Skip to main content
Erschienen in: Microsystem Technologies 1/2020

22.02.2019 | Technical Paper

Aerodynamic drag reduction on a realistic vehicle using continuous blowing

verfasst von: Soo-Whang Baek, Sang Wook Lee

Erschienen in: Microsystem Technologies | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The aerodynamic drag reduction of a realistic vehicle model through continuous blowing was numerically analyzed based on the open-source computational fluid dynamics (CFD) program, OpenFOAM. Simulations were performed on a realistic passenger vehicle model with available wind tunnel test data, DrivAer, at four different Reynolds numbers (Re). The aerodynamic drag coefficient decreased with increasing Re. The CFD technique was validated by comparing the aerodynamic drag coefficients at Re = 4.87 × 106. Predicted drag coefficients of the DrivAer estate model show less than 3% difference from wind tunnel test data, whereas those of fastback and notchback vehicles showed less than 1% difference. Sectional pressure distributions agreed well with wind tunnel test data. The effect of continuous blowing was investigated using the DrivAer estate model with a blowing position at the end of the roof for vertical blowing and at the C-pillar for lateral blowing. Simulations were performed at Re = 4.87 × 106 and 9.75 × 106 and blowing speeds of 20%, 40%, 60%, and 100% of the vehicle driving speed. The effect of continuous blowing increased with Re. The drag reduction was more than 6% for roof blowing due to increasing rear pressure when the blowing speed equaled the vehicle driving speed. The maximum drag reduction was approximately 7.5% for simultaneous roof and lateral blowing. The results indicate that continuous blowing can efficiently reduce vehicle aerodynamic drag and consequently greenhouse gas emissions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ahangarnejad A, Melzi S (2018) Numerical analysis of the influence of an actively controlled spoiler on the handling of a sports car. J Vib Control 24(22):5437–5448MathSciNetCrossRef Ahangarnejad A, Melzi S (2018) Numerical analysis of the influence of an actively controlled spoiler on the handling of a sports car. J Vib Control 24(22):5437–5448MathSciNetCrossRef
Zurück zum Zitat Ali M, Platko P (2017) Advances and trends in engineering sciences and technologies II. ISBN 978-1-138-03224-8, Taylor & Francis Group, London, UK Ali M, Platko P (2017) Advances and trends in engineering sciences and technologies II. ISBN 978-1-138-03224-8, Taylor & Francis Group, London, UK
Zurück zum Zitat Bellman M, Naber J, Agarwal R (2009) Numerical drag reduction studies of generic truck models using active flow control. In: 39th AIAA fluid dynamics conference, AIAA 2009-4013 Bellman M, Naber J, Agarwal R (2009) Numerical drag reduction studies of generic truck models using active flow control. In: 39th AIAA fluid dynamics conference, AIAA 2009-4013
Zurück zum Zitat Bruneau C-H, Creuse E, Depeyeas D, Gillieron P, Mortazavi I (2010) Coupling active and passive techniques to control the flow past the square back Ahmed body. Comput Fluids 39(10):1875–1892CrossRef Bruneau C-H, Creuse E, Depeyeas D, Gillieron P, Mortazavi I (2010) Coupling active and passive techniques to control the flow past the square back Ahmed body. Comput Fluids 39(10):1875–1892CrossRef
Zurück zum Zitat Cho J, Kim T, Yee K (2017) Comparative investigation on the aerodynamic effects of combined use of underbody drag reduction devices applied to real sedan. Int J Automot Technol 18(6):959–971CrossRef Cho J, Kim T, Yee K (2017) Comparative investigation on the aerodynamic effects of combined use of underbody drag reduction devices applied to real sedan. Int J Automot Technol 18(6):959–971CrossRef
Zurück zum Zitat El-Sharkawy A, Kamrad J, Lounsberry T, Baker G, Rahman S (2011) Evaluation of impact of active grill shutter on vehicle thermal management. SAE technical paper 2011-01-1172 El-Sharkawy A, Kamrad J, Lounsberry T, Baker G, Rahman S (2011) Evaluation of impact of active grill shutter on vehicle thermal management. SAE technical paper 2011-01-1172
Zurück zum Zitat Fukuda H, Yanagimoto K, China H, Nakagawa K (1995) Improvement of vehicle aerodynamics by wake control. JSAE Rev 16:151–155CrossRef Fukuda H, Yanagimoto K, China H, Nakagawa K (1995) Improvement of vehicle aerodynamics by wake control. JSAE Rev 16:151–155CrossRef
Zurück zum Zitat Heft A, Indinger T, Adams N (2012) Introduction of a new realistic generic car model for aerodynamic investigations. SAE Technical paper 2012-01-0168 Heft A, Indinger T, Adams N (2012) Introduction of a new realistic generic car model for aerodynamic investigations. SAE Technical paper 2012-01-0168
Zurück zum Zitat Hucho W (1998) Aerodynamics of road vehicle 4th edition, ISBN 0-7680-0029-7. SAE International, Warrendale Hucho W (1998) Aerodynamics of road vehicle 4th edition, ISBN 0-7680-0029-7. SAE International, Warrendale
Zurück zum Zitat Katz J (2006) Aerodynamics of race cars. Annu Rev Fluid Mech 38:27–63CrossRef Katz J (2006) Aerodynamics of race cars. Annu Rev Fluid Mech 38:27–63CrossRef
Zurück zum Zitat Khalighi B, Zhang S, Koromilas C, Balkanyi S, Bernal L, Iaccarino G, Moin P (2001) Experimental and computational study of unsteady wake flow behind a bluff body with a drag reduction device. SAE Technical paper 2001-01B-207 Khalighi B, Zhang S, Koromilas C, Balkanyi S, Bernal L, Iaccarino G, Moin P (2001) Experimental and computational study of unsteady wake flow behind a bluff body with a drag reduction device. SAE Technical paper 2001-01B-207
Zurück zum Zitat Kourta A, Gillieron P (2009) Impact of the automotive aerodynamic control on the economic issues. J Appl Fluid Mech 2:69–75 Kourta A, Gillieron P (2009) Impact of the automotive aerodynamic control on the economic issues. J Appl Fluid Mech 2:69–75
Zurück zum Zitat Lee S (2018) Computational analysis of air jet wheel deflector for aerodynamic drag reduction of road vehicle. Microsyst Technol 24(11):4454–4463 Lee S (2018) Computational analysis of air jet wheel deflector for aerodynamic drag reduction of road vehicle. Microsyst Technol 24(11):4454–4463
Zurück zum Zitat Menter F (1993) Zonal two equation k-w turbulence models for aerodynamic flows. In: 23rd fluid dynamics, plasmadynamics and laser conference, AIAA-93-2906 Menter F (1993) Zonal two equation k-w turbulence models for aerodynamic flows. In: 23rd fluid dynamics, plasmadynamics and laser conference, AIAA-93-2906
Zurück zum Zitat Mestiri R, Ahmed-Bensoltane A, Keirsbulck L, Alouri F, Labraga L (2014) Active flow control at the rear end of a generic car model using steady blowing. J Appl Fluid Mech 7:565–571 Mestiri R, Ahmed-Bensoltane A, Keirsbulck L, Alouri F, Labraga L (2014) Active flow control at the rear end of a generic car model using steady blowing. J Appl Fluid Mech 7:565–571
Zurück zum Zitat Petrushov V (1998) Improvement in vehicle aerodynamic drag and rolling resistance determination from coast-down tests. Proc Inst Mech Eng Part D J Autom Eng 212(5):369–380CrossRef Petrushov V (1998) Improvement in vehicle aerodynamic drag and rolling resistance determination from coast-down tests. Proc Inst Mech Eng Part D J Autom Eng 212(5):369–380CrossRef
Zurück zum Zitat Sebben S (2004) Numerical simulations of a car underbody: effect of front-wheel deflector. SAE technical paper 2004-01-1307 Sebben S (2004) Numerical simulations of a car underbody: effect of front-wheel deflector. SAE technical paper 2004-01-1307
Zurück zum Zitat Shankar G, Devaradjane G (2018) Experimental and computational analysis on aerodynamic behavior of a car model with vortex generators at different yaw angles. J Appl Fluid Mech 11:285–295CrossRef Shankar G, Devaradjane G (2018) Experimental and computational analysis on aerodynamic behavior of a car model with vortex generators at different yaw angles. J Appl Fluid Mech 11:285–295CrossRef
Zurück zum Zitat Sovran G, Morel T, Mason W (1978) Aerodynamic drag mechanisms of bluff bodies and road vehicles. ISBN 0-306-31119-4, Plenum Press, New York Sovran G, Morel T, Mason W (1978) Aerodynamic drag mechanisms of bluff bodies and road vehicles. ISBN 0-306-31119-4, Plenum Press, New York
Zurück zum Zitat Thomas J (2016) Vehicle efficiency and tractive work: rate of change for the past decade and accelerated progress required for U.S. fuel economy and CO2 regulations. SAE Int J Fuel Lubr 9(1):290–305CrossRef Thomas J (2016) Vehicle efficiency and tractive work: rate of change for the past decade and accelerated progress required for U.S. fuel economy and CO2 regulations. SAE Int J Fuel Lubr 9(1):290–305CrossRef
Metadaten
Titel
Aerodynamic drag reduction on a realistic vehicle using continuous blowing
verfasst von
Soo-Whang Baek
Sang Wook Lee
Publikationsdatum
22.02.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 1/2020
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-019-04355-w

Weitere Artikel der Ausgabe 1/2020

Microsystem Technologies 1/2020 Zur Ausgabe

Neuer Inhalt