Skip to main content
Erschienen in: Microsystem Technologies 2/2018

10.06.2017 | Technical Paper

Squeeze film air damping ratio analysis of a silicon capacitive micromechanical accelerometer

verfasst von: Yuming Mo, Lianming Du, BingBing Qu, Bo Peng, Jie Yang

Erschienen in: Microsystem Technologies | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The dynamics behavior of most micro-electro-mechanical-system (MEMS) devices is significantly affected by the squeeze-film air damping. Therefore, the correct prediction of the squeeze-film air damping ratio is essential in MEMS devices design. In the paper, a static state test is proposed to measure the squeeze-film air damping ratios of a silicon capacitive micromechanical accelerometer under different pressures. The unsealed chip of capacitive accelerometer is placed in a vacuum extraction chamber and an open loop circuit is developed to apply step signal. By charging the pressure and measuring the overshoot M p and the settling time t s from the time response of the chip, the damping ratio ξ under different pressures can be calculated. Finite element method (FEM) based on the modified Reynolds equation is utilized to simulate the transient response of the micro-structure. Good correlation between experimental and numerical results is obtained. The proposed static state test in this paper provides a new and much easy method to measure the dynamic performances of micro-structures under various pressures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bao M, Yang H (2007) Squeeze film air damping in MEMS. Sens Actuators A 136:3–27CrossRef Bao M, Yang H (2007) Squeeze film air damping in MEMS. Sens Actuators A 136:3–27CrossRef
Zurück zum Zitat Bao M, Yang H, Sun Y, Franch PJ (2003) Modified Reynolds equation and analytical analysis of squeeze-film air damping of perforated structures. J Micromech Microeng 13:780–795CrossRef Bao M, Yang H, Sun Y, Franch PJ (2003) Modified Reynolds equation and analytical analysis of squeeze-film air damping of perforated structures. J Micromech Microeng 13:780–795CrossRef
Zurück zum Zitat Beskok A (2002) Molecular-based microfluidic simulation models. In: Gad-el-Hak M (ed) The MEMS handbook. CRC Press, Boca Raton, pp 8.1–8.28 Beskok A (2002) Molecular-based microfluidic simulation models. In: Gad-el-Hak M (ed) The MEMS handbook. CRC Press, Boca Raton, pp 8.1–8.28
Zurück zum Zitat Bird G (1996) Molecular gas dynamics and the direct simulation of gas flows. Oxford University Press, Oxford Bird G (1996) Molecular gas dynamics and the direct simulation of gas flows. Oxford University Press, Oxford
Zurück zum Zitat Brugdorfer A (1959) The influence of the molecular mean free path on the performance of hydrodynamic gas lubricated bearings. J Basic Eng Trans ASME 81:94–99 Brugdorfer A (1959) The influence of the molecular mean free path on the performance of hydrodynamic gas lubricated bearings. J Basic Eng Trans ASME 81:94–99
Zurück zum Zitat Chen C-S, Kuo W-J (2003) Squeeze and viscous dampings in micro electrostatic comb drives. Sens Actuators A 107:193–203CrossRef Chen C-S, Kuo W-J (2003) Squeeze and viscous dampings in micro electrostatic comb drives. Sens Actuators A 107:193–203CrossRef
Zurück zum Zitat Darling R, Hivick C, Xu J (1998) Compact analytical modeling of squeeze film damping with arbitrary venting conditions using a Greens function approach. Sens Actuators A 70:3241CrossRef Darling R, Hivick C, Xu J (1998) Compact analytical modeling of squeeze film damping with arbitrary venting conditions using a Greens function approach. Sens Actuators A 70:3241CrossRef
Zurück zum Zitat Franklin GF, Powell JD, Emami-Naeini A (1994) Feedback control of dynamic system, 6th edn. Addison-Wesley, BostonMATH Franklin GF, Powell JD, Emami-Naeini A (1994) Feedback control of dynamic system, 6th edn. Addison-Wesley, BostonMATH
Zurück zum Zitat Fukui S, Kaneko R (1988) Analysis of ultra-thin gas film lubrication based on linearized Boltzmann equation: first report-derivation of a generalized lubrication equation including thermal creep flow. J Tribol Trans ASME 110:253–262CrossRef Fukui S, Kaneko R (1988) Analysis of ultra-thin gas film lubrication based on linearized Boltzmann equation: first report-derivation of a generalized lubrication equation including thermal creep flow. J Tribol Trans ASME 110:253–262CrossRef
Zurück zum Zitat Hsia YT, Domoto GA (1983) An experimental investigation of molecular rarefaction eects in gas lubricated bearings at ultra low clearance. J Lubr Technol Trans ASME 105:130CrossRef Hsia YT, Domoto GA (1983) An experimental investigation of molecular rarefaction eects in gas lubricated bearings at ultra low clearance. J Lubr Technol Trans ASME 105:130CrossRef
Zurück zum Zitat Hutcherson SM (2004) Theoretical and numerical studies of the air damping of micro-resonators in the non-continuum regime. Dissertation, G. W. Woodru School of Mechanical Engineering, Georgia Institute of Technology Hutcherson SM (2004) Theoretical and numerical studies of the air damping of micro-resonators in the non-continuum regime. Dissertation, G. W. Woodru School of Mechanical Engineering, Georgia Institute of Technology
Zurück zum Zitat Kim E-S, Cho Y-H, Kim M-U (1999) Effect of holes and edges on the squeeze film damping of perforated micromechanical structures. In: Twelfth IEEE International Conference on Micro Electro Mechanical Systems, MEMS'99 Kim E-S, Cho Y-H, Kim M-U (1999) Effect of holes and edges on the squeeze film damping of perforated micromechanical structures. In: Twelfth IEEE International Conference on Micro Electro Mechanical Systems, MEMS'99
Zurück zum Zitat Li W-L (1993) Analytical modelling of ultra-thin gas squeeze film. J Tribol Trans ASME 115:289–294 Li W-L (1993) Analytical modelling of ultra-thin gas squeeze film. J Tribol Trans ASME 115:289–294
Zurück zum Zitat Mehner I, Billep D et al. (1998) Simulation of gas damping in microstructures with nontrivial geometries. In: Proceedings of 11th IEEE micro mechanical systems, Piscataway (NJ, USA), pp 192–197 Mehner I, Billep D et al. (1998) Simulation of gas damping in microstructures with nontrivial geometries. In: Proceedings of 11th IEEE micro mechanical systems, Piscataway (NJ, USA), pp 192–197
Zurück zum Zitat Mitsuya Y (1993) Modified Reynolds equation for ultra-thin film gas lubrication using 1.5-order slip-flow model and considering surface accommodation coefficient. J Tribol Trans ASME 115:289–294CrossRef Mitsuya Y (1993) Modified Reynolds equation for ultra-thin film gas lubrication using 1.5-order slip-flow model and considering surface accommodation coefficient. J Tribol Trans ASME 115:289–294CrossRef
Zurück zum Zitat Moeenfard H (2015) Analytical modeling of squeeze film damping in dual axis torsion microactuators. Surf Rev Lett 22(1):1550006-1–1550006-8CrossRef Moeenfard H (2015) Analytical modeling of squeeze film damping in dual axis torsion microactuators. Surf Rev Lett 22(1):1550006-1–1550006-8CrossRef
Zurück zum Zitat Newell W (1968) Miniaturization of tuning forks. Science 161:1320–1326CrossRef Newell W (1968) Miniaturization of tuning forks. Science 161:1320–1326CrossRef
Zurück zum Zitat Nigro S, Pagnatta L (2012) Analytical and numerical modeling of squeeze-film damping in perforated microstructures. Microfluid Nanofluid 12:971–979CrossRef Nigro S, Pagnatta L (2012) Analytical and numerical modeling of squeeze-film damping in perforated microstructures. Microfluid Nanofluid 12:971–979CrossRef
Zurück zum Zitat Pandey AK, Pratap R (2008) A comparative study of analytical squeeze film damping models in rigid rectangular perforated MEMS structures with experimental results. Microfluid Nanofluid 4:205–218CrossRef Pandey AK, Pratap R (2008) A comparative study of analytical squeeze film damping models in rigid rectangular perforated MEMS structures with experimental results. Microfluid Nanofluid 4:205–218CrossRef
Zurück zum Zitat Pandey AK, Pratop R (2004) Coupled nonlinear effects of surface roughness and rarefaction on squeeze film damping in MEMS structures. J Micromech Microeng 14:1430–1437CrossRef Pandey AK, Pratop R (2004) Coupled nonlinear effects of surface roughness and rarefaction on squeeze film damping in MEMS structures. J Micromech Microeng 14:1430–1437CrossRef
Zurück zum Zitat Pandey AK, Pratap R, Chaub FS (2007) Analytical solution of the modified Reynolds equation for squeeze film damping in perforated MEMS structures. Sens Actuators A 135:839–848CrossRef Pandey AK, Pratap R, Chaub FS (2007) Analytical solution of the modified Reynolds equation for squeeze film damping in perforated MEMS structures. Sens Actuators A 135:839–848CrossRef
Zurück zum Zitat Pantano MF, Pagnotta L, Nigro S (2013) A numerical study of squeeze-film damping in MEMS-based structures including rarefraction effects. Frattura ed Integrita Struct c23:103–113 Pantano MF, Pagnotta L, Nigro S (2013) A numerical study of squeeze-film damping in MEMS-based structures including rarefraction effects. Frattura ed Integrita Struct c23:103–113
Zurück zum Zitat Pantano MF, Pagnotta L, Nigro S (2014) On the effective viscosity expression for modeling squeeze-film damping. J Tribol 136:031702-1-4CrossRef Pantano MF, Pagnotta L, Nigro S (2014) On the effective viscosity expression for modeling squeeze-film damping. J Tribol 136:031702-1-4CrossRef
Zurück zum Zitat Tan Y, Lv Y, Pan Z (2012) The analysis and simulation of squeeze film damping characteristics of low air pressure MEMS accelerometer. In: IEEE International Conference on Oxide Materials for Electronic Engineering, pp 351–354 Tan Y, Lv Y, Pan Z (2012) The analysis and simulation of squeeze film damping characteristics of low air pressure MEMS accelerometer. In: IEEE International Conference on Oxide Materials for Electronic Engineering, pp 351–354
Zurück zum Zitat Veijola Timo (2006) Analytic damping model for an MEM perforation cell. Microfluid Nanofluid 2:249–260CrossRef Veijola Timo (2006) Analytic damping model for an MEM perforation cell. Microfluid Nanofluid 2:249–260CrossRef
Zurück zum Zitat Veijola T, Kuisma H, Lahdenpera J, Ryhanen T (1995) Equivalent-circuit model of the squeeze gas film in a silicon accelerometer. Sens Actuators A 48:239–248CrossRef Veijola T, Kuisma H, Lahdenpera J, Ryhanen T (1995) Equivalent-circuit model of the squeeze gas film in a silicon accelerometer. Sens Actuators A 48:239–248CrossRef
Zurück zum Zitat Zhou Z, Wang X (2011) Analysis of squeeze-film air damping of thick perforated plate in MEMS devices. In: Proceedings of the 6th IEEE international conference on Nana/Micro Engineering and Molecular Systems, pp 131–133 Zhou Z, Wang X (2011) Analysis of squeeze-film air damping of thick perforated plate in MEMS devices. In: Proceedings of the 6th IEEE international conference on Nana/Micro Engineering and Molecular Systems, pp 131–133
Metadaten
Titel
Squeeze film air damping ratio analysis of a silicon capacitive micromechanical accelerometer
verfasst von
Yuming Mo
Lianming Du
BingBing Qu
Bo Peng
Jie Yang
Publikationsdatum
10.06.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 2/2018
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-017-3464-z

Weitere Artikel der Ausgabe 2/2018

Microsystem Technologies 2/2018 Zur Ausgabe

Neuer Inhalt