef Erturk A, Inman D (2011) Piezoelectric energy harvesting. Wiley, ChichesterCrossRef
Zurück zum Zitat Gao X, Shih W-H, Shih WY (2011) Flow energy harvesting using piezoelectric cantilevers with cylindrical extension. IEEE Trans Ind Electr 60(3):1116–1118CrossRef Gao X, Shih W-H, Shih WY (2011) Flow energy harvesting using piezoelectric cantilevers with cylindrical extension. IEEE Trans Ind Electr 60(3):1116–1118CrossRef
Zurück zum Zitat GOLDFISH (2013) Detection of Watercourse Contamination in Developing Countries using Sensor Networks—Enlarged, Annex I—Description of Work. EU FP7 ICT-2009.9.1 project no. 269985 GOLDFISH (2013) Detection of Watercourse Contamination in Developing Countries using Sensor Networks—Enlarged, Annex I—Description of Work. EU FP7 ICT-2009.9.1 project no. 269985
Zurück zum Zitat Kazmierski T, Beeby S (eds) (2011) Energy harvesting systems: principles, modeling and applications. Springer, New York Kazmierski T, Beeby S (eds) (2011) Energy harvesting systems: principles, modeling and applications. Springer, New York
Zurück zum Zitat Kim Y, Peskin CS (2007) Penalty immersed boundary method for an elastic boundary with mass. Phys Fluids 19:053103CrossRefMATH Kim Y, Peskin CS (2007) Penalty immersed boundary method for an elastic boundary with mass. Phys Fluids 19:053103CrossRefMATH
Zurück zum Zitat Kiziroglou ME et al (2015) Scaling of dynamic thermoelectric harvesting devices in the 1–100 cm3 range. Proc SPIE 9517A:95172F1–95172F8 Kiziroglou ME et al (2015) Scaling of dynamic thermoelectric harvesting devices in the 1–100 cm3 range. Proc SPIE 9517A:95172F1–95172F8
Zurück zum Zitat Mateu L, Moll F (2005) Review of energy harvesting techniques and applications for microelectronics. Proc SPIE 5837:359–373CrossRef Mateu L, Moll F (2005) Review of energy harvesting techniques and applications for microelectronics. Proc SPIE 5837:359–373CrossRef
Zurück zum Zitat Specialties Measurement (2008) Piezo Film Sensors Technical Manual. Measurement Specialties, Hampton Specialties Measurement (2008) Piezo Film Sensors Technical Manual. Measurement Specialties, Hampton
Zurück zum Zitat Midé Technology Corp (2009) Volture products spec sheet and material properties & volture piezoelectric energy harvesters. Midé Technology Corp, Medford Midé Technology Corp (2009) Volture products spec sheet and material properties & volture piezoelectric energy harvesters. Midé Technology Corp, Medford
Zurück zum Zitat Pozzi M, Zhu M (2011) Plucked piezoelectric bimorphs for energy harvesting applications. Proc SPIE 8066:806616CrossRef Pozzi M, Zhu M (2011) Plucked piezoelectric bimorphs for energy harvesting applications. Proc SPIE 8066:806616CrossRef
Zurück zum Zitat Pozzi M, Almond HJA, Leighton GJT, Moriarty RJ (2015) Low-profile and wearable energy harvester based on plucked piezoelectric cantilevers. Proc SPIE 9517A:9517061–9517069 Pozzi M, Almond HJA, Leighton GJT, Moriarty RJ (2015) Low-profile and wearable energy harvester based on plucked piezoelectric cantilevers. Proc SPIE 9517A:9517061–9517069
Zurück zum Zitat Priya S, Inman D (eds) (2009) Energy harvesting technologies. Springer, New York Priya S, Inman D (eds) (2009) Energy harvesting technologies. Springer, New York
Zurück zum Zitat Roundy S et al (2005) Improving power output for vibration-based energy scavengers. IEEE Perv Comp 4(1):28–36CrossRef Roundy S et al (2005) Improving power output for vibration-based energy scavengers. IEEE Perv Comp 4(1):28–36CrossRef
Zurück zum Zitat Taylor GW, Burns JR, Kammann SM, Powers WB, Welsh TR (2001) The energy harvesting eel: a small subsurface ocean/river power generator. IEEE J Ocean Eng 26(4):539–547CrossRef Taylor GW, Burns JR, Kammann SM, Powers WB, Welsh TR (2001) The energy harvesting eel: a small subsurface ocean/river power generator. IEEE J Ocean Eng 26(4):539–547CrossRef
Zurück zum Zitat Techet AH, Allen JJ, Smits AJ (2002) Piezoelectric eels for energy harvesting in the ocean. In: Proc 12th Int Offshore & Polar Eng Conf, Kitakyushu (J) Techet AH, Allen JJ, Smits AJ (2002) Piezoelectric eels for energy harvesting in the ocean. In: Proc 12th Int Offshore & Polar Eng Conf, Kitakyushu (J)
Zurück zum Zitat Wang D-A, Chiu Ch-Y, Pham H-T (2012) Electromagnetic energy harvesting from vibrations induced by Kármán vortex street. Mechatronics 22(6):746–756CrossRef Wang D-A, Chiu Ch-Y, Pham H-T (2012) Electromagnetic energy harvesting from vibrations induced by Kármán vortex street. Mechatronics 22(6):746–756CrossRef
Zurück zum Zitat Wu Y-J, Lai W-H (2010) Simulation of piezoelectric jellyfish power generator. Mod Phys Lett B 24(13):1325–1328CrossRefMATH Wu Y-J, Lai W-H (2010) Simulation of piezoelectric jellyfish power generator. Mod Phys Lett B 24(13):1325–1328CrossRefMATH
Zurück zum Zitat Zelenika S et al (2014a) Design and specification of the energy harvesters and underwater harvester anchorage. Deliverable 4.4. of the EU FP7 ICT-2009.9.1 project no. 269985 GOLDFISH, Rijeka (HR) Zelenika S et al (2014a) Design and specification of the energy harvesters and underwater harvester anchorage. Deliverable 4.4. of the EU FP7 ICT-2009.9.1 project no. 269985 GOLDFISH, Rijeka (HR)
Zurück zum Zitat Zelenika S et al (2014b) Complete laboratory functionality of at least one variant of the energy harvester. Deliverable 4.5. of the EU FP7 ICT-2009.9.1 project no. 269985 GOLDFISH, Rijeka (HR) Zelenika S et al (2014b) Complete laboratory functionality of at least one variant of the energy harvester. Deliverable 4.5. of the EU FP7 ICT-2009.9.1 project no. 269985 GOLDFISH, Rijeka (HR)
Metadaten
Titel
Harvesting of river flow energy for wireless sensor network technology
verfasst von
Ervin Kamenar
Saša Zelenika
David Blažević
Senka Maćešić
Goran Gregov
Kristina Marković
Vladimir Glažar
Publikationsdatum
31.12.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 7/2016
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-015-2778-y

Weitere Artikel der Ausgabe 7/2016

Microsystem Technologies 7/2016 Zur Ausgabe

Neuer Inhalt