Skip to main content
Erschienen in: Autonomous Robots 4/2019

19.07.2018

Computing the best grasp in a discrete point set with wrench-oriented grasp quality measures

verfasst von: Yu Zheng

Erschienen in: Autonomous Robots | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents a novel solution to the problem of computing the best grasp in a discrete point set where the performance quality of a grasp is measured by its capability to apply wrenches to the grasped object. First, it is revealed that various wrench-oriented grasp quality measures, considering different physical properties of a grasp, can be written in a unified form as the maximum scale factor of a gauge set in a grasp wrench set. Also, it has been deduced that the maximum scale factor is equal to the minimum value of the support function of the grasp wrench set over all directions and can be computed by evaluating the support function in a sequence of directions. On this basis, we can quickly determine that a new grasp is worse than the current best grasp if the support function of its grasp wrench set in any direction in the sequence or any particular direction is less than the quality value of the current best grasp. In this way, there is no need to calculate the exact quality value of the new grasp. Furthermore, we enumerate candidate grasps in the point set in an adaptive way such that grasps that are more likely to outperform the current best grasp will be checked first, which helps find the best grasp earlier and significantly reduce the number of candidate grasps to be fully examined. With the aid of the quick grasp comparison and the adaptive grasp enumeration, the proposed algorithm takes tens of seconds to several hours on a normal PC to compute the best grasp in tens to hundreds of points on 3-D objects and it is two to several orders of magnitude faster than the brute-force search. Moreover, the wrench-oriented grasp quality measures and the proposed algorithm are extended to the real scenario involving robot hands to predict and compute the best grasps on objects in reachable contact point sets of fingertips by given hand poses.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bicchi, A. (1994). On the problem of decomposing grasp and manipulation forces in multiple whole-limb manipulation. Robotics and Autonomous Systems, 13(2), 127–147.MathSciNetCrossRef Bicchi, A. (1994). On the problem of decomposing grasp and manipulation forces in multiple whole-limb manipulation. Robotics and Autonomous Systems, 13(2), 127–147.MathSciNetCrossRef
Zurück zum Zitat Borst, C., Fischer, M., & Hirzinger, G. (1999). A fast and robust grasp planner for arbitrary 3D objects. In Proceedings of the IEEE international conference on mechatronics and automation, Detroit, Michigan (pp. 1890–1896). Borst, C., Fischer, M., & Hirzinger, G. (1999). A fast and robust grasp planner for arbitrary 3D objects. In Proceedings of the IEEE international conference on mechatronics and automation, Detroit, Michigan (pp. 1890–1896).
Zurück zum Zitat Borst, C., Fischer, M., & Hirzinger, G. (2004). Grasp planning: How to choose a suitable task wrench space. In Proceedings of the IEEE international conference on robotics and automation, New Oeleans, LA (pp. 319–325). Borst, C., Fischer, M., & Hirzinger, G. (2004). Grasp planning: How to choose a suitable task wrench space. In Proceedings of the IEEE international conference on robotics and automation, New Oeleans, LA (pp. 319–325).
Zurück zum Zitat Calli, B., Singh, A., Bruce, J., Walsman, A., Konolige, K., Srinivasa, S., et al. (2017). Yale-CMU-Berkeley dataset for robotic manipulation research. International Journal of Robotics Research, 36(3), 261–268.CrossRef Calli, B., Singh, A., Bruce, J., Walsman, A., Konolige, K., Srinivasa, S., et al. (2017). Yale-CMU-Berkeley dataset for robotic manipulation research. International Journal of Robotics Research, 36(3), 261–268.CrossRef
Zurück zum Zitat Chen, I. M., & Burdick, J. W. (1993). Finding antipodal point grasps on irregular shaped objects. IEEE Transactions on Robotics and Automation, 9(4), 507–512.CrossRef Chen, I. M., & Burdick, J. W. (1993). Finding antipodal point grasps on irregular shaped objects. IEEE Transactions on Robotics and Automation, 9(4), 507–512.CrossRef
Zurück zum Zitat Cornellà, J., & Suárez, R. (2009). Efficient determination of four-point form-closure optimal constraints of polygonal objects. IEEE Transactions on Automation Science and Engineering, 6(1), 121–130.CrossRef Cornellà, J., & Suárez, R. (2009). Efficient determination of four-point form-closure optimal constraints of polygonal objects. IEEE Transactions on Automation Science and Engineering, 6(1), 121–130.CrossRef
Zurück zum Zitat Dai, H. K., Majumdar, A., & Tedrake, R. (2015). Synthesis and optimization of force closure grasps via sequential semidefinite programming. In International symposium on robotics research. Dai, H. K., Majumdar, A., & Tedrake, R. (2015). Synthesis and optimization of force closure grasps via sequential semidefinite programming. In International symposium on robotics research.
Zurück zum Zitat Ding, D., Liu, Y. H., & Wang, S. G. (2001). Computation of 3-D form-closure grasps. IEEE Transactions on Robotics and Automation, 17(4), 515–522.CrossRef Ding, D., Liu, Y. H., & Wang, S. G. (2001). Computation of 3-D form-closure grasps. IEEE Transactions on Robotics and Automation, 17(4), 515–522.CrossRef
Zurück zum Zitat El-Khoury, S., Li, M., & Billard, A. (2012). Bridging the gap: One shot grasp synthesis approach. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, Vilamoura, Portugal (pp. 2027–2034). El-Khoury, S., Li, M., & Billard, A. (2012). Bridging the gap: One shot grasp synthesis approach. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, Vilamoura, Portugal (pp. 2027–2034).
Zurück zum Zitat El-Khoury, S., Li, M., & Billard, A. (2013). On the generation of a variety of grasps. Robotics and Autonomous Systems, 61(12), 1335–1349.CrossRef El-Khoury, S., Li, M., & Billard, A. (2013). On the generation of a variety of grasps. Robotics and Autonomous Systems, 61(12), 1335–1349.CrossRef
Zurück zum Zitat Ferrari, C., & Canny, J. F. (1992). Planning optimal grasps. In Proceedings of the IEEE international conference on robotics and automation, Nice, France (pp. 2290–2295). Ferrari, C., & Canny, J. F. (1992). Planning optimal grasps. In Proceedings of the IEEE international conference on robotics and automation, Nice, France (pp. 2290–2295).
Zurück zum Zitat Han, L., Trinkle, J. C., & Li, Z. X. (2000). Grasp analysis as linear matrix inequality problems. IEEE Transactions on Robotics and Automation, 16(6), 663–674.CrossRef Han, L., Trinkle, J. C., & Li, Z. X. (2000). Grasp analysis as linear matrix inequality problems. IEEE Transactions on Robotics and Automation, 16(6), 663–674.CrossRef
Zurück zum Zitat Hang, K., Li, M., Stork, J. A., Bekiroglu, Y., Pokorny, F. T., Billard, A., et al. (2016). Hierarchical fingertip space: A unified framework for grasp planning and in-hand grasp adaptation. IEEE Transactions on Robotics, 32(4), 960–972.CrossRef Hang, K., Li, M., Stork, J. A., Bekiroglu, Y., Pokorny, F. T., Billard, A., et al. (2016). Hierarchical fingertip space: A unified framework for grasp planning and in-hand grasp adaptation. IEEE Transactions on Robotics, 32(4), 960–972.CrossRef
Zurück zum Zitat Hang, K., Pokorny, F. T., & Kragic, D. (2013). Friction coefficients and grasp synthesis. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, Tokyo, Japan (pp. 3520–3526). Hang, K., Pokorny, F. T., & Kragic, D. (2013). Friction coefficients and grasp synthesis. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, Tokyo, Japan (pp. 3520–3526).
Zurück zum Zitat Hang, K., Stork, J. A., Pollard, N. S., & Kragic, D. (2017). A framework for optimal grasp contact planning. IEEE Robotics and Automation Letters, 2(2), 704–711.CrossRef Hang, K., Stork, J. A., Pollard, N. S., & Kragic, D. (2017). A framework for optimal grasp contact planning. IEEE Robotics and Automation Letters, 2(2), 704–711.CrossRef
Zurück zum Zitat Harada, K., Tsuji, T., Uto, S., Yamanobe, N., Nagata, K., & Kitagaki, K. (2014). Stability of soft-finger grasp under gravity. In Proceedings of the IEEE international conference on robotics and automation, Hong Kong, China (pp. 883–888). Harada, K., Tsuji, T., Uto, S., Yamanobe, N., Nagata, K., & Kitagaki, K. (2014). Stability of soft-finger grasp under gravity. In Proceedings of the IEEE international conference on robotics and automation, Hong Kong, China (pp. 883–888).
Zurück zum Zitat Haschke, R., Steil, J. J., Steuwer, I., & Ritter, H. (2005). Task-oriented quality measures for dextrous grasping. In Proceedings of IEEE international conference on computational intelligence in robotics and automation, Espoo, Finland (pp. 689–694). Haschke, R., Steil, J. J., Steuwer, I., & Ritter, H. (2005). Task-oriented quality measures for dextrous grasping. In Proceedings of IEEE international conference on computational intelligence in robotics and automation, Espoo, Finland (pp. 689–694).
Zurück zum Zitat Haustein, J. A., Hang, K., & Kragic, D. (2017). Integrating motion and hierarchical fingertip grasp planning. In Proceedings of the IEEE international conference on robotics and automation, Singapore (pp. 3439–3446). Haustein, J. A., Hang, K., & Kragic, D. (2017). Integrating motion and hierarchical fingertip grasp planning. In Proceedings of the IEEE international conference on robotics and automation, Singapore (pp. 3439–3446).
Zurück zum Zitat Howe, R. D., Kao, I., & Cutkosky, M. R. (1988). The sliding of robot fingers under combined torsion and shear loading. In Proceedings of the IEEE international conference on robotics and automation, Philadephia, PA (pp. 103–105). Howe, R. D., Kao, I., & Cutkosky, M. R. (1988). The sliding of robot fingers under combined torsion and shear loading. In Proceedings of the IEEE international conference on robotics and automation, Philadephia, PA (pp. 103–105).
Zurück zum Zitat Lay, S. R. (1982). Convex sets and their applications. New York, NY: Wiley.MATH Lay, S. R. (1982). Convex sets and their applications. New York, NY: Wiley.MATH
Zurück zum Zitat Li, J. W., Liu, H., & Cai, H. G. (2003). On computing three-finger force-closure grasps of 2-D and 3-D objects. IEEE Transactions on Robotics and Automation, 19(1), 155–161.CrossRef Li, J. W., Liu, H., & Cai, H. G. (2003). On computing three-finger force-closure grasps of 2-D and 3-D objects. IEEE Transactions on Robotics and Automation, 19(1), 155–161.CrossRef
Zurück zum Zitat Li, M., Hang, K., Kragic, D., & Billard, A. (2016). Dexterous grasping under shape uncertainty. Robotics and Autonomous Systems, 75, 352–364.CrossRef Li, M., Hang, K., Kragic, D., & Billard, A. (2016). Dexterous grasping under shape uncertainty. Robotics and Autonomous Systems, 75, 352–364.CrossRef
Zurück zum Zitat Li, Z. X., & Sastry, S. S. (1988). Task-oriented optimal grasping by multifingered robot hands. IEEE Journal on Robotics and Automation, 4(1), 32–44.CrossRef Li, Z. X., & Sastry, S. S. (1988). Task-oriented optimal grasping by multifingered robot hands. IEEE Journal on Robotics and Automation, 4(1), 32–44.CrossRef
Zurück zum Zitat Lin, Y., & Sun, Y. (2015). Grasp planning to maximize task coverage. International Journal of Robotics Research, 34(9), 1195–1210.CrossRef Lin, Y., & Sun, Y. (2015). Grasp planning to maximize task coverage. International Journal of Robotics Research, 34(9), 1195–1210.CrossRef
Zurück zum Zitat Lippiello, V., Siciliano, B., & Villani, L. (2011). Online dextrous-hand grasping force optimization with dynamic torque constraints selection. In Proceedings of the IEEE international conference on robotics and automation, Shanghai, China (pp. 2831–2836). Lippiello, V., Siciliano, B., & Villani, L. (2011). Online dextrous-hand grasping force optimization with dynamic torque constraints selection. In Proceedings of the IEEE international conference on robotics and automation, Shanghai, China (pp. 2831–2836).
Zurück zum Zitat Lippiello, V., Siciliano, B., & Villani, L. (2012). A grasping force optimization algorithm for dexterous robotic hands. In Proceedings of the IEEE international conference on robotics and automation, Saint Paul, MN (pp. 4170–4175). Lippiello, V., Siciliano, B., & Villani, L. (2012). A grasping force optimization algorithm for dexterous robotic hands. In Proceedings of the IEEE international conference on robotics and automation, Saint Paul, MN (pp. 4170–4175).
Zurück zum Zitat Liu, G. F., Xu, J. J., & Li, Z. X. (2004a). On quality functions for grasp synthesis, fixture planning, and coordinated manipulation. IEEE Transactions on Automation Science and Engineering, 1(2), 146–162.CrossRef Liu, G. F., Xu, J. J., & Li, Z. X. (2004a). On quality functions for grasp synthesis, fixture planning, and coordinated manipulation. IEEE Transactions on Automation Science and Engineering, 1(2), 146–162.CrossRef
Zurück zum Zitat Liu, Y. H. (1999). Qualitative test and force optimization of 3-D frictional form-closure grasps using linear programming. IEEE Transactions on Robotics and Automation, 15(1), 163–173.CrossRef Liu, Y. H. (1999). Qualitative test and force optimization of 3-D frictional form-closure grasps using linear programming. IEEE Transactions on Robotics and Automation, 15(1), 163–173.CrossRef
Zurück zum Zitat Liu, Y. H. (2000). Computing $n$-finger form-closure grasps on polygonal objects. International Journal of Robotics Research, 19(2), 149–158.CrossRef Liu, Y. H. (2000). Computing $n$-finger form-closure grasps on polygonal objects. International Journal of Robotics Research, 19(2), 149–158.CrossRef
Zurück zum Zitat Liu, Y. H., Lam, M. L., & Ding, D. (2004b). A complete and efficient algorithm for searching 3-D form-closure grasps in the discrete domain. IEEE Transactions on Robotics, 20(5), 805–816.CrossRef Liu, Y. H., Lam, M. L., & Ding, D. (2004b). A complete and efficient algorithm for searching 3-D form-closure grasps in the discrete domain. IEEE Transactions on Robotics, 20(5), 805–816.CrossRef
Zurück zum Zitat Markenscoff, X., & Papadimitriou, C. H. (1989). Optimum grip of a polygon. International Journal of Robotics Research, 8(2), 17–29.CrossRef Markenscoff, X., & Papadimitriou, C. H. (1989). Optimum grip of a polygon. International Journal of Robotics Research, 8(2), 17–29.CrossRef
Zurück zum Zitat Miller, A. T., & Allen, P. K. (1999). Examples of 3D grasp quality computation. In Proceedings of the IEEE international conference on robotics and automation, Detroit, MI (pp. 1240–1246). Miller, A. T., & Allen, P. K. (1999). Examples of 3D grasp quality computation. In Proceedings of the IEEE international conference on robotics and automation, Detroit, MI (pp. 1240–1246).
Zurück zum Zitat Miller, A. T., & Allen, P. K. (2004). GraspIt! a versatile simulator for robotic grasping. IEEE Robotics & Automation Magazine, 11(4), 110–122.CrossRef Miller, A. T., & Allen, P. K. (2004). GraspIt! a versatile simulator for robotic grasping. IEEE Robotics & Automation Magazine, 11(4), 110–122.CrossRef
Zurück zum Zitat Mishra, B., Schwarz, J. T., & Sharir, M. (1987). On the existence and synthesis of multifingered positive grips. Algorithmica, 2(4), 541–558.MathSciNetMATHCrossRef Mishra, B., Schwarz, J. T., & Sharir, M. (1987). On the existence and synthesis of multifingered positive grips. Algorithmica, 2(4), 541–558.MathSciNetMATHCrossRef
Zurück zum Zitat Murray, R. M., Li, Z. X., & Sastry, S. S. (1994). A mathematical introduction to robotic manipulation. Boca Raton, FL: CRC Press.MATH Murray, R. M., Li, Z. X., & Sastry, S. S. (1994). A mathematical introduction to robotic manipulation. Boca Raton, FL: CRC Press.MATH
Zurück zum Zitat Nguyen, V. D. (1988). Constructing force-closure grasps. International Journal of Robotics Research, 7(3), 3–16.MathSciNetCrossRef Nguyen, V. D. (1988). Constructing force-closure grasps. International Journal of Robotics Research, 7(3), 3–16.MathSciNetCrossRef
Zurück zum Zitat Park, Y. C., & Starr, G. P. (1992). Grasp synthesis of polygonal objects using a three-fingered robot hand. International Journal of Robotics Research, 11(3), 163–184.CrossRef Park, Y. C., & Starr, G. P. (1992). Grasp synthesis of polygonal objects using a three-fingered robot hand. International Journal of Robotics Research, 11(3), 163–184.CrossRef
Zurück zum Zitat Pollard, N. S. (1994). Parallel methods for synthesizing whole-hand grasps from generalized prototypes. Ph.D. Thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology. Pollard, N. S. (1994). Parallel methods for synthesizing whole-hand grasps from generalized prototypes. Ph.D. Thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology.
Zurück zum Zitat Ponce, J., & Faverjon, B. (1995). On computing three-fingered force-closure grasps of polygonal objects. IEEE Transactions on Robotics and Automation, 11(6), 868–881.CrossRef Ponce, J., & Faverjon, B. (1995). On computing three-fingered force-closure grasps of polygonal objects. IEEE Transactions on Robotics and Automation, 11(6), 868–881.CrossRef
Zurück zum Zitat Ponce, J., Stam, D., & Faverjon, B. (1993). On computing two-fingered force-closure grasps of curved 2d objects. International Journal of Robotics Research, 12(3), 263–273.CrossRef Ponce, J., Stam, D., & Faverjon, B. (1993). On computing two-fingered force-closure grasps of curved 2d objects. International Journal of Robotics Research, 12(3), 263–273.CrossRef
Zurück zum Zitat Ponce, J., Sullivan, S., Sudsang, A., Boissonnat, J. D., & Merlet, J. P. (1997). On computing four-fingered equilibrium and force-closure grasps of polyhedral objects. International Journal of Robotics Research, 16(1), 11–35.MATHCrossRef Ponce, J., Sullivan, S., Sudsang, A., Boissonnat, J. D., & Merlet, J. P. (1997). On computing four-fingered equilibrium and force-closure grasps of polyhedral objects. International Journal of Robotics Research, 16(1), 11–35.MATHCrossRef
Zurück zum Zitat Pozzi, M., Malvezzi, M., & Prattichizzo, D. (2017). On grasp quality measures: Grasp robustness and contact force distribution in underactuated and compliant robotic hands. IEEE Robotics and Automation Letters, 2(1), 329–336.CrossRef Pozzi, M., Malvezzi, M., & Prattichizzo, D. (2017). On grasp quality measures: Grasp robustness and contact force distribution in underactuated and compliant robotic hands. IEEE Robotics and Automation Letters, 2(1), 329–336.CrossRef
Zurück zum Zitat Prattichizzo, D., Malvezzi, M., Gabiccini, M., & Bicchi, A. (2013). On motion and force controllability of precision grasps with hands actuated by soft synergies. IEEE Transactions on Robotics, 29(6), 1440–1456.CrossRef Prattichizzo, D., Malvezzi, M., Gabiccini, M., & Bicchi, A. (2013). On motion and force controllability of precision grasps with hands actuated by soft synergies. IEEE Transactions on Robotics, 29(6), 1440–1456.CrossRef
Zurück zum Zitat Roa, M. A., & Suárez, R. (2009). Computation of independent contact regions for grasping 3-D objects. IEEE Transactions on Robotics, 25(4), 839–850.CrossRef Roa, M. A., & Suárez, R. (2009). Computation of independent contact regions for grasping 3-D objects. IEEE Transactions on Robotics, 25(4), 839–850.CrossRef
Zurück zum Zitat Roa, M. A., & Suárez, R. (2015). Grasp quality measures: Review and performance. Autonomous Robots, 38(1), 65–88.CrossRef Roa, M. A., & Suárez, R. (2015). Grasp quality measures: Review and performance. Autonomous Robots, 38(1), 65–88.CrossRef
Zurück zum Zitat Shilane, F., Min, P., Kazhdan, M., & Funkhouser, T. (2004). The Princeton shape benchmark. In Shape modeling international. Shilane, F., Min, P., Kazhdan, M., & Funkhouser, T. (2004). The Princeton shape benchmark. In Shape modeling international.
Zurück zum Zitat Shimoga, K. B. (1996). Robot grasp synthesis algorithms: A survey. International Journal of Robotics Research, 15(3), 230–266.CrossRef Shimoga, K. B. (1996). Robot grasp synthesis algorithms: A survey. International Journal of Robotics Research, 15(3), 230–266.CrossRef
Zurück zum Zitat Sintov, A., Menassa, R. J., & Shapiro, A. (2016). A gripper design algorithm for grasping a set of parts in manufacturing lines. Mechanism and Machine Theory, 105, 1–30.CrossRef Sintov, A., Menassa, R. J., & Shapiro, A. (2016). A gripper design algorithm for grasping a set of parts in manufacturing lines. Mechanism and Machine Theory, 105, 1–30.CrossRef
Zurück zum Zitat Sintov, A., & Shapiro, A. (2017). An analysis of grasp quality measures for the application of sheet metal parts grasping. Autonomous Robots, 41(1), 145–161.CrossRef Sintov, A., & Shapiro, A. (2017). An analysis of grasp quality measures for the application of sheet metal parts grasping. Autonomous Robots, 41(1), 145–161.CrossRef
Zurück zum Zitat Strandberg, M., & Wahlberg, B. (2006). A method for grasp evaluation based on disturbance force rejection. IEEE Transactions on Robotics, 22(3), 461–469.CrossRef Strandberg, M., & Wahlberg, B. (2006). A method for grasp evaluation based on disturbance force rejection. IEEE Transactions on Robotics, 22(3), 461–469.CrossRef
Zurück zum Zitat Teichmann, M. (1996). A grasp metric invariant under rigid motions. In Proceedings of the IEEE international conference on robotics and automation (pp. 2143–2148). Teichmann, M. (1996). A grasp metric invariant under rigid motions. In Proceedings of the IEEE international conference on robotics and automation (pp. 2143–2148).
Zurück zum Zitat Tung, C. P., & Kak, A. C. (1996). Fast construction of force closure grasps. IEEE Transactions on Robotics and Automation, 12(4), 615–626.CrossRef Tung, C. P., & Kak, A. C. (1996). Fast construction of force closure grasps. IEEE Transactions on Robotics and Automation, 12(4), 615–626.CrossRef
Zurück zum Zitat Wang, M. Y. (2000). An optimal design for 3-D fixture synthesis in a point set domain. IEEE Transactions on Robotics and Automation, 16(6), 839–846.CrossRef Wang, M. Y. (2000). An optimal design for 3-D fixture synthesis in a point set domain. IEEE Transactions on Robotics and Automation, 16(6), 839–846.CrossRef
Zurück zum Zitat Wang, M. Y., & Pelinescu, D. M. (2001). Optimizing fixture layout in a point-set domain. IEEE Transactions on Robotics and Automation, 17(3), 312–323.CrossRef Wang, M. Y., & Pelinescu, D. M. (2001). Optimizing fixture layout in a point-set domain. IEEE Transactions on Robotics and Automation, 17(3), 312–323.CrossRef
Zurück zum Zitat Watanabe, T., & Yoshikawa, T. (2007). Grasping optimization using a required external force set. IEEE Transactions on Automation Science and Engineering, 4(1), 52–66.CrossRef Watanabe, T., & Yoshikawa, T. (2007). Grasping optimization using a required external force set. IEEE Transactions on Automation Science and Engineering, 4(1), 52–66.CrossRef
Zurück zum Zitat Xue, Z. X., Woerner, P., Zoellner, J. M., & Dillmann, R. (2009). Efficient grasp planning using continuous collision detection. In Proceedings of the IEEE international conference on mechatronics and automation, Chengdu, China (pp. 2752–2758). Xue, Z. X., Woerner, P., Zoellner, J. M., & Dillmann, R. (2009). Efficient grasp planning using continuous collision detection. In Proceedings of the IEEE international conference on mechatronics and automation, Chengdu, China (pp. 2752–2758).
Zurück zum Zitat Xue, Z. X., Zoellner, J. M., & Dillmann, R. (2008). Automatic optimal grasp planning based on found contact points. In Proceedings of the IEEE/ASME international conference on advanced intelligent mechatronics, Xi’an, China (pp. 1053–1058). Xue, Z. X., Zoellner, J. M., & Dillmann, R. (2008). Automatic optimal grasp planning based on found contact points. In Proceedings of the IEEE/ASME international conference on advanced intelligent mechatronics, Xi’an, China (pp. 1053–1058).
Zurück zum Zitat Zheng, Y. (2013). An efficient algorithm for a grasp quality measure. IEEE Transactions on Robotics, 29(2), 579–585.CrossRef Zheng, Y. (2013). An efficient algorithm for a grasp quality measure. IEEE Transactions on Robotics, 29(2), 579–585.CrossRef
Zurück zum Zitat Zheng, Y. (2016). Computing the globally optimal frictionless fixture in a discrete point set. IEEE Transactions on Robotics, 32(4), 1026–1032.CrossRef Zheng, Y. (2016). Computing the globally optimal frictionless fixture in a discrete point set. IEEE Transactions on Robotics, 32(4), 1026–1032.CrossRef
Zurück zum Zitat Zheng, Y. (2017). Computing the best grasp in a discrete point set. In Proceedings of the IEEE international conference on robotics and automation, Singapore (pp. 2208–2214). Zheng, Y. (2017). Computing the best grasp in a discrete point set. In Proceedings of the IEEE international conference on robotics and automation, Singapore (pp. 2208–2214).
Zurück zum Zitat Zheng, Y., & Chew, C. M. (2009). Distance between a point and a convex cone in n-dimensional space: Computation and applications. IEEE Transactions on Robotics, 25(6), 1397–1412.CrossRef Zheng, Y., & Chew, C. M. (2009). Distance between a point and a convex cone in n-dimensional space: Computation and applications. IEEE Transactions on Robotics, 25(6), 1397–1412.CrossRef
Zurück zum Zitat Zheng, Y., Lin, M. C., & Manocha, D. (2011). Efficient simplex computation for fixture layout design. Computer-Aided Design, 43(10), 1307–1318.CrossRef Zheng, Y., Lin, M. C., & Manocha, D. (2011). Efficient simplex computation for fixture layout design. Computer-Aided Design, 43(10), 1307–1318.CrossRef
Zurück zum Zitat Zheng, Y., & Qian, W. H. (2009). Improving grasp quality evaluation. Robotics and Autonomous Systems, 57(6–7), 665–673.CrossRef Zheng, Y., & Qian, W. H. (2009). Improving grasp quality evaluation. Robotics and Autonomous Systems, 57(6–7), 665–673.CrossRef
Zurück zum Zitat Zheng, Y., & Yamane, K. (2013). Evaluation of grasp force efficiency considering hand configuration and using novel generalized penetration distance algorithm. In Proceedings of the IEEE international conference on robotics and automation, Karlsruhe, Germany (pp. 1580–1587). Zheng, Y., & Yamane, K. (2013). Evaluation of grasp force efficiency considering hand configuration and using novel generalized penetration distance algorithm. In Proceedings of the IEEE international conference on robotics and automation, Karlsruhe, Germany (pp. 1580–1587).
Zurück zum Zitat Zheng, Y., & Yamane, K. (2015). Generalized distance between compact convex sets: Algorithms and applications. IEEE Transactions on Robotics, 31(4), 988–1003.CrossRef Zheng, Y., & Yamane, K. (2015). Generalized distance between compact convex sets: Algorithms and applications. IEEE Transactions on Robotics, 31(4), 988–1003.CrossRef
Zurück zum Zitat Zhu, X. Y., & Ding, H. (2006). Computation of force-closure grasps: An iterative algorithm. IEEE Transactions on Robotics, 22(1), 172–179.CrossRef Zhu, X. Y., & Ding, H. (2006). Computation of force-closure grasps: An iterative algorithm. IEEE Transactions on Robotics, 22(1), 172–179.CrossRef
Zurück zum Zitat Zhu, X. Y., & Ding, H. (2007). An efficient algorithm for grasp synthesis and fixture layout design in discrete domain. IEEE Transactions on Robotics, 23(1), 157–163.CrossRef Zhu, X. Y., & Ding, H. (2007). An efficient algorithm for grasp synthesis and fixture layout design in discrete domain. IEEE Transactions on Robotics, 23(1), 157–163.CrossRef
Zurück zum Zitat Zhu, X. Y., & Wang, J. (2003). Synthesis of force-closure grasps on 3-D objects based on the $Q$ distance. IEEE Transactions on Robotics and Automation, 19(4), 669–679.CrossRef Zhu, X. Y., & Wang, J. (2003). Synthesis of force-closure grasps on 3-D objects based on the $Q$ distance. IEEE Transactions on Robotics and Automation, 19(4), 669–679.CrossRef
Metadaten
Titel
Computing the best grasp in a discrete point set with wrench-oriented grasp quality measures
verfasst von
Yu Zheng
Publikationsdatum
19.07.2018
Verlag
Springer US
Erschienen in
Autonomous Robots / Ausgabe 4/2019
Print ISSN: 0929-5593
Elektronische ISSN: 1573-7527
DOI
https://doi.org/10.1007/s10514-018-9788-4

Weitere Artikel der Ausgabe 4/2019

Autonomous Robots 4/2019 Zur Ausgabe

Neuer Inhalt