Skip to main content
Erschienen in: Cellulose 2/2021

06.11.2020 | Review Paper

Review of flexible strain sensors based on cellulose composites for multi-faceted applications

verfasst von: Ziyang Chen, Tao Yan, Zhijuan Pan

Erschienen in: Cellulose | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Flexible strain sensors have attracted much attention due to their wide applications in human health monitoring, motion detection, human–computer interaction, and smart robots in recent years. Cellulose-based materials include cellulose fibers, cellulose nanofibers, cellulose nanocrystals, and cellulose derivatives such as methylcellulose, carboxymethyl cellulose, and cellulose acetate. They exhibit excellent properties and diverse functions that play key roles in the preparation of flexible strain sensors. The conductive networks of the cellulose-based composite materials are established by mixing or coating conductive materials or directly carbonizing the cellulose materials. This paper was divided into five parts according to the macroscopic forms of sensors, including fibers and yarns, films, papers, fabrics and gels. The materials, preparation methods, and structures of the flexible strain sensors are detailly compared and discussed. The solutions to the difficulties met in the preparation process are proposed. The sensing performance of the flexible strain sensors based on cellulose composite and their applications in physiological signals and human motion detection are summarized. The potential applications and challenges during future development are analyzed. This review provides some suggestions and strategies for further development of flexible strain sensors based on cellulose composite for physiological signals and human motion detection.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Amjadi M, Kyung KU, Park I, Sitti M (2016) Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv Funct Mater 26:1678–1698CrossRef Amjadi M, Kyung KU, Park I, Sitti M (2016) Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv Funct Mater 26:1678–1698CrossRef
Zurück zum Zitat Chen ZM, Liu XH, Wang SM, Zhang XX, Luo HS (2018g) A bioinspired multilayer assembled microcrack architecture nanocomposite for highly sensitive strain sensing. Compos Sci Technol . 164:51–58. https://doi.org/10.1016/j.compscitech.2018g.05.029 Chen ZM, Liu XH, Wang SM, Zhang XX, Luo HS (2018g) A bioinspired multilayer assembled microcrack architecture nanocomposite for highly sensitive strain sensing. Compos Sci Technol . 164:51–58. https://​doi.​org/​10.​1016/​j.​compscitech.​2018g.​05.​029
Zurück zum Zitat Fox SC, Li B, Xu D, Edgar KJ (2011) Regioselective esterification and etherification of cellulose: a review. Biomacromolecules 12:1956–1972CrossRef Fox SC, Li B, Xu D, Edgar KJ (2011) Regioselective esterification and etherification of cellulose: a review. Biomacromolecules 12:1956–1972CrossRef
Zurück zum Zitat Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500CrossRef Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500CrossRef
Zurück zum Zitat Jing C et al (2018) Polydimethylsiloxane (PDMS)-based flexible resistive strain sensors for wearable applications. Appl Sci 8:345CrossRef Jing C et al (2018) Polydimethylsiloxane (PDMS)-based flexible resistive strain sensors for wearable applications. Appl Sci 8:345CrossRef
Zurück zum Zitat Kongruang S (2008) Bacterial cellulose production by acetobacter xylinum strains from agricultural waste products. Appl Biochem Biotechnol 148:245–256CrossRef Kongruang S (2008) Bacterial cellulose production by acetobacter xylinum strains from agricultural waste products. Appl Biochem Biotechnol 148:245–256CrossRef
Zurück zum Zitat Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRef Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRef
Zurück zum Zitat Park B, Kim J, Kang D, Jeong C, Su K (2016) Dramatically enhanced mechanosensitivity and signal-to-noise ratio of nanoscale crack-based sensors: effect of crack depth. Adv Mater 28:8130–8137CrossRef Park B, Kim J, Kang D, Jeong C, Su K (2016) Dramatically enhanced mechanosensitivity and signal-to-noise ratio of nanoscale crack-based sensors: effect of crack depth. Adv Mater 28:8130–8137CrossRef
Zurück zum Zitat Santhiago M, Correa CC, Bernardes JS, Pereira MP, Oliveira LJM, Strauss M, Bufon CCB (2017) Flexible and foldable fully-printed carbon black conductive nanostructures on paper for high-performance electronic, electrochemical, and wearable devices. ACS Appl Mater Interfaces 9:24365–24372. https://doi.org/10.1021/acsami.7b06598CrossRefPubMed Santhiago M, Correa CC, Bernardes JS, Pereira MP, Oliveira LJM, Strauss M, Bufon CCB (2017) Flexible and foldable fully-printed carbon black conductive nanostructures on paper for high-performance electronic, electrochemical, and wearable devices. ACS Appl Mater Interfaces 9:24365–24372. https://​doi.​org/​10.​1021/​acsami.​7b06598CrossRefPubMed
Zurück zum Zitat Seyedin S, Zhang P, Naebe M, Qin S, Chen J, Wang X, Razal JM (2019) Textile strain sensors: a review of the fabrication technologies, performance evaluation and applications. Mater Horiz 6:219–249CrossRef Seyedin S, Zhang P, Naebe M, Qin S, Chen J, Wang X, Razal JM (2019) Textile strain sensors: a review of the fabrication technologies, performance evaluation and applications. Mater Horiz 6:219–249CrossRef
Zurück zum Zitat Shih WP, Lee CL, Lee CW, Tsao LC, Yang YJ, Fan KC (2011) A comparison of polymer composites for development of flexible sensor array. J Chin Soc Mech Eng 32:267–272 Shih WP, Lee CL, Lee CW, Tsao LC, Yang YJ, Fan KC (2011) A comparison of polymer composites for development of flexible sensor array. J Chin Soc Mech Eng 32:267–272
Zurück zum Zitat Tong R et al (2019) Highly stretchable and compressible cellulose ionic hydrogels for flexible strain sensors. Biomacromolecules 20:2096–2104CrossRef Tong R et al (2019) Highly stretchable and compressible cellulose ionic hydrogels for flexible strain sensors. Biomacromolecules 20:2096–2104CrossRef
Zurück zum Zitat Trache D, Hussin MH, Haafiz MKM, Thakur VK (2017) Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9:1763–1786CrossRef Trache D, Hussin MH, Haafiz MKM, Thakur VK (2017) Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9:1763–1786CrossRef
Zurück zum Zitat Trung TQ, Lee NE (2016) Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Adv Mater 28:4338–4372CrossRef Trung TQ, Lee NE (2016) Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Adv Mater 28:4338–4372CrossRef
Zurück zum Zitat Wang Y, Zhang L, Lu A (2019c) Transparent, antifreezing, ionic conductive cellulose hydrogel with stable sensitivity at subzero temperature. ACS Appl Mater Interfaces 11:41710–41716CrossRef Wang Y, Zhang L, Lu A (2019c) Transparent, antifreezing, ionic conductive cellulose hydrogel with stable sensitivity at subzero temperature. ACS Appl Mater Interfaces 11:41710–41716CrossRef
Zurück zum Zitat Yan T, Wang Z, Pan ZJ (2018) Flexible strain sensors fabricated using carbon-based nanomaterials: a review. Curr Opin Solid State Mater Sci 22:213–228CrossRef Yan T, Wang Z, Pan ZJ (2018) Flexible strain sensors fabricated using carbon-based nanomaterials: a review. Curr Opin Solid State Mater Sci 22:213–228CrossRef
Zurück zum Zitat Yang B, Yuan W (2019) Highly stretchable, adhesive, and mechanical zwitterionic nanocomposite hydrogel biomimetic skin. ACS Appl Mater Interfaces 11:40620–40628CrossRef Yang B, Yuan W (2019) Highly stretchable, adhesive, and mechanical zwitterionic nanocomposite hydrogel biomimetic skin. ACS Appl Mater Interfaces 11:40620–40628CrossRef
Zurück zum Zitat Yang G, Lee C, Kim J, Ren F, Pearton SJ (2013) Flexible graphene-based chemical sensors on paper substrates. Phys Chem Chem Phys 15:1798–1801CrossRef Yang G, Lee C, Kim J, Ren F, Pearton SJ (2013) Flexible graphene-based chemical sensors on paper substrates. Phys Chem Chem Phys 15:1798–1801CrossRef
Zurück zum Zitat Yao YB, Duan XS, Niu MC, Luo JJ, Wang R, Liu T (2019) One-step process for direct laser writing carbonization of NH4H2PO4 treated cellulose paper and its use for facile fabrication of multifunctional force sensors with corrugated structures. Cellulose 26:7423–7435. https://doi.org/10.1007/s10570-019-02617-4CrossRef Yao YB, Duan XS, Niu MC, Luo JJ, Wang R, Liu T (2019) One-step process for direct laser writing carbonization of NH4H2PO4 treated cellulose paper and its use for facile fabrication of multifunctional force sensors with corrugated structures. Cellulose 26:7423–7435. https://​doi.​org/​10.​1007/​s10570-019-02617-4CrossRef
Zurück zum Zitat Yu LW, Tatsumi D, Morita M (2013) Relationship between viscoelasticity and electrical conductivity of carbonized cellulose fiber networks. Nihon Reoroji Gakkaishi 41:331–336CrossRef Yu LW, Tatsumi D, Morita M (2013) Relationship between viscoelasticity and electrical conductivity of carbonized cellulose fiber networks. Nihon Reoroji Gakkaishi 41:331–336CrossRef
Metadaten
Titel
Review of flexible strain sensors based on cellulose composites for multi-faceted applications
verfasst von
Ziyang Chen
Tao Yan
Zhijuan Pan
Publikationsdatum
06.11.2020
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 2/2021
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-020-03543-6

Weitere Artikel der Ausgabe 2/2021

Cellulose 2/2021 Zur Ausgabe