Skip to main content
Erschienen in: Cellulose 18/2020

26.09.2020 | Original Research

Influence of bacterial nanocellulose surface modification on calcium phosphates precipitation for bone tissue engineering

verfasst von: A. Cañas-Gutiérrez, E. Martinez-Correa, D. Suárez-Avendaño, D. Arboleda-Toro, C. Castro-Herazo

Erschienen in: Cellulose | Ausgabe 18/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Bacterial nanocellulose (BNC) is a nano fibrillar polymer, which is biostable and non-resorbable when inside the human body. It has excellent biocompatibility and a microstructure with high mechanical strength, and if processed correctly, can mimic the extra-cellular matrix architecture. BNC, modified with bone-like minerals such as calcium phosphates, can improve cell adhesion and promote the formation of new bone tissues. As a result of the need for three-dimensional (3D) porous scaffolds for bone tissue regeneration, this study evaluated the effect of calcium phosphate mineralization process on BNC and (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl (TEMPO)-oxidized BNC scaffolds, to understand the influence of hydroxyl or carboxylate groups on the nucleation and growth of apatite crystals. The results showed 3D scaffolds with controlled microporosity, between 50 and 350 µm, and interconnected pores. The porous morphology of the TEMPO-oxidized BNC scaffolds varied significantly with the oxidation time and only remained preserved after 60 min of the TEMPO-mediated oxidation. BNC and TEMPO-oxidized BNC scaffolds were used to compare two different mineralization treatments. The growth of homogeneously distributed microcrystals was observed in the unmodified BNC scaffolds, whereas heterogeneously distributed microcrystals were observed in the TEMPO-oxidized BNC scaffolds because of the oxidation treatment which affected the continuity of the surface by fracturing some fibers. Also, in vitro cell studies revealed good cellular adhesion and high cell viability in the modified and unmodified BNC scaffolds. Most of the modifications seemed adequate for cellular adhesion.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Drouet C (2013) Apatite formation: why it may not work as planned, and how to conclusively identify apatite compounds. Biomed Res Int Drouet C (2013) Apatite formation: why it may not work as planned, and how to conclusively identify apatite compounds. Biomed Res Int
Zurück zum Zitat Glimcher MJ (1998) The nature of the mineral phase in bone: biological and clinical implications. In: Metabolic bone disease and clinically related disorders. Woodhead Publishing Limited, pp 23–50 Glimcher MJ (1998) The nature of the mineral phase in bone: biological and clinical implications. In: Metabolic bone disease and clinically related disorders. Woodhead Publishing Limited, pp 23–50
Zurück zum Zitat Lasdon LS, Waren A., Jain A, Rather M (1976) Design and testing of a generalized reduce gradient code for nonlinear programming Lasdon LS, Waren A., Jain A, Rather M (1976) Design and testing of a generalized reduce gradient code for nonlinear programming
Zurück zum Zitat Nge TT, Sugiyama J (2013) Biomimetic mineralization of apatite on bacterial cellulose. In: Gama M, Gatenholm P, Klemm D (eds) Bacterial nanocellulose. CRC Press, Boca Raton, pp 217–238 Nge TT, Sugiyama J (2013) Biomimetic mineralization of apatite on bacterial cellulose. In: Gama M, Gatenholm P, Klemm D (eds) Bacterial nanocellulose. CRC Press, Boca Raton, pp 217–238
Zurück zum Zitat Osorio M, Fernández-Morales P, Gañán P et al (2019) Development of novel three-dimensional scaffolds based on bacterial nanocellulose for tissue engineering and regenerative medicine: Effect of processing methods, pore size, and surface area. J Biomed Mater Res - Part A 107:348–359. https://doi.org/10.1002/jbm.a.36532CrossRef Osorio M, Fernández-Morales P, Gañán P et al (2019) Development of novel three-dimensional scaffolds based on bacterial nanocellulose for tissue engineering and regenerative medicine: Effect of processing methods, pore size, and surface area. J Biomed Mater Res - Part A 107:348–359. https://​doi.​org/​10.​1002/​jbm.​a.​36532CrossRef
Zurück zum Zitat Stevens MM (2008a) Biomaterials for bone tissue engineering. Mater Today 11:18–25CrossRef Stevens MM (2008a) Biomaterials for bone tissue engineering. Mater Today 11:18–25CrossRef
Metadaten
Titel
Influence of bacterial nanocellulose surface modification on calcium phosphates precipitation for bone tissue engineering
verfasst von
A. Cañas-Gutiérrez
E. Martinez-Correa
D. Suárez-Avendaño
D. Arboleda-Toro
C. Castro-Herazo
Publikationsdatum
26.09.2020
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 18/2020
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-020-03470-6

Weitere Artikel der Ausgabe 18/2020

Cellulose 18/2020 Zur Ausgabe