Skip to main content
Erschienen in: Microsystem Technologies 7/2017

21.06.2016 | Technical Paper

Coupled electromechanical analysis of MEMS-based energy harvesters integrated with nonlinear power extraction circuits

verfasst von: Abdolreza Pasharavesh, M. T. Ahmadian, H. Zohoor

Erschienen in: Microsystem Technologies | Ausgabe 7/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Application of piezoelectric materials in vibration energy harvesters is expanding rapidly, especially in MEMS-based devices, due to their uncomplicated fabrication processes and reasonable power generation potential. In addition to standard power extraction methods, nonlinear switched techniques with capability of generated power enhancement, are previously developed and extensively applied in energy harvesting using piezoelectric materials. In this article, vibratory behavior of bimorph resonant harvesters coupled to nonlinear circuits of energy harvesting including standard and switched techniques is investigated. An analytical approach employing some perturbation technique, is utilized to derive a closed-form solution for the generated power response of these electromechanically coupled devices in a general case where damping due to energy harvesting cannot be considered as negligible. While linear models lead to significant errors in prediction of harvested power especially in the case of implementing switched techniques, results of the present nonlinear analysis are in a very good agreement with that of numerical solutions. Results indicate that the application of nonlinear switched techniques can lead to peak power enhancement and bandwidth broadening of weakly and moderately coupled devices, respectively, while in the case of strongly coupled devices switched harvesting techniques are not shown to be reasonably efficient.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aktakka E, Kim H, Najafi K (2009) Wafer level fabrication of high performance MEMS using bonded and thinned bulk piezoelectric substrates. In: Solid-state sensors, actuators and microsystems conference, 2009. TRANSDUCERS 2009. International, 2009. IEEE, pp 849–852 Aktakka E, Kim H, Najafi K (2009) Wafer level fabrication of high performance MEMS using bonded and thinned bulk piezoelectric substrates. In: Solid-state sensors, actuators and microsystems conference, 2009. TRANSDUCERS 2009. International, 2009. IEEE, pp 849–852
Zurück zum Zitat Andosca R, McDonald TG, Genova V, Rosenberg S, Keating J, Benedixen C, Wu J (2012) Experimental and theoretical studies on MEMS piezoelectric vibrational energy harvesters with mass loading. Sens Actuators A 178:76–87CrossRef Andosca R, McDonald TG, Genova V, Rosenberg S, Keating J, Benedixen C, Wu J (2012) Experimental and theoretical studies on MEMS piezoelectric vibrational energy harvesters with mass loading. Sens Actuators A 178:76–87CrossRef
Zurück zum Zitat Chen S-N, Wang G-J, Chien M-C (2006) Analytical modeling of piezoelectric vibration-induced micro power generator. Mechatronics 16:379–387CrossRef Chen S-N, Wang G-J, Chien M-C (2006) Analytical modeling of piezoelectric vibration-induced micro power generator. Mechatronics 16:379–387CrossRef
Zurück zum Zitat Chérif A, Meddad M, Belkhiat S, Richard C, Guyomar D, Eddiai A, Hajjaji A (2014) Improvement of piezoelectric transformer performances using SSHI and SSHI-max methods. Opt Quantum Electron 46:117–131CrossRef Chérif A, Meddad M, Belkhiat S, Richard C, Guyomar D, Eddiai A, Hajjaji A (2014) Improvement of piezoelectric transformer performances using SSHI and SSHI-max methods. Opt Quantum Electron 46:117–131CrossRef
Zurück zum Zitat Chung G-S, Lee B-C (2014) Fabrication and characterization of vibration-driven AlN piezoelectric micropower generator compatible with complementary metal-oxide semiconductor process J Intell Mater Syst Struct doi:10.1177/1045389X14546649 Chung G-S, Lee B-C (2014) Fabrication and characterization of vibration-driven AlN piezoelectric micropower generator compatible with complementary metal-oxide semiconductor process J Intell Mater Syst Struct doi:10.​1177/​1045389X14546649​
Zurück zum Zitat Defosseux M, Allain M, Defay E, Basrour S (2012) Highly efficient piezoelectric micro harvester for low level of acceleration fabricated with a CMOS compatible process. Sens Actuators A 188:489–494CrossRef Defosseux M, Allain M, Defay E, Basrour S (2012) Highly efficient piezoelectric micro harvester for low level of acceleration fabricated with a CMOS compatible process. Sens Actuators A 188:489–494CrossRef
Zurück zum Zitat Elfrink R, Kamel T, Goedbloed M, Matova S, Hohlfeld D, Van Andel Y, Van Schaijk R (2009) Vibration energy harvesting with aluminum nitride-based piezoelectric devices. J Micromech Microeng 19:094005CrossRef Elfrink R, Kamel T, Goedbloed M, Matova S, Hohlfeld D, Van Andel Y, Van Schaijk R (2009) Vibration energy harvesting with aluminum nitride-based piezoelectric devices. J Micromech Microeng 19:094005CrossRef
Zurück zum Zitat Elfrink R et al (2010) Vacuum-packaged piezoelectric vibration energy harvesters: damping contributions and autonomy for a wireless sensor system. J Micromech Microeng 20:104001CrossRef Elfrink R et al (2010) Vacuum-packaged piezoelectric vibration energy harvesters: damping contributions and autonomy for a wireless sensor system. J Micromech Microeng 20:104001CrossRef
Zurück zum Zitat Erturk A (2012) Assumed-modes modeling of piezoelectric energy harvesters: Euler–Bernoulli, Rayleigh, and Timoshenko models with axial deformations. Comput Struct 106:214–227CrossRef Erturk A (2012) Assumed-modes modeling of piezoelectric energy harvesters: Euler–Bernoulli, Rayleigh, and Timoshenko models with axial deformations. Comput Struct 106:214–227CrossRef
Zurück zum Zitat Erturk A, Inman DJ (2008) A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. J Vib Acoust 130:041002CrossRef Erturk A, Inman DJ (2008) A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. J Vib Acoust 130:041002CrossRef
Zurück zum Zitat Fan K, Xu C (2014) Transient charging behavior of an energy harvesting system using SSHI interface. Integr Ferroelectr 154:1–13CrossRef Fan K, Xu C (2014) Transient charging behavior of an energy harvesting system using SSHI interface. Integr Ferroelectr 154:1–13CrossRef
Zurück zum Zitat Guyomar D, Badel A, Lefeuvre E, Richard C (2005) Toward energy harvesting using active materials and conversion improvement by nonlinear processing. IEEE Trans Ultrason Ferroelectr Freq Control 52:584–595CrossRef Guyomar D, Badel A, Lefeuvre E, Richard C (2005) Toward energy harvesting using active materials and conversion improvement by nonlinear processing. IEEE Trans Ultrason Ferroelectr Freq Control 52:584–595CrossRef
Zurück zum Zitat Guyomar D, Richard C, Badel A, Lefeuvre E, Lallart M (2009) Energy harvesting using non-linear techniques. In: Priya S, Inman DJ (eds) Energy Harvesting Technologies. Springer, US, pp 209–266 Guyomar D, Richard C, Badel A, Lefeuvre E, Lallart M (2009) Energy harvesting using non-linear techniques. In: Priya S, Inman DJ (eds) Energy Harvesting Technologies. Springer, US, pp 209–266
Zurück zum Zitat Hajati A, Kim S-G (2011) Ultra-wide bandwidth piezoelectric energy harvesting. Appl Phys Lett 99:083105CrossRef Hajati A, Kim S-G (2011) Ultra-wide bandwidth piezoelectric energy harvesting. Appl Phys Lett 99:083105CrossRef
Zurück zum Zitat Han J, Von Jouanne A, Le T, Mayaram K, Fiez T (2004) Novel power conditioning circuits for piezoelectric micropower generators. In: Applied Power electronics conference and exposition, 2004. APEC’04. Nineteenth Annual IEEE, 2004. IEEE, pp 1541–1546 Han J, Von Jouanne A, Le T, Mayaram K, Fiez T (2004) Novel power conditioning circuits for piezoelectric micropower generators. In: Applied Power electronics conference and exposition, 2004. APEC’04. Nineteenth Annual IEEE, 2004. IEEE, pp 1541–1546
Zurück zum Zitat Hande A, Bridgelall R, Bhatia D (2009) Energy harvesting for active RF sensors and ID tags. In: Priya S, Inman DJ (eds) Energy harvesting technologies. Springer, US, pp 459–492 Hande A, Bridgelall R, Bhatia D (2009) Energy harvesting for active RF sensors and ID tags. In: Priya S, Inman DJ (eds) Energy harvesting technologies. Springer, US, pp 459–492
Zurück zum Zitat He C, Arora A, Kiziroglou ME, Yates DC, O’Hare D, Yeatman EM MEMS energy harvesting powered wireless biometric sensor. In: Wearable and implantable body sensor networks, 2009. BSN 2009. Sixth international workshop on, 2009. IEEE, pp 207–212 He C, Arora A, Kiziroglou ME, Yates DC, O’Hare D, Yeatman EM MEMS energy harvesting powered wireless biometric sensor. In: Wearable and implantable body sensor networks, 2009. BSN 2009. Sixth international workshop on, 2009. IEEE, pp 207–212
Zurück zum Zitat Hu Y, Hu T, Jiang Q (2007) Coupled analysis for the harvesting structure and the modulating circuit in a piezoelectric bimorph energy harvester. Acta Mech Solida Sin 20:296–308CrossRef Hu Y, Hu T, Jiang Q (2007) Coupled analysis for the harvesting structure and the modulating circuit in a piezoelectric bimorph energy harvester. Acta Mech Solida Sin 20:296–308CrossRef
Zurück zum Zitat Hu Y, Xue H, Hu T, Hu H (2008) Nonlinear interface between the piezoelectric harvesting structure and the modulating circuit of an energy harvester with a real storage battery. IEEE Trans Ultrason Ferroelectr Freq Control 55:148–160CrossRef Hu Y, Xue H, Hu T, Hu H (2008) Nonlinear interface between the piezoelectric harvesting structure and the modulating circuit of an energy harvester with a real storage battery. IEEE Trans Ultrason Ferroelectr Freq Control 55:148–160CrossRef
Zurück zum Zitat Jiang S, Li X, Guo S, Hu Y, Yang J, Jiang Q (2005) Performance of a piezoelectric bimorph for scavenging vibration energy. Smart Mater Struct 14:769CrossRef Jiang S, Li X, Guo S, Hu Y, Yang J, Jiang Q (2005) Performance of a piezoelectric bimorph for scavenging vibration energy. Smart Mater Struct 14:769CrossRef
Zurück zum Zitat Kaya T, Koser H (2007) A new batteryless active RFID system: smart RFID. In: RFID Eurasia, 2007 1st Annual, 2007. IEEE, pp 1–4 Kaya T, Koser H (2007) A new batteryless active RFID system: smart RFID. In: RFID Eurasia, 2007 1st Annual, 2007. IEEE, pp 1–4
Zurück zum Zitat Lallart M, Wu Y-C, Richard C, Guyomar D, Halvorsen E (2012) Broadband modeling of a nonlinear technique for energy harvesting. Smart Mater Struct 21:115006CrossRef Lallart M, Wu Y-C, Richard C, Guyomar D, Halvorsen E (2012) Broadband modeling of a nonlinear technique for energy harvesting. Smart Mater Struct 21:115006CrossRef
Zurück zum Zitat Lallart M, Yan L, Richard C, Guyomar D (2015) Damping of periodic bending structures featuring nonlinearly interfaced piezoelectric elements. J Vib Control. doi:10.1177/1077546314567724 Lallart M, Yan L, Richard C, Guyomar D (2015) Damping of periodic bending structures featuring nonlinearly interfaced piezoelectric elements. J Vib Control. doi:10.​1177/​1077546314567724​
Zurück zum Zitat Lei A et al. (2011) MEMS-based thick film PZT vibrational energy harvester. In: Micro electro mechanical systems (MEMS), 2011 IEEE 24th international conference on, 2011. IEEE, pp 125–128 Lei A et al. (2011) MEMS-based thick film PZT vibrational energy harvester. In: Micro electro mechanical systems (MEMS), 2011 IEEE 24th international conference on, 2011. IEEE, pp 125–128
Zurück zum Zitat Lesieutre GA, Ottman GK, Hofmann HF (2004) Damping as a result of piezoelectric energy harvesting. J Sound Vib 269:991–1001CrossRef Lesieutre GA, Ottman GK, Hofmann HF (2004) Damping as a result of piezoelectric energy harvesting. J Sound Vib 269:991–1001CrossRef
Zurück zum Zitat Liu J-Q et al (2008) A MEMS-based piezoelectric power generator array for vibration energy harvesting. Microelectron J 39:802–806CrossRef Liu J-Q et al (2008) A MEMS-based piezoelectric power generator array for vibration energy harvesting. Microelectron J 39:802–806CrossRef
Zurück zum Zitat Lu F, Lee H, Lim S (2004) Modeling and analysis of micro piezoelectric power generators for micro-electromechanical-systems applications. Smart Mater Struct 13:57CrossRef Lu F, Lee H, Lim S (2004) Modeling and analysis of micro piezoelectric power generators for micro-electromechanical-systems applications. Smart Mater Struct 13:57CrossRef
Zurück zum Zitat Meddad M, Eddiai A, Cherif A, Guyomar D, Hajjaji A (2016) Enhancement of electrostrictive polymer power harvesting using new technique SSHI-Max. Opt Quant Electron 48:1–10CrossRef Meddad M, Eddiai A, Cherif A, Guyomar D, Hajjaji A (2016) Enhancement of electrostrictive polymer power harvesting using new technique SSHI-Max. Opt Quant Electron 48:1–10CrossRef
Zurück zum Zitat Miao P, Mitcheson P, Holmes A, Yeatman E, Green T, Stark B (2006) MEMS inertial power generators for biomedical applications. Microsyst Technol 12:1079–1083CrossRef Miao P, Mitcheson P, Holmes A, Yeatman E, Green T, Stark B (2006) MEMS inertial power generators for biomedical applications. Microsyst Technol 12:1079–1083CrossRef
Zurück zum Zitat Mitcheson PD, Miao P, Stark BH, Yeatman E, Holmes A, Green T (2004) MEMS electrostatic micropower generator for low frequency operation. Sens Actuators A Phys 115:523–529CrossRef Mitcheson PD, Miao P, Stark BH, Yeatman E, Holmes A, Green T (2004) MEMS electrostatic micropower generator for low frequency operation. Sens Actuators A Phys 115:523–529CrossRef
Zurück zum Zitat Ottman GK, Hofmann HF, Bhatt AC, Lesieutre G (2002) Adaptive piezoelectric energy harvesting circuit for wireless remote power supply. Power Electron IEEE Trans 17:669–676CrossRef Ottman GK, Hofmann HF, Bhatt AC, Lesieutre G (2002) Adaptive piezoelectric energy harvesting circuit for wireless remote power supply. Power Electron IEEE Trans 17:669–676CrossRef
Zurück zum Zitat Ottman GK, Hofmann HF, Lesieutre G (2003) Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode. IEEE Trans Power Electron 18:696–703CrossRef Ottman GK, Hofmann HF, Lesieutre G (2003) Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode. IEEE Trans Power Electron 18:696–703CrossRef
Zurück zum Zitat Ramadass YK, Chandrakasan AP (2010) An efficient piezoelectric energy harvesting interface circuit using a bias-flip rectifier and shared inductor. Solid State Circuits IEEE J 45:189–204CrossRef Ramadass YK, Chandrakasan AP (2010) An efficient piezoelectric energy harvesting interface circuit using a bias-flip rectifier and shared inductor. Solid State Circuits IEEE J 45:189–204CrossRef
Zurück zum Zitat Rao SS (2007) Vibration of continuous systems. Wiley, New York Rao SS (2007) Vibration of continuous systems. Wiley, New York
Zurück zum Zitat Roundy S, Wright PK (2004) A piezoelectric vibration based generator for wireless electronics. Smart Mater Struct 13:1131CrossRef Roundy S, Wright PK (2004) A piezoelectric vibration based generator for wireless electronics. Smart Mater Struct 13:1131CrossRef
Zurück zum Zitat Roundy S, Wright PK, Rabaey J (2003) A study of low level vibrations as a power source for wireless sensor nodes. Comput Commun 26:1131–1144CrossRef Roundy S, Wright PK, Rabaey J (2003) A study of low level vibrations as a power source for wireless sensor nodes. Comput Commun 26:1131–1144CrossRef
Zurück zum Zitat Roundy S, Wright P, Rabaey J (2004) Energy scavenging for wireless sensor networks: with special focus on vibrations. Kluwer Academic Publishers, NorwellCrossRef Roundy S, Wright P, Rabaey J (2004) Energy scavenging for wireless sensor networks: with special focus on vibrations. Kluwer Academic Publishers, NorwellCrossRef
Zurück zum Zitat Roundy S et al (2005) Improving power output for vibration-based energy scavengers. Pervasive Comput IEEE 4:28–36CrossRef Roundy S et al (2005) Improving power output for vibration-based energy scavengers. Pervasive Comput IEEE 4:28–36CrossRef
Zurück zum Zitat Shen D, Park J-H, Ajitsaria J, Choe S-Y, Wikle HC III, Kim D-J (2008) The design, fabrication and evaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting. J Micromech Microeng 18:055017CrossRef Shen D, Park J-H, Ajitsaria J, Choe S-Y, Wikle HC III, Kim D-J (2008) The design, fabrication and evaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting. J Micromech Microeng 18:055017CrossRef
Zurück zum Zitat Sheu G-J, Yang S-M, Lee T (2011) Development of a low frequency electrostatic comb-drive energy harvester compatible to SoC design by CMOS process. Sens Actuators A 167:70–76CrossRef Sheu G-J, Yang S-M, Lee T (2011) Development of a low frequency electrostatic comb-drive energy harvester compatible to SoC design by CMOS process. Sens Actuators A 167:70–76CrossRef
Zurück zum Zitat Shu Y, Lien I (2006) Analysis of power output for piezoelectric energy harvesting systems. Smart Mater Struct 15:1499CrossRef Shu Y, Lien I (2006) Analysis of power output for piezoelectric energy harvesting systems. Smart Mater Struct 15:1499CrossRef
Zurück zum Zitat Shu Y, Lien I, Wu W (2007) An improved analysis of the SSHI interface in piezoelectric energy harvesting. Smart Mater Struct 16:2253CrossRef Shu Y, Lien I, Wu W (2007) An improved analysis of the SSHI interface in piezoelectric energy harvesting. Smart Mater Struct 16:2253CrossRef
Zurück zum Zitat Singh KA, Kumar R, Weber RJ (2014) Piezoelectric-based broadband bistable vibration energy harvester and SCE/SSHI-based high-power extraction. In: Networking, sensing and control (ICNSC), 2014 IEEE 11th international conference on, 2014. IEEE, pp 197–202 Singh KA, Kumar R, Weber RJ (2014) Piezoelectric-based broadband bistable vibration energy harvester and SCE/SSHI-based high-power extraction. In: Networking, sensing and control (ICNSC), 2014 IEEE 11th international conference on, 2014. IEEE, pp 197–202
Zurück zum Zitat Singh KA, Kumar R, Weber RJ (2015) A broadband bistable piezoelectric energy harvester with nonlinear high-power extraction. IEEE Trans Power Electron 30:6763–6774CrossRef Singh KA, Kumar R, Weber RJ (2015) A broadband bistable piezoelectric energy harvester with nonlinear high-power extraction. IEEE Trans Power Electron 30:6763–6774CrossRef
Zurück zum Zitat Sue C-Y, Tsai N-C (2012) Human powered MEMS-based energy harvest devices. Appl Energy 93:390–403CrossRef Sue C-Y, Tsai N-C (2012) Human powered MEMS-based energy harvest devices. Appl Energy 93:390–403CrossRef
Zurück zum Zitat Wang P, Tanaka K, Sugiyama S, Dai X, Zhao X, Liu J (2009) A micro electromagnetic low level vibration energy harvester based on MEMS technology. Microsyst Technol 15:941–951CrossRef Wang P, Tanaka K, Sugiyama S, Dai X, Zhao X, Liu J (2009) A micro electromagnetic low level vibration energy harvester based on MEMS technology. Microsyst Technol 15:941–951CrossRef
Zurück zum Zitat Williams C, Shearwood C, Harradine M, Mellor P, Birch T, Yates R (2001) Development of an electromagnetic micro-generator. In: Circuits, devices and systems, IEE proceedings-, 2001. IET, pp 337–342 Williams C, Shearwood C, Harradine M, Mellor P, Birch T, Yates R (2001) Development of an electromagnetic micro-generator. In: Circuits, devices and systems, IEE proceedings-, 2001. IET, pp 337–342
Zurück zum Zitat Wu P, Shu Y (2014) Finite element modeling of piezoelectric energy harvesters. In: SPIE smart structures and materials+nondestructive evaluation and health monitoring, 2014. International society for optics and photonics, pp 90571D–90571D–90578 Wu P, Shu Y (2014) Finite element modeling of piezoelectric energy harvesters. In: SPIE smart structures and materials+nondestructive evaluation and health monitoring, 2014. International society for optics and photonics, pp 90571D–90571D–90578
Zurück zum Zitat Wu Y-C, Halvorsen E, Lallart M, Richard C, Guyomar D (2015) Stochastic modeling in the frequency domain for energy harvester with switching electronic interface. IEEE/ASME Trans Mechatron 20:50–60CrossRef Wu Y-C, Halvorsen E, Lallart M, Richard C, Guyomar D (2015) Stochastic modeling in the frequency domain for energy harvester with switching electronic interface. IEEE/ASME Trans Mechatron 20:50–60CrossRef
Zurück zum Zitat Xu R (2012) The design of low-frequency, low-g piezoelectric micro energy harvesters. Massachusetts Institute of Technology Xu R (2012) The design of low-frequency, low-g piezoelectric micro energy harvesters. Massachusetts Institute of Technology
Zurück zum Zitat Yan L, Lallart M, Guyomar D (2016) Hybrid time-domain and spatial filtering nonlinear damping strategy for efficient broadband vibration control. J Intell Mater Syst Struct 27:261–277CrossRef Yan L, Lallart M, Guyomar D (2016) Hybrid time-domain and spatial filtering nonlinear damping strategy for efficient broadband vibration control. J Intell Mater Syst Struct 27:261–277CrossRef
Zurück zum Zitat Yang J (2005) An introduction to the theory of piezoelectricity, vol 9. Springer, BerlinMATH Yang J (2005) An introduction to the theory of piezoelectricity, vol 9. Springer, BerlinMATH
Zurück zum Zitat Yu H, Zhou J, Deng L, Wen Z (2014) A vibration-based mems piezoelectric energy harvester and power conditioning circuit. Sensors 14:3323–3341CrossRef Yu H, Zhou J, Deng L, Wen Z (2014) A vibration-based mems piezoelectric energy harvester and power conditioning circuit. Sensors 14:3323–3341CrossRef
Metadaten
Titel
Coupled electromechanical analysis of MEMS-based energy harvesters integrated with nonlinear power extraction circuits
verfasst von
Abdolreza Pasharavesh
M. T. Ahmadian
H. Zohoor
Publikationsdatum
21.06.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 7/2017
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-016-3024-y

Weitere Artikel der Ausgabe 7/2017

Microsystem Technologies 7/2017 Zur Ausgabe

Neuer Inhalt