Skip to main content
Erschienen in: Cellulose 10/2022

24.05.2022 | Review Paper

Dialdehyde cellulose as a niche material for versatile applications: an overview

verfasst von: Ganeswar Dalei, Subhraseema Das, Manoranjan Pradhan

Erschienen in: Cellulose | Ausgabe 10/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Dialdehyde cellulose (DAC) has garnered substantial scientific interest, thanks to broad spectrum of possible chemical reactions offered by the aldehyde moieties in its backbone. In the present review, we have recapitulated the state-of-the-art knowledge on the synthesis and physicochemical properties of DAC. The review also encompasses DAC derivatives obtained by blending, grafting and crosslinking with molecules and/or polymers that has been engineered into diverse architectures (e.g. conjugates, nanoparticles, microspheres, hydrogels etc.). The prospects of the resulting DAC products in biomedical sectors such as wound healing, drug delivery, tissue engineering etc. is discussed eloquently. Besides focusing on the pharmaceutical applications of DAC; this review also aims to provide an overview on the recent advances of DAC as a functional material in environmental and energy sectors. Integrating the academic and technological knowledge of DAC can further pave the path towards the development of novel DAC-based functional materials in a scalable and sustainable way.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abboud M, Bondock S, El-Zahhar ES, Alghamdi MM, Keshk SMAS (2021) Synthesis and characterization of dialdehyde cellulose/amino-functionalized MCM-41 core-shell microspheres as a new eco-friendly flame-retardant nanocomposite. J Appl Polym Sci 138:50215CrossRef Abboud M, Bondock S, El-Zahhar ES, Alghamdi MM, Keshk SMAS (2021) Synthesis and characterization of dialdehyde cellulose/amino-functionalized MCM-41 core-shell microspheres as a new eco-friendly flame-retardant nanocomposite. J Appl Polym Sci 138:50215CrossRef
Zurück zum Zitat Abdulkhani A, Marvast EH, Ashori A, Hamzeh Y, Karimi AN (2013) Preparation of cellulose/polyvinyl alcohol biocomposite films using 1-n-butyl-3-methylimidazolium chloride. Int J Biol Macromol 62:379–386PubMedCrossRef Abdulkhani A, Marvast EH, Ashori A, Hamzeh Y, Karimi AN (2013) Preparation of cellulose/polyvinyl alcohol biocomposite films using 1-n-butyl-3-methylimidazolium chloride. Int J Biol Macromol 62:379–386PubMedCrossRef
Zurück zum Zitat Abou-Yousef H, Dacrory S, Hasanin M, Saber E, Kamel S (2021) Biocompatible hydrogel based on aldehyde-functionalized cellulose and chitosan for potential control drug release. Sustain Chem Pharm 21:100419CrossRef Abou-Yousef H, Dacrory S, Hasanin M, Saber E, Kamel S (2021) Biocompatible hydrogel based on aldehyde-functionalized cellulose and chitosan for potential control drug release. Sustain Chem Pharm 21:100419CrossRef
Zurück zum Zitat Alam MD, Christopher LP (2017) A novel, cost-effective and eco-friendly method for preparation of textile fibers from cellulosic pulps. Carbohydr Polym 173:253–258PubMedCrossRef Alam MD, Christopher LP (2017) A novel, cost-effective and eco-friendly method for preparation of textile fibers from cellulosic pulps. Carbohydr Polym 173:253–258PubMedCrossRef
Zurück zum Zitat Alavi M, Nokhodchi A (2020) Antimicrobial and wound treatment aspects of micro-and nanoformulations of carboxymethyl, dialdehyde, and TEMPO-oxidized derivatives of cellulose: recent advances. Macromol Biosci 20:1900362CrossRef Alavi M, Nokhodchi A (2020) Antimicrobial and wound treatment aspects of micro-and nanoformulations of carboxymethyl, dialdehyde, and TEMPO-oxidized derivatives of cellulose: recent advances. Macromol Biosci 20:1900362CrossRef
Zurück zum Zitat Alle M, Bandi R, Sharma G, Dadigala R, Lee S-H, Kim J-C (2022) Gold nanoparticles spontaneously grown on cellulose nanofibrils as a reusable nanozyme for colorimetric detection of cholesterol in human serum. Int J Biol Macromol 201:686–697PubMedCrossRef Alle M, Bandi R, Sharma G, Dadigala R, Lee S-H, Kim J-C (2022) Gold nanoparticles spontaneously grown on cellulose nanofibrils as a reusable nanozyme for colorimetric detection of cholesterol in human serum. Int J Biol Macromol 201:686–697PubMedCrossRef
Zurück zum Zitat Amer H, Nypelo T, Sulaeva I, Bacher M, Henniges U, Potthast A, Rosenau T (2016) Synthesis and characterization of periodate-oxidized polysaccharides: dialdehyde xylan (DAX). Biomacromol 17:2972–2980CrossRef Amer H, Nypelo T, Sulaeva I, Bacher M, Henniges U, Potthast A, Rosenau T (2016) Synthesis and characterization of periodate-oxidized polysaccharides: dialdehyde xylan (DAX). Biomacromol 17:2972–2980CrossRef
Zurück zum Zitat Asere TG et al (2019) Dialdehyde carboxymethyl cellulose cross-linked chitosan for the recovery of palladium and platinum from aqueous solution. React Funct Polym 141:145–154CrossRef Asere TG et al (2019) Dialdehyde carboxymethyl cellulose cross-linked chitosan for the recovery of palladium and platinum from aqueous solution. React Funct Polym 141:145–154CrossRef
Zurück zum Zitat Azzam F, Galliot M, Putaux JL, Heux L, Jean B (2015) Surface peeling of cellulose nanocrystals resulting from periodate oxidation and reductive amination with water-soluble polymers. Cellulose 22(6):3701–3714CrossRef Azzam F, Galliot M, Putaux JL, Heux L, Jean B (2015) Surface peeling of cellulose nanocrystals resulting from periodate oxidation and reductive amination with water-soluble polymers. Cellulose 22(6):3701–3714CrossRef
Zurück zum Zitat Bandi R, Alle M, Dadigala R, Park C-W, Han S-Y, Kwon G-J, Kim J-C, Lee S-H (2022) Integrating the high peroxidase activity of carbon dots with easy recyclability: immobilization on dialdehyde cellulose nanofibrils and cholesterol detection. Appl Mater Today 26:101286CrossRef Bandi R, Alle M, Dadigala R, Park C-W, Han S-Y, Kwon G-J, Kim J-C, Lee S-H (2022) Integrating the high peroxidase activity of carbon dots with easy recyclability: immobilization on dialdehyde cellulose nanofibrils and cholesterol detection. Appl Mater Today 26:101286CrossRef
Zurück zum Zitat Bansal M, Chauhan GS, Kaushik A, Sharmaca A (2016) Extraction and functionalization of bagasse cellulose nanofibers to Schiff-base based antimicrobial membranes. Int J Biol Macromol 91:887–894PubMedCrossRef Bansal M, Chauhan GS, Kaushik A, Sharmaca A (2016) Extraction and functionalization of bagasse cellulose nanofibers to Schiff-base based antimicrobial membranes. Int J Biol Macromol 91:887–894PubMedCrossRef
Zurück zum Zitat Besemer A (2003) Recovery process for spent periodate (Patent No. US6620928B2) United States Patent Besemer A (2003) Recovery process for spent periodate (Patent No. US6620928B2) United States Patent
Zurück zum Zitat Bo T, Han PP, Su QZ, Fu P, Guo FZ, Zheng ZX, Tan ZL, Zhong C, Jia SR (2016) Antimicrobial ε-poly-L-lysine induced changes in cell membrane compositions and properties of Saccharomyces cerevisiae. Food Control 61:123–134CrossRef Bo T, Han PP, Su QZ, Fu P, Guo FZ, Zheng ZX, Tan ZL, Zhong C, Jia SR (2016) Antimicrobial ε-poly-L-lysine induced changes in cell membrane compositions and properties of Saccharomyces cerevisiae. Food Control 61:123–134CrossRef
Zurück zum Zitat Bobbitt JM (1956) Periodate oxidation of carbohydrates. Adv Carbohydr Chem 48(11):1–41PubMed Bobbitt JM (1956) Periodate oxidation of carbohydrates. Adv Carbohydr Chem 48(11):1–41PubMed
Zurück zum Zitat Buist GJ, Bunton CA, Hipperson WCP (1971) The mechanism of oxidation of α-glycols by periodic acid Part X The oxidation of pinacol, and a general discussion of the stability of periodate esters and their role in the mechanism of oxidation J Chem Soc B Physic Organic 2128–2142. Buist GJ, Bunton CA, Hipperson WCP (1971) The mechanism of oxidation of α-glycols by periodic acid Part X The oxidation of pinacol, and a general discussion of the stability of periodate esters and their role in the mechanism of oxidation J Chem Soc B Physic Organic 2128–2142.
Zurück zum Zitat Bunton CA, Shiner VJ (1960) Periodate oxidation of 1,2-diols, diketones, and hydroxy-ketones: the use of oxygen-18 as a tracer J Chem Soc 1593 – 1598 Bunton CA, Shiner VJ (1960) Periodate oxidation of 1,2-diols, diketones, and hydroxy-ketones: the use of oxygen-18 as a tracer J Chem Soc 1593 – 1598
Zurück zum Zitat Calvini P, Gorassini A, Luciano G, Franceschi E (2006) FTIR and WAXS analysis of periodate oxycellulose: evidence for a cluster mechanism of oxidation. Vib Spectroscop 40:177–183CrossRef Calvini P, Gorassini A, Luciano G, Franceschi E (2006) FTIR and WAXS analysis of periodate oxycellulose: evidence for a cluster mechanism of oxidation. Vib Spectroscop 40:177–183CrossRef
Zurück zum Zitat Casu B, Naggi A, Torri G, Allegra G, Meille SV, Cosani A, Terbojevich M (1985) Stereoregular acyclic polyalcohols and polyacetates from cellulose and amylose. Macromolecules 18:2762–2767CrossRef Casu B, Naggi A, Torri G, Allegra G, Meille SV, Cosani A, Terbojevich M (1985) Stereoregular acyclic polyalcohols and polyacetates from cellulose and amylose. Macromolecules 18:2762–2767CrossRef
Zurück zum Zitat Chang C, Zhang L (2011) Cellulose-based hydrogels: present status and application prospects. Carbohydr Polym 84:40–53CrossRef Chang C, Zhang L (2011) Cellulose-based hydrogels: present status and application prospects. Carbohydr Polym 84:40–53CrossRef
Zurück zum Zitat Chavan VB, Sarwade BD, Varma AJ (2002) Morphology of cellulose and oxidized cellulose in powder form. Carbohydr Polym 50:41–45CrossRef Chavan VB, Sarwade BD, Varma AJ (2002) Morphology of cellulose and oxidized cellulose in powder form. Carbohydr Polym 50:41–45CrossRef
Zurück zum Zitat Chen D, van de Ven TG (2016) Morphological changes of sterically stabilized nanocrystalline cellulose after periodate oxidation. Cellulose 23(2):1051–1059CrossRef Chen D, van de Ven TG (2016) Morphological changes of sterically stabilized nanocrystalline cellulose after periodate oxidation. Cellulose 23(2):1051–1059CrossRef
Zurück zum Zitat Chen X, Chen J, You T, Wang K, Xu F (2015) Effects of polymorphs on dissolution of cellulose in NaOH/urea aqueous solution. Carbohydr Polym 125:85–91PubMedCrossRef Chen X, Chen J, You T, Wang K, Xu F (2015) Effects of polymorphs on dissolution of cellulose in NaOH/urea aqueous solution. Carbohydr Polym 125:85–91PubMedCrossRef
Zurück zum Zitat Chen H, Sharma SK, Sharma PR, Yeh H, Johnson K, Hsiao BS (2019a) Arsenic(III) removal by nanostructured dialdehyde cellulose–cysteine microscale and nanoscale fibers. ACS Omega 4:22008–22020PubMedPubMedCentralCrossRef Chen H, Sharma SK, Sharma PR, Yeh H, Johnson K, Hsiao BS (2019a) Arsenic(III) removal by nanostructured dialdehyde cellulose–cysteine microscale and nanoscale fibers. ACS Omega 4:22008–22020PubMedPubMedCentralCrossRef
Zurück zum Zitat Chen N, Wang H, Ling C, Vermerris W, Wang B, Tong Z (2019b) Cellulose-based injectable hydrogel composite for pH-responsive and controllable drug delivery. Carbohydr Polym 225:115207PubMedCrossRef Chen N, Wang H, Ling C, Vermerris W, Wang B, Tong Z (2019b) Cellulose-based injectable hydrogel composite for pH-responsive and controllable drug delivery. Carbohydr Polym 225:115207PubMedCrossRef
Zurück zum Zitat Chen L, Zhou H, Hao L, Li Z, Xu H, Chen H, Zhou X (2020) Dialdehyde carboxymethyl cellulose-zein conjugate as water-based nanocarrier for improving the efficacy of pesticides. Ind Crop Product 150:112358CrossRef Chen L, Zhou H, Hao L, Li Z, Xu H, Chen H, Zhou X (2020) Dialdehyde carboxymethyl cellulose-zein conjugate as water-based nanocarrier for improving the efficacy of pesticides. Ind Crop Product 150:112358CrossRef
Zurück zum Zitat Chen L, Dong Q, Shi Q, Du Y, Zeng Q, Zhao Y, Wang JJ (2021) Novel 2,3-dialdehyde cellulose-based films with photodynamic inactivation potency by incorporating the β-cyclodextrin/curcumin inclusion complex. Biomacromol 22:2790–2801CrossRef Chen L, Dong Q, Shi Q, Du Y, Zeng Q, Zhao Y, Wang JJ (2021) Novel 2,3-dialdehyde cellulose-based films with photodynamic inactivation potency by incorporating the β-cyclodextrin/curcumin inclusion complex. Biomacromol 22:2790–2801CrossRef
Zurück zum Zitat Conley K, Whitehead MA, van de Van TGM (2016) Chemically peeling layers of cellulose nanocrystals by periodate and chlorite oxidation. Cellulose 23:1553–1563CrossRef Conley K, Whitehead MA, van de Van TGM (2016) Chemically peeling layers of cellulose nanocrystals by periodate and chlorite oxidation. Cellulose 23:1553–1563CrossRef
Zurück zum Zitat Cunha G, Saxell H, Grankvist R (2021) Cross-linkable cellulose as 3D printing material. US Patent Application Pub. No. US 2021/0277265 A1; filed June 11, 2019 and Pub. Date Sep. 9, 2021 Cunha G, Saxell H, Grankvist R (2021) Cross-linkable cellulose as 3D printing material. US Patent Application Pub. No. US 2021/0277265 A1; filed June 11, 2019 and Pub. Date Sep. 9, 2021
Zurück zum Zitat Dacrory S (2021) Antimicrobial activity, DFT calculations, and molecular docking of dialdehyde cellulose/graphene oxide film against Covid-19. J Polym Environ 29:2248–2260CrossRef Dacrory S (2021) Antimicrobial activity, DFT calculations, and molecular docking of dialdehyde cellulose/graphene oxide film against Covid-19. J Polym Environ 29:2248–2260CrossRef
Zurück zum Zitat Dakdouki SC, Villemin D, Bar N (2011) An original on-column oxidative cleavage of vicinal diols using alumina/potassium periodate: application to sequential oxidation/horner-emmons reactions. Eur J Org Chem 23:4448–4454CrossRef Dakdouki SC, Villemin D, Bar N (2011) An original on-column oxidative cleavage of vicinal diols using alumina/potassium periodate: application to sequential oxidation/horner-emmons reactions. Eur J Org Chem 23:4448–4454CrossRef
Zurück zum Zitat Dang X, Liu P, Yang M, Deng H, Shan Z, Zhen W (2019) Production and characterization of dialdehyde cellulose through green and sustainable approach. Cellulose 26:9503–9515CrossRef Dang X, Liu P, Yang M, Deng H, Shan Z, Zhen W (2019) Production and characterization of dialdehyde cellulose through green and sustainable approach. Cellulose 26:9503–9515CrossRef
Zurück zum Zitat Dash R, Ragauskas AJ (2012) Synthesis of a novel cellulose nanowhisker-based drug delivery system. RSC Adv 2:3403–3409CrossRef Dash R, Ragauskas AJ (2012) Synthesis of a novel cellulose nanowhisker-based drug delivery system. RSC Adv 2:3403–3409CrossRef
Zurück zum Zitat Dash R, Elder T, Ragauskas AJ (2012) Grafting of model primary amine compounds to cellulose nanowhiskers through periodate oxidation. Cellulose 19:2069–2079CrossRef Dash R, Elder T, Ragauskas AJ (2012) Grafting of model primary amine compounds to cellulose nanowhiskers through periodate oxidation. Cellulose 19:2069–2079CrossRef
Zurück zum Zitat Devi KS, Sinha TJM, Vasudevan P (1986) Biosoluble surgical material from 2,3-diadehyde cellulose. Biomater 7:193–196CrossRef Devi KS, Sinha TJM, Vasudevan P (1986) Biosoluble surgical material from 2,3-diadehyde cellulose. Biomater 7:193–196CrossRef
Zurück zum Zitat Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS (2011) Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci 679:1–19CrossRef Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS (2011) Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci 679:1–19CrossRef
Zurück zum Zitat Dhivya S, Padma VV, Santhini E (2015) Wound dressings – a review. Biomedicine 5:24–28CrossRef Dhivya S, Padma VV, Santhini E (2015) Wound dressings – a review. Biomedicine 5:24–28CrossRef
Zurück zum Zitat Dias GJ, Peplow PV, Teixeira F (2003) Osseous regeneration in the presence of oxidized cellulose and collagen. J Mater Sci Mater Med 14:739–745PubMedCrossRef Dias GJ, Peplow PV, Teixeira F (2003) Osseous regeneration in the presence of oxidized cellulose and collagen. J Mater Sci Mater Med 14:739–745PubMedCrossRef
Zurück zum Zitat Dinand E, Chanzy H, Vignon MR (1999) Suspensions of cellulose microfibrils from sugar beet pulp. Food Hydrocolloid 13:275–283CrossRef Dinand E, Chanzy H, Vignon MR (1999) Suspensions of cellulose microfibrils from sugar beet pulp. Food Hydrocolloid 13:275–283CrossRef
Zurück zum Zitat Ding W, Wu Y (2020) Sustainable dialdehyde polysaccharides as versatile building blocks for fabricating functional materials: an overview. Carbohydr Polym 248:116801PubMedCrossRef Ding W, Wu Y (2020) Sustainable dialdehyde polysaccharides as versatile building blocks for fabricating functional materials: an overview. Carbohydr Polym 248:116801PubMedCrossRef
Zurück zum Zitat Ding C, Zhang Y, Yuan B, Yang X, Shi R, Zhang M (2018) The preparation of nano-SiO2/dialdehyde cellulose hybrid materials as a novel cross-linking agent for collagen solutions. Polymers 10:550PubMedCentralCrossRef Ding C, Zhang Y, Yuan B, Yang X, Shi R, Zhang M (2018) The preparation of nano-SiO2/dialdehyde cellulose hybrid materials as a novel cross-linking agent for collagen solutions. Polymers 10:550PubMedCentralCrossRef
Zurück zum Zitat Domingos JL et al (2004) Crude d-(+)-glyceraldehyde obtained from d-mannitol-diacetonide by oxidative cleavage with sodium periodate: Its reactions with nucleophilic species. Syn Comm 34(4):589–598CrossRef Domingos JL et al (2004) Crude d-(+)-glyceraldehyde obtained from d-mannitol-diacetonide by oxidative cleavage with sodium periodate: Its reactions with nucleophilic species. Syn Comm 34(4):589–598CrossRef
Zurück zum Zitat Domingues RMA, Gomes ME, Reis RL (2014) The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromol 15(7):2327–2346CrossRef Domingues RMA, Gomes ME, Reis RL (2014) The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromol 15(7):2327–2346CrossRef
Zurück zum Zitat Dong F, Li S (2018) Wound dressings based on chitosan-dialdehyde cellulose nanocrystals-silver nanoparticles: mechanical strength, antibacterial activity and cytotoxicity. Polymers 10:673PubMedCentralCrossRef Dong F, Li S (2018) Wound dressings based on chitosan-dialdehyde cellulose nanocrystals-silver nanoparticles: mechanical strength, antibacterial activity and cytotoxicity. Polymers 10:673PubMedCentralCrossRef
Zurück zum Zitat Dong S, Feng S, Liu F, Li R, Li W, Liu F, Shi G, Chen L, Zhang Y (2021) Factors influencing the adhesive behavior of carboxymethyl cellulose-based hydrogel for food applications. Int J Biol Macromol 179:398–406PubMedCrossRef Dong S, Feng S, Liu F, Li R, Li W, Liu F, Shi G, Chen L, Zhang Y (2021) Factors influencing the adhesive behavior of carboxymethyl cellulose-based hydrogel for food applications. Int J Biol Macromol 179:398–406PubMedCrossRef
Zurück zum Zitat Doughan S, Uddayasankar U, Krull UJ (2015) A paper-based resonance energy transfer nucleic acid hybridization assay using upconversion nanoparticles as donors and quantum dots as acceptors. Anal Chim Acta 878:1–8PubMedCrossRef Doughan S, Uddayasankar U, Krull UJ (2015) A paper-based resonance energy transfer nucleic acid hybridization assay using upconversion nanoparticles as donors and quantum dots as acceptors. Anal Chim Acta 878:1–8PubMedCrossRef
Zurück zum Zitat Dryhurst G (2015) Periodate oxidation of diol and other functional groups: analytical and structural applications. Elsevier, Amsterdam Dryhurst G (2015) Periodate oxidation of diol and other functional groups: analytical and structural applications. Elsevier, Amsterdam
Zurück zum Zitat Durán VL, Larsson PA, Wågberg L (2016) On the relationship between fibre composition and material properties following periodate oxidation and borohydride reduction of lignocellulosic fibres. Cellulose 23:3495–3510CrossRef Durán VL, Larsson PA, Wågberg L (2016) On the relationship between fibre composition and material properties following periodate oxidation and borohydride reduction of lignocellulosic fibres. Cellulose 23:3495–3510CrossRef
Zurück zum Zitat Durán VL, Larsson PA, Wågberg L (2018) Chemical modification of cellulose-rich fibres to clarify the influence of the chemical structure on the physical and mechanical properties of cellulose fibres and thereof made sheets. Carbohydr Polym 182:1–7CrossRef Durán VL, Larsson PA, Wågberg L (2018) Chemical modification of cellulose-rich fibres to clarify the influence of the chemical structure on the physical and mechanical properties of cellulose fibres and thereof made sheets. Carbohydr Polym 182:1–7CrossRef
Zurück zum Zitat Edwards JV, Castro NJ, Condon B, Costable C, Goheen SC (2012) Chromatographic and traditional albumin isotherms on cellulose: a model for wound protein adsorption on modified cotton. J Biomater Appl 26:939–961PubMedCrossRef Edwards JV, Castro NJ, Condon B, Costable C, Goheen SC (2012) Chromatographic and traditional albumin isotherms on cellulose: a model for wound protein adsorption on modified cotton. J Biomater Appl 26:939–961PubMedCrossRef
Zurück zum Zitat El Meligy MG, El Rafie Sh, Abu-Zied KM (2005) Preparation of dialdehyde cellulose hydrazone derivatives and evaluating their efficiency for sewage wastewater treatment. Desalination 173:33–44CrossRef El Meligy MG, El Rafie Sh, Abu-Zied KM (2005) Preparation of dialdehyde cellulose hydrazone derivatives and evaluating their efficiency for sewage wastewater treatment. Desalination 173:33–44CrossRef
Zurück zum Zitat Errezma M, Mabrouk AB, Magnin A, Dufresne A, Boufi S (2018) Surfactant-free emulsion pickering polymerization stabilized by aldehyde-functionalized cellulose nanocrystals. Carbohydr Polym 202:621–630PubMedCrossRef Errezma M, Mabrouk AB, Magnin A, Dufresne A, Boufi S (2018) Surfactant-free emulsion pickering polymerization stabilized by aldehyde-functionalized cellulose nanocrystals. Carbohydr Polym 202:621–630PubMedCrossRef
Zurück zum Zitat Esen E, Meier MAR (2020) Sustainable functionalization of 2,3-dialdehyde cellulose via the Passerini three-component reaction. ACS Sustain Chem Eng 8(41):15755–15760CrossRef Esen E, Meier MAR (2020) Sustainable functionalization of 2,3-dialdehyde cellulose via the Passerini three-component reaction. ACS Sustain Chem Eng 8(41):15755–15760CrossRef
Zurück zum Zitat Ettenauer M, Loth F, Thummler K, Fischer S, Weber V, Falkenhagen D (2011) Characterization and functionalization of cellulose microbeads for extracorporeal blood purification. Cellulose 18:1257–1263CrossRef Ettenauer M, Loth F, Thummler K, Fischer S, Weber V, Falkenhagen D (2011) Characterization and functionalization of cellulose microbeads for extracorporeal blood purification. Cellulose 18:1257–1263CrossRef
Zurück zum Zitat Eyley S, Thielemans W (2014) Surface modification of cellulose nanocrystals. Nanoscale 6:7764–7779PubMedCrossRef Eyley S, Thielemans W (2014) Surface modification of cellulose nanocrystals. Nanoscale 6:7764–7779PubMedCrossRef
Zurück zum Zitat Fan QG, Lewis DM, Tapley KN (2001) Characterization of cellulose aldehyde by Fourier transform infrared spectroscopy. J Appl Polym Sci 82:1195–1202CrossRef Fan QG, Lewis DM, Tapley KN (2001) Characterization of cellulose aldehyde by Fourier transform infrared spectroscopy. J Appl Polym Sci 82:1195–1202CrossRef
Zurück zum Zitat Feng X, Zhang J, Wang J, Han A, Fang G, Liu J, Wang S (2020) The stabilization of fluorescent copper nanoclusters by dialdehyde cellulose and their use in mercury ion sensing. Anal Methods 12:3130–3136PubMedCrossRef Feng X, Zhang J, Wang J, Han A, Fang G, Liu J, Wang S (2020) The stabilization of fluorescent copper nanoclusters by dialdehyde cellulose and their use in mercury ion sensing. Anal Methods 12:3130–3136PubMedCrossRef
Zurück zum Zitat Galbraikh LS, Rogovin ZA (1971) Derivatives of cellulose. In: Bikales NM, Segal L (eds) Cellulose and cellulose derivatives. Wiley, New York Galbraikh LS, Rogovin ZA (1971) Derivatives of cellulose. In: Bikales NM, Segal L (eds) Cellulose and cellulose derivatives. Wiley, New York
Zurück zum Zitat Gao J, Chen L, Wu Q, Li H, Dong S, Qin P, Yang F, Zhao L (2019) Preparation and chromatographic performance of a multifunctional immobilized chiral stationary phase based on dialdehyde microcrystalline cellulose derivatives. Chirality 31:669–681PubMedCrossRef Gao J, Chen L, Wu Q, Li H, Dong S, Qin P, Yang F, Zhao L (2019) Preparation and chromatographic performance of a multifunctional immobilized chiral stationary phase based on dialdehyde microcrystalline cellulose derivatives. Chirality 31:669–681PubMedCrossRef
Zurück zum Zitat Gao J, Luo G, Li Z, Li H, Zhao L, Qiu H (2020) A new strategy for the preparation of mixed-mode chromatographic stationary phases based on modified dialdehyde cellulose. J Chromatogr A 1618:460885PubMedCrossRef Gao J, Luo G, Li Z, Li H, Zhao L, Qiu H (2020) A new strategy for the preparation of mixed-mode chromatographic stationary phases based on modified dialdehyde cellulose. J Chromatogr A 1618:460885PubMedCrossRef
Zurück zum Zitat Ge H, Zhang L, Xu M, Cao J, Kang C (2018) Preparation of dialdehyde cellulose and its antibacterial activity, in: advances in applied biotechnology. Springer, Singapore 444: 545–553 Ge H, Zhang L, Xu M, Cao J, Kang C (2018) Preparation of dialdehyde cellulose and its antibacterial activity, in: advances in applied biotechnology. Springer, Singapore 444: 545–553
Zurück zum Zitat George D, Maheswari PU, Begum KMMS, Arthanareeswaran G (2019) Biomass-derived dialdehyde cellulose cross-linked chitosan-based nanocomposite hydrogel with phytosynthesized zinc oxide nanoparticles for enhanced curcumin delivery and bioactivity. J Agric Food Chem 67:10880–10890PubMedCrossRef George D, Maheswari PU, Begum KMMS, Arthanareeswaran G (2019) Biomass-derived dialdehyde cellulose cross-linked chitosan-based nanocomposite hydrogel with phytosynthesized zinc oxide nanoparticles for enhanced curcumin delivery and bioactivity. J Agric Food Chem 67:10880–10890PubMedCrossRef
Zurück zum Zitat Guigo N, Mazeau K, Putaux J-L, Heux L (2014) Surface modification of cellulose microfibrils by periodate oxidation and subsequent reductive amination with benzylamine: a topochemical study. Cellulose 21:4119–4133CrossRef Guigo N, Mazeau K, Putaux J-L, Heux L (2014) Surface modification of cellulose microfibrils by periodate oxidation and subsequent reductive amination with benzylamine: a topochemical study. Cellulose 21:4119–4133CrossRef
Zurück zum Zitat Gulsu A, Yuksektepe E (2021) Preparation of gentamicin conjugated cellulose nanocrystals and evaluation of efficacy on different microorganisms. Eur J Sci Technol 27:1105–1112 Gulsu A, Yuksektepe E (2021) Preparation of gentamicin conjugated cellulose nanocrystals and evaluation of efficacy on different microorganisms. Eur J Sci Technol 27:1105–1112
Zurück zum Zitat Hamed O et al (2022) Design, synthesis and antimicrobial properties of cellulose-based amine film. Polym Bull 79:627–641CrossRef Hamed O et al (2022) Design, synthesis and antimicrobial properties of cellulose-based amine film. Polym Bull 79:627–641CrossRef
Zurück zum Zitat Han S, Lee M (2009) Crosslinking reactions of oxidized cellulose fiber. II. Reactions between dialdehyde cellulose and chito-oligosaccharides on lyocell fabric. J Appl Polym Sci 112:709–714CrossRef Han S, Lee M (2009) Crosslinking reactions of oxidized cellulose fiber. II. Reactions between dialdehyde cellulose and chito-oligosaccharides on lyocell fabric. J Appl Polym Sci 112:709–714CrossRef
Zurück zum Zitat Hao L, Wang R, Zhao Y, Fang K, Cai Y (2018) The enzymatic actions of cellulase on periodate oxidized cotton fabrics. Cellulose 25:6759–6769CrossRef Hao L, Wang R, Zhao Y, Fang K, Cai Y (2018) The enzymatic actions of cellulase on periodate oxidized cotton fabrics. Cellulose 25:6759–6769CrossRef
Zurück zum Zitat Hasanin M, Hashem AH, El-Rashedy A, Kamel S (2021) Synthesis of novel heterocyclic compounds based on dialdehyde cellulose: characterization, antimicrobial, antitumor activity, molecular dynamics simulation and target identification. Cellulose 28:8355–8374CrossRef Hasanin M, Hashem AH, El-Rashedy A, Kamel S (2021) Synthesis of novel heterocyclic compounds based on dialdehyde cellulose: characterization, antimicrobial, antitumor activity, molecular dynamics simulation and target identification. Cellulose 28:8355–8374CrossRef
Zurück zum Zitat Hashem AH, Hasanin M, Kamel S, Dacrory S (2022) A new approach for antimicrobial and antiviral activities of biocompatible nanocomposite based on cellulose, amino acid and graphene oxide. Colloid Surf B Biointerface 209:112172CrossRef Hashem AH, Hasanin M, Kamel S, Dacrory S (2022) A new approach for antimicrobial and antiviral activities of biocompatible nanocomposite based on cellulose, amino acid and graphene oxide. Colloid Surf B Biointerface 209:112172CrossRef
Zurück zum Zitat He H et al (2016) The oxidation of viscose fiber optimized by response surface methodology and its further amination with PEI for CO2 adsorption. Cellulose 23:2539–2548CrossRef He H et al (2016) The oxidation of viscose fiber optimized by response surface methodology and its further amination with PEI for CO2 adsorption. Cellulose 23:2539–2548CrossRef
Zurück zum Zitat He X, He Z, Li Y, Yu H, Zhang L, Ge H, Man S, Dai Y (2018) Modeling of the bacterial inactivation kinetics of dialdehyde cellulose in aqueous suspension. Int J Biol Macromol 116:920–926PubMedCrossRef He X, He Z, Li Y, Yu H, Zhang L, Ge H, Man S, Dai Y (2018) Modeling of the bacterial inactivation kinetics of dialdehyde cellulose in aqueous suspension. Int J Biol Macromol 116:920–926PubMedCrossRef
Zurück zum Zitat He X, Li Y, Zhang L, Du R, Dai Y, Tan Z (2021) Preparation of 2,3-dialdehyde microcrystalline cellulose particles crosslinked with e-poly-L-lysine and their antibacterial activity. Cellulose 28:2833–2847CrossRef He X, Li Y, Zhang L, Du R, Dai Y, Tan Z (2021) Preparation of 2,3-dialdehyde microcrystalline cellulose particles crosslinked with e-poly-L-lysine and their antibacterial activity. Cellulose 28:2833–2847CrossRef
Zurück zum Zitat Hell S, Ohkawa K, Amer H, Potthast A, Rosenau T (2018) Dialdehyde cellulose nanofibers by electrospinning as polyvinyl alcohol blends: manufacture and product characterization. J Wood Chem Technol 38:96–110CrossRef Hell S, Ohkawa K, Amer H, Potthast A, Rosenau T (2018) Dialdehyde cellulose nanofibers by electrospinning as polyvinyl alcohol blends: manufacture and product characterization. J Wood Chem Technol 38:96–110CrossRef
Zurück zum Zitat Hell S, Ohkawa K, Amer H, Potthast A, Rosenau T (2020) A general protocol for electrospun non-woven fabrics of dialdehyde cellulose and poly(vinyl alcohol). Nanomaterials 10:671PubMedCentralCrossRef Hell S, Ohkawa K, Amer H, Potthast A, Rosenau T (2020) A general protocol for electrospun non-woven fabrics of dialdehyde cellulose and poly(vinyl alcohol). Nanomaterials 10:671PubMedCentralCrossRef
Zurück zum Zitat Hensdal CL, Svensson A, Bergqvist L, Carlstrom AT, Axrup L (2021) Barrier film comprising microfibrillated cellulose and microfibrillated dialdehyde cellulose and a method for manufacturing the barrier film. US Patent 11,162,222 B2; filed Apr. 11, 2018 and granted Nov. 2, 2021 Hensdal CL, Svensson A, Bergqvist L, Carlstrom AT, Axrup L (2021) Barrier film comprising microfibrillated cellulose and microfibrillated dialdehyde cellulose and a method for manufacturing the barrier film. US Patent 11,162,222 B2; filed Apr. 11, 2018 and granted Nov. 2, 2021
Zurück zum Zitat Hessle CC, Andersson B, Wold AE (2005) Gram-positive and Gram-negative bacteria elicit different patterns of pro-inflammatory cytokines in human monocytes. Cytokine 30:311–318PubMedCrossRef Hessle CC, Andersson B, Wold AE (2005) Gram-positive and Gram-negative bacteria elicit different patterns of pro-inflammatory cytokines in human monocytes. Cytokine 30:311–318PubMedCrossRef
Zurück zum Zitat Hou Y, Wang X, Yang J, Zhu R, Zhang Z, Li Y (2018) Development and biocompatibility evaluation of biodegradable bacterial cellulose as a novel peripheral nerve scaffold. J Biomed Res Part A 106:1288–1298CrossRef Hou Y, Wang X, Yang J, Zhu R, Zhang Z, Li Y (2018) Development and biocompatibility evaluation of biodegradable bacterial cellulose as a novel peripheral nerve scaffold. J Biomed Res Part A 106:1288–1298CrossRef
Zurück zum Zitat Hu Q, Zhou F, Lu H, Li N, Peng B, Yu H, Yuan Y, Zhang H (2021) Improved antifouling performance of a polyamide composite reverse osmosis membrane by surface grafting of dialdehyde carboxymethyl cellulose (DACMC). J Membrane Sci 620:118843CrossRef Hu Q, Zhou F, Lu H, Li N, Peng B, Yu H, Yuan Y, Zhang H (2021) Improved antifouling performance of a polyamide composite reverse osmosis membrane by surface grafting of dialdehyde carboxymethyl cellulose (DACMC). J Membrane Sci 620:118843CrossRef
Zurück zum Zitat Huang R, Liu Z, Sun B, Fatehi P (2016) Preparation of dialdehyde cellulose nanocrystal as an adsorbent for creatinine. Can J Chem 94:1435–1441CrossRef Huang R, Liu Z, Sun B, Fatehi P (2016) Preparation of dialdehyde cellulose nanocrystal as an adsorbent for creatinine. Can J Chem 94:1435–1441CrossRef
Zurück zum Zitat Huang B, He H, Liu H, Zhang Y, Peng X, Wang B (2020) Multi-type cellulose nanocrystals from sugarcane bagasse and their nanohybrids constructed with polyhedral oligomeric silsesquioxane. Carbohydr Polym 227:115368PubMedCrossRef Huang B, He H, Liu H, Zhang Y, Peng X, Wang B (2020) Multi-type cellulose nanocrystals from sugarcane bagasse and their nanohybrids constructed with polyhedral oligomeric silsesquioxane. Carbohydr Polym 227:115368PubMedCrossRef
Zurück zum Zitat Huang X, Ji Y, Guo L, Xu Q, Jin L, Fu Y, Wang Y (2022) Incorporating tannin onto regenerated cellulose film towards sustainable active packaging. Ind Crop Prod 180:114710CrossRef Huang X, Ji Y, Guo L, Xu Q, Jin L, Fu Y, Wang Y (2022) Incorporating tannin onto regenerated cellulose film towards sustainable active packaging. Ind Crop Prod 180:114710CrossRef
Zurück zum Zitat Imamura Ah et al (2020) Monitoring cellulose oxidation for protein immobilization in paper-based low-cost biosensors. Microchim Acta 187:272CrossRef Imamura Ah et al (2020) Monitoring cellulose oxidation for protein immobilization in paper-based low-cost biosensors. Microchim Acta 187:272CrossRef
Zurück zum Zitat Isobe N, Lee D-S, Kwon Y-J, Kimura S, Kuga S, Wada M, Kim U-J (2011) Immobilization of protein on cellulose hydrogel. Cellulose 18:1251CrossRef Isobe N, Lee D-S, Kwon Y-J, Kimura S, Kuga S, Wada M, Kim U-J (2011) Immobilization of protein on cellulose hydrogel. Cellulose 18:1251CrossRef
Zurück zum Zitat Isupova ZY, Khashirova SY, Zhanistov AA, Kvashin VA, Khakyasheva EV, Musaev YI, Malkanduev YA (2018) New metal complexes derived from guanidine-containing dialdehyde cellulose. Fibre Chem 49:437–441CrossRef Isupova ZY, Khashirova SY, Zhanistov AA, Kvashin VA, Khakyasheva EV, Musaev YI, Malkanduev YA (2018) New metal complexes derived from guanidine-containing dialdehyde cellulose. Fibre Chem 49:437–441CrossRef
Zurück zum Zitat Jackson EL, Hudson CS (1937) Application of the cleavage type of oxidation by periodic acid to starch and cellulose. J Am Chem Soc 59:2049–2050CrossRef Jackson EL, Hudson CS (1937) Application of the cleavage type of oxidation by periodic acid to starch and cellulose. J Am Chem Soc 59:2049–2050CrossRef
Zurück zum Zitat Jackson EL, Hudson CS (1938) The structure of the products of the periodic acid oxidation of starch and cellulose. J Am Chem Soc 60:989–991CrossRef Jackson EL, Hudson CS (1938) The structure of the products of the periodic acid oxidation of starch and cellulose. J Am Chem Soc 60:989–991CrossRef
Zurück zum Zitat Jain RK, Lal K, Bhatnagar HL (1987) Thermal, morphological and spectroscopic studies on cellulose modified with phosphorus, nitrogen, sulphur and halogens. J Appl Polym Sci 33:247CrossRef Jain RK, Lal K, Bhatnagar HL (1987) Thermal, morphological and spectroscopic studies on cellulose modified with phosphorus, nitrogen, sulphur and halogens. J Appl Polym Sci 33:247CrossRef
Zurück zum Zitat Jamwal S, Dautoo UK, Ranote S, Dharela R, Chauhan GS (2019) Enhanced catalytic activity of new acryloyl crosslinked cellulose dialdehyde-nitrilase Schiff base and its reduced form for nitrile hydrolysis. Int J Biol Macromol 131:117–126PubMedCrossRef Jamwal S, Dautoo UK, Ranote S, Dharela R, Chauhan GS (2019) Enhanced catalytic activity of new acryloyl crosslinked cellulose dialdehyde-nitrilase Schiff base and its reduced form for nitrile hydrolysis. Int J Biol Macromol 131:117–126PubMedCrossRef
Zurück zum Zitat Janssen LJJ, Blijlevens MHA (2003) Electrochemical oxidation of iodate to periodate. Electrochim Acta 48(25–26):3959–3964CrossRef Janssen LJJ, Blijlevens MHA (2003) Electrochemical oxidation of iodate to periodate. Electrochim Acta 48(25–26):3959–3964CrossRef
Zurück zum Zitat Jeanes A, Wilham CA (1950) Periodate oxidation of dextrans. J Am Chem Soc 72(6):2655–2657CrossRef Jeanes A, Wilham CA (1950) Periodate oxidation of dextrans. J Am Chem Soc 72(6):2655–2657CrossRef
Zurück zum Zitat Ji Y, Xu Q, Jin L, Fu Y (2020) Cellulosic paper with high antioxidative and barrier properties obtained through incorporation of tannin into kraft pulp fibers. Int J Biol Macromol 162:678–684PubMedCrossRef Ji Y, Xu Q, Jin L, Fu Y (2020) Cellulosic paper with high antioxidative and barrier properties obtained through incorporation of tannin into kraft pulp fibers. Int J Biol Macromol 162:678–684PubMedCrossRef
Zurück zum Zitat Jiang Y, Zhou J, Yang Z, Liu D, Xv X, Zhao G, Shi H, Zhang Q (2018) Dialdehyde cellulose nanocrystal/gelatin hydrogel optimized for 3D printing applications. J Mater Sci 53:11883–11900CrossRef Jiang Y, Zhou J, Yang Z, Liu D, Xv X, Zhao G, Shi H, Zhang Q (2018) Dialdehyde cellulose nanocrystal/gelatin hydrogel optimized for 3D printing applications. J Mater Sci 53:11883–11900CrossRef
Zurück zum Zitat Kalmoush A, El-Sakhawy M, Kamel S, Salama A, Hesemann P (2020) A green method for preparation of amino acids functionalized 2,3-dialdehyde cellulose. Egypt J Chem 63:3517–3532 Kalmoush A, El-Sakhawy M, Kamel S, Salama A, Hesemann P (2020) A green method for preparation of amino acids functionalized 2,3-dialdehyde cellulose. Egypt J Chem 63:3517–3532
Zurück zum Zitat Kang X, Deng L, Yi L, Ruan C-Q, Zeng K (2021) A facile method for preparation of green and antibacterial hydrogel based on chitosan and water-soluble 2,3- dialdehyde cellulose. Cellulose 28:6403–6416CrossRef Kang X, Deng L, Yi L, Ruan C-Q, Zeng K (2021) A facile method for preparation of green and antibacterial hydrogel based on chitosan and water-soluble 2,3- dialdehyde cellulose. Cellulose 28:6403–6416CrossRef
Zurück zum Zitat Kanikireddy V, Varaprasad K, Jayaramudu T, Karthikeyan C, Sadiku R (2020) Carboxymethyl cellulose-based materials for infection control and wound healing: a review. Int J Biol Macromol 164:963–975PubMedCrossRef Kanikireddy V, Varaprasad K, Jayaramudu T, Karthikeyan C, Sadiku R (2020) Carboxymethyl cellulose-based materials for infection control and wound healing: a review. Int J Biol Macromol 164:963–975PubMedCrossRef
Zurück zum Zitat Kanth SV, Ramaraj A, Rao JR, Nair BU (2009) Stabilization of type I collagen using dialdehyde cellulose. Process Biochem 44:869–874CrossRef Kanth SV, Ramaraj A, Rao JR, Nair BU (2009) Stabilization of type I collagen using dialdehyde cellulose. Process Biochem 44:869–874CrossRef
Zurück zum Zitat Kasai W, Morooka T, Ek M (2014) Mechanical properties of films made from dialcohol cellulose prepared by homogeneous periodate oxidation. Cellulose 21:769–776CrossRef Kasai W, Morooka T, Ek M (2014) Mechanical properties of films made from dialcohol cellulose prepared by homogeneous periodate oxidation. Cellulose 21:769–776CrossRef
Zurück zum Zitat Kelloff GJ (1999) Perspectives on cancer chemoprevention research and drug development. Adv Cancer Res 78:199–334CrossRef Kelloff GJ (1999) Perspectives on cancer chemoprevention research and drug development. Adv Cancer Res 78:199–334CrossRef
Zurück zum Zitat Kenawy IM, Hafez MAH, Ismail MA, Hashem MA (2018) Adsorption of Cu(II), Cd(II), Hg(II), Pb(II) and Zn(II) from aqueous single metal solutions by guanyl-modified cellulose. Int J Biol Macromol 107:1538–1549PubMedCrossRef Kenawy IM, Hafez MAH, Ismail MA, Hashem MA (2018) Adsorption of Cu(II), Cd(II), Hg(II), Pb(II) and Zn(II) from aqueous single metal solutions by guanyl-modified cellulose. Int J Biol Macromol 107:1538–1549PubMedCrossRef
Zurück zum Zitat Keshk SMAS, Ramadan AM, Bondock S (2015) Physicochemical characterization of novel Schiff bases derived from developed bacterial cellulose 2,3-dialdehyde. Carbohydr Polym 127:246–251PubMedCrossRef Keshk SMAS, Ramadan AM, Bondock S (2015) Physicochemical characterization of novel Schiff bases derived from developed bacterial cellulose 2,3-dialdehyde. Carbohydr Polym 127:246–251PubMedCrossRef
Zurück zum Zitat Keshk SMAS, El-Zahhar AA, Al-Sehemi AG, Irfan A, Bondock S (2019) Synthesis and characterization of magnetic nanoparticles/dialdehyde cellulose composite as a flame retardant. Mater Res Express 6:025312CrossRef Keshk SMAS, El-Zahhar AA, Al-Sehemi AG, Irfan A, Bondock S (2019) Synthesis and characterization of magnetic nanoparticles/dialdehyde cellulose composite as a flame retardant. Mater Res Express 6:025312CrossRef
Zurück zum Zitat Khan FN, Jayakuma R, Pillai CN (2003) Electrocatalytic oxidative cleavage by electrogenerated periodate. J Mol Catal A Chem 195(1–2):139–145CrossRef Khan FN, Jayakuma R, Pillai CN (2003) Electrocatalytic oxidative cleavage by electrogenerated periodate. J Mol Catal A Chem 195(1–2):139–145CrossRef
Zurück zum Zitat Kim JY, Choi HM (2014) Cationization of periodate-oxidized cotton cellulose with choline chloride. Cell Chem Technol 48(1):25–32 Kim JY, Choi HM (2014) Cationization of periodate-oxidized cotton cellulose with choline chloride. Cell Chem Technol 48(1):25–32
Zurück zum Zitat Kim UJ, Kuga S (2000) Reactive interaction of aromatic amines with dialdehyde cellulose gel. Cellulose 7:287–297CrossRef Kim UJ, Kuga S (2000) Reactive interaction of aromatic amines with dialdehyde cellulose gel. Cellulose 7:287–297CrossRef
Zurück zum Zitat Kim UJ, Kuga S (2001a) Ion-exchange chromatography by dicarboxyl cellulose gel. J Chromatogr A 919:29–37PubMedCrossRef Kim UJ, Kuga S (2001a) Ion-exchange chromatography by dicarboxyl cellulose gel. J Chromatogr A 919:29–37PubMedCrossRef
Zurück zum Zitat Kim UJ, Kuga S (2001b) Thermal decomposition of dialdehyde cellulose and its nitrogen-containing derivatives. Thermochim Acta 369:79–85CrossRef Kim UJ, Kuga S (2001b) Thermal decomposition of dialdehyde cellulose and its nitrogen-containing derivatives. Thermochim Acta 369:79–85CrossRef
Zurück zum Zitat Kim UJ, Kuga S, Wada M, Okano T, Kondo T (2000) Periodate oxidation of crystalline cellulose. Biomacromol 1:488–492CrossRef Kim UJ, Kuga S, Wada M, Okano T, Kondo T (2000) Periodate oxidation of crystalline cellulose. Biomacromol 1:488–492CrossRef
Zurück zum Zitat Kim UJ, Wada M, Kuga S (2004) Solubilization of dialdehyde cellulose by hot water. Carbohydr Polym 56:7–10CrossRef Kim UJ, Wada M, Kuga S (2004) Solubilization of dialdehyde cellulose by hot water. Carbohydr Polym 56:7–10CrossRef
Zurück zum Zitat Kim U-J, Isobe N, Kimura S, Kuga S, Wada M, Ko J-H, Jin H-O (2010) Enzymatic degradation of oxidized cellulose hydrogels. Polym Degrad Stab 95:2277–2280CrossRef Kim U-J, Isobe N, Kimura S, Kuga S, Wada M, Ko J-H, Jin H-O (2010) Enzymatic degradation of oxidized cellulose hydrogels. Polym Degrad Stab 95:2277–2280CrossRef
Zurück zum Zitat Kim UJ, Kim HJ, Choi JW, Kimura S, Wada M (2017a) Cellulose-chitosan beads crosslinked by dialdehyde cellulose. Cellulose 24:5517–5528CrossRef Kim UJ, Kim HJ, Choi JW, Kimura S, Wada M (2017a) Cellulose-chitosan beads crosslinked by dialdehyde cellulose. Cellulose 24:5517–5528CrossRef
Zurück zum Zitat Kim UJ, Lee YR, Kang TH, Choi JW, Kimura S, Wada M (2017b) Protein adsorption of dialdehyde cellulose-crosslinked chitosan with high amino group contents. Carbohydr Polym 163:34–42PubMedCrossRef Kim UJ, Lee YR, Kang TH, Choi JW, Kimura S, Wada M (2017b) Protein adsorption of dialdehyde cellulose-crosslinked chitosan with high amino group contents. Carbohydr Polym 163:34–42PubMedCrossRef
Zurück zum Zitat Kim U-J, Kimura S, Wada M (2019) Highly enhanced adsorption of Congo red onto dialdehyde cellulose crosslinked cellulose-chitosan foam. Carbohydr Polym 214:294–302PubMedCrossRef Kim U-J, Kimura S, Wada M (2019) Highly enhanced adsorption of Congo red onto dialdehyde cellulose crosslinked cellulose-chitosan foam. Carbohydr Polym 214:294–302PubMedCrossRef
Zurück zum Zitat Klemm D, Heublein B, Fink H, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358CrossRef Klemm D, Heublein B, Fink H, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358CrossRef
Zurück zum Zitat Klemm D, Schumann D, Kramer F, Hebler N, Hornung M, Schmauder HP (2006) Nanocelluloses as innovative polymers in research and application. Adv Polym Sci 205:49–96CrossRef Klemm D, Schumann D, Kramer F, Hebler N, Hornung M, Schmauder HP (2006) Nanocelluloses as innovative polymers in research and application. Adv Polym Sci 205:49–96CrossRef
Zurück zum Zitat Knoos I (2022) Gas barrier film for packaging material US Patent Application Pub. No. US 2022/0002946 A1; filed Nov. 14, 2019 and Pub. Date Jan 6, 2022 Knoos I (2022) Gas barrier film for packaging material US Patent Application Pub. No. US 2022/0002946 A1; filed Nov. 14, 2019 and Pub. Date Jan 6, 2022
Zurück zum Zitat Koprivica S, Siller M, Hosoya T, Roggenstein W, Rosenau T, Potthast A (2016) Regeneration of aqueous periodate solutions by ozone treatment: a sustainable approach for dialdehyde cellulose production. Chemsuschem 9:825–833PubMedCrossRef Koprivica S, Siller M, Hosoya T, Roggenstein W, Rosenau T, Potthast A (2016) Regeneration of aqueous periodate solutions by ozone treatment: a sustainable approach for dialdehyde cellulose production. Chemsuschem 9:825–833PubMedCrossRef
Zurück zum Zitat Koshani R, Tavakolian M, van de Van TGM (2021a) Natural emulgel from dialdehyde cellulose for lipophilic drug delivery. ACS Sustain Chem Eng 9:4487–4497CrossRef Koshani R, Tavakolian M, van de Van TGM (2021a) Natural emulgel from dialdehyde cellulose for lipophilic drug delivery. ACS Sustain Chem Eng 9:4487–4497CrossRef
Zurück zum Zitat Koshani R, Zhang J, van de Ven TGM, Lu X, Wang Y (2021b) Modified hairy nanocrystaline cellulose as photobactericidal nanofllers for food packaging application. ACS Sustain Chem Eng 9:10513–10523CrossRef Koshani R, Zhang J, van de Ven TGM, Lu X, Wang Y (2021b) Modified hairy nanocrystaline cellulose as photobactericidal nanofllers for food packaging application. ACS Sustain Chem Eng 9:10513–10523CrossRef
Zurück zum Zitat Kriechbaum K, Bergström L (2020) Antioxidant and UV-blocking leather-inspired nanocellulose-based films with high wet strength. Biomacromol 21:1720–1728CrossRef Kriechbaum K, Bergström L (2020) Antioxidant and UV-blocking leather-inspired nanocellulose-based films with high wet strength. Biomacromol 21:1720–1728CrossRef
Zurück zum Zitat Kristiansen KA, Potthast A, Christensen BE (2010) Periodate oxidation of polysaccharides for modification of chemical and physical properties. Carbohydr Res 345(10):1264–1271PubMedCrossRef Kristiansen KA, Potthast A, Christensen BE (2010) Periodate oxidation of polysaccharides for modification of chemical and physical properties. Carbohydr Res 345(10):1264–1271PubMedCrossRef
Zurück zum Zitat Kumari S, Chauhan GS, Ahn JH, Reddy NS (2016a) Bio-waste derived dialdehyde cellulose ethers as supports for α-chymotrypsin immobilization. Int J Biol Macromol 85:227–237PubMedCrossRef Kumari S, Chauhan GS, Ahn JH, Reddy NS (2016a) Bio-waste derived dialdehyde cellulose ethers as supports for α-chymotrypsin immobilization. Int J Biol Macromol 85:227–237PubMedCrossRef
Zurück zum Zitat Kumari S, Mankotia D, Chauhan GS (2016b) Crosslinked cellulose dialdehyde for Congo red removal from its aqueous solutions. J Environ Chem Eng 4:1126–1136CrossRef Kumari S, Mankotia D, Chauhan GS (2016b) Crosslinked cellulose dialdehyde for Congo red removal from its aqueous solutions. J Environ Chem Eng 4:1126–1136CrossRef
Zurück zum Zitat Kwak HW, Lee H, Park S, Lee ME, Jin HJ (2020) Chemical and physical reinforcement of hydrophilic gelatin film with dialdehyde nanocellulose. Int J Biol Macromol 146:332–342PubMedCrossRef Kwak HW, Lee H, Park S, Lee ME, Jin HJ (2020) Chemical and physical reinforcement of hydrophilic gelatin film with dialdehyde nanocellulose. Int J Biol Macromol 146:332–342PubMedCrossRef
Zurück zum Zitat Lacin NT (2014) Development of biodegradable antibacterial cellulose based hydrogel membranes for wound healing. Int J Biol Macromol 67:22–27PubMedCrossRef Lacin NT (2014) Development of biodegradable antibacterial cellulose based hydrogel membranes for wound healing. Int J Biol Macromol 67:22–27PubMedCrossRef
Zurück zum Zitat Larsson PA, Kochumalayil JJ, Wagberg L (2013) Oxygen and water vapour barrier films with low moisture sensitivity fabricated from self-cross-linking fibrillated cellulose In: 15th Fundamental research symposium: advances in pulp and paper research, pp 851–866 Larsson PA, Kochumalayil JJ, Wagberg L (2013) Oxygen and water vapour barrier films with low moisture sensitivity fabricated from self-cross-linking fibrillated cellulose In: 15th Fundamental research symposium: advances in pulp and paper research, pp 851–866
Zurück zum Zitat Lee H, You J, Jin H-J, Kwak HW (2020) Chemical and physical reinforcement behavior of dialdehyde nanocellulose in PVA composite film: a comparison of nanofiber and nanocrystal. Carbohydr Polym 232:115771PubMedCrossRef Lee H, You J, Jin H-J, Kwak HW (2020) Chemical and physical reinforcement behavior of dialdehyde nanocellulose in PVA composite film: a comparison of nanofiber and nanocrystal. Carbohydr Polym 232:115771PubMedCrossRef
Zurück zum Zitat Leguy J, Nishiyama Y, Jean B, Heux L (2019) Ultrastructural characterization of the core-shell structure of a wide range of periodate-oxidized cellulose from different native sources by solid-state 13C CP-MAS NMR. ACS Sustain Chem Eng 7:412–420CrossRef Leguy J, Nishiyama Y, Jean B, Heux L (2019) Ultrastructural characterization of the core-shell structure of a wide range of periodate-oxidized cellulose from different native sources by solid-state 13C CP-MAS NMR. ACS Sustain Chem Eng 7:412–420CrossRef
Zurück zum Zitat Lei Z, Gao W, Zeng J, Wang B, Xu J (2020) The mechanism of Cu (II) adsorption onto 2,3-dialdehyde nano-fibrillated celluloses. Carbohydr Polym 230:115631PubMedCrossRef Lei Z, Gao W, Zeng J, Wang B, Xu J (2020) The mechanism of Cu (II) adsorption onto 2,3-dialdehyde nano-fibrillated celluloses. Carbohydr Polym 230:115631PubMedCrossRef
Zurück zum Zitat Lerdkanchanaporn S, Dollimore D, Alexander KS (1998) A simultaneous TG-DTA study of the degradation in nitrogen of cellulose to carbon, alone and in the presence of other pharmaceutical excipients. Thermochim Acta 324:25–32CrossRef Lerdkanchanaporn S, Dollimore D, Alexander KS (1998) A simultaneous TG-DTA study of the degradation in nitrogen of cellulose to carbon, alone and in the presence of other pharmaceutical excipients. Thermochim Acta 324:25–32CrossRef
Zurück zum Zitat Li SY, Cao LT (2013) Preparation of dialdehyde cellulose and absorbability of Cu (II), Cr (VI) and Zn (II) in sewage disposal. Sci Technol Innov Herald 7:147–150 Li SY, Cao LT (2013) Preparation of dialdehyde cellulose and absorbability of Cu (II), Cr (VI) and Zn (II) in sewage disposal. Sci Technol Innov Herald 7:147–150
Zurück zum Zitat Li J, Wan Y, Li L, Liang H, Wang J (2009) Preparation and characterization of 2,3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds. Mater Sci Eng C 29:1635–1642CrossRef Li J, Wan Y, Li L, Liang H, Wang J (2009) Preparation and characterization of 2,3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds. Mater Sci Eng C 29:1635–1642CrossRef
Zurück zum Zitat Li D, Ye Y, Li D, Li X, Mu C (2016) Biological properties of dialdehyde carboxymethyl cellulose crosslinked gelatin–PEG composite hydrogel fibers for wound dressings. Carbohydr Polym 137:508–514PubMedCrossRef Li D, Ye Y, Li D, Li X, Mu C (2016) Biological properties of dialdehyde carboxymethyl cellulose crosslinked gelatin–PEG composite hydrogel fibers for wound dressings. Carbohydr Polym 137:508–514PubMedCrossRef
Zurück zum Zitat Li Z et al (2018) Excellent reusable chitosan/cellulose aerogel as an oil and organic solvent absorbent. Carbohydr Polym 191:183–190PubMedCrossRef Li Z et al (2018) Excellent reusable chitosan/cellulose aerogel as an oil and organic solvent absorbent. Carbohydr Polym 191:183–190PubMedCrossRef
Zurück zum Zitat Li J, Kang L, Wang B, Chen K, Tian X, Ge Z, Zeng J, Xu J, Gao W (2019) Controlled release and long-term antibacterial activity of dialdehyde nanofibrillated cellulose/silver nanoparticle composites. ACS Sustain Chem Eng 7:1146–1158CrossRef Li J, Kang L, Wang B, Chen K, Tian X, Ge Z, Zeng J, Xu J, Gao W (2019) Controlled release and long-term antibacterial activity of dialdehyde nanofibrillated cellulose/silver nanoparticle composites. ACS Sustain Chem Eng 7:1146–1158CrossRef
Zurück zum Zitat Li P, Zeng J, Wang B, Cheng Z, Xu J, Gao W, Chen K (2020b) Waterborne fluorescent dual anti-counterfeiting ink based on Yb/Er-carbon quantum dots grafted with dialdehyde nano-fibrillated cellulose. Carbohydr Polym 247:116721PubMedCrossRef Li P, Zeng J, Wang B, Cheng Z, Xu J, Gao W, Chen K (2020b) Waterborne fluorescent dual anti-counterfeiting ink based on Yb/Er-carbon quantum dots grafted with dialdehyde nano-fibrillated cellulose. Carbohydr Polym 247:116721PubMedCrossRef
Zurück zum Zitat Li et al. (2020b) All-natural injectable hydrogel with self-healing and antibacterial properties for wound dressing Cellulose 27: 2637–2650 Li et al. (2020b) All-natural injectable hydrogel with self-healing and antibacterial properties for wound dressing Cellulose 27: 2637–2650
Zurück zum Zitat Liang ZP, Feng YQ, Liang ZY, Meng SX (2005) Adsorption of urea nitrogen onto chitosan coated dialdehyde cellulose under biocatalysis of immobilized urease: equilibrium and kinetic. Biochem Eng J 24:65–72CrossRef Liang ZP, Feng YQ, Liang ZY, Meng SX (2005) Adsorption of urea nitrogen onto chitosan coated dialdehyde cellulose under biocatalysis of immobilized urease: equilibrium and kinetic. Biochem Eng J 24:65–72CrossRef
Zurück zum Zitat Liang Y, He J, Guo B (2021) Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 15(8):12687–12722CrossRef Liang Y, He J, Guo B (2021) Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 15(8):12687–12722CrossRef
Zurück zum Zitat Liimatainen H, Sirviö J, Pajari H, Hormi O, Niinimaki J (2013) Regeneration and recycling of aqueous chiffer solution in dialdehyde cellulose production. J Wood Chem Technol 33:258–266CrossRef Liimatainen H, Sirviö J, Pajari H, Hormi O, Niinimaki J (2013) Regeneration and recycling of aqueous chiffer solution in dialdehyde cellulose production. J Wood Chem Technol 33:258–266CrossRef
Zurück zum Zitat Lin SP, Kung HN, Tsai YS, Tseng TN, Hsu KD, Cheng KC (2017) Novel dextran modified bacterial cellulose hydrogel accelerating cutaneous wound healing. Cellulose 24:4927–4937CrossRef Lin SP, Kung HN, Tsai YS, Tseng TN, Hsu KD, Cheng KC (2017) Novel dextran modified bacterial cellulose hydrogel accelerating cutaneous wound healing. Cellulose 24:4927–4937CrossRef
Zurück zum Zitat Lindh J, Carlsson DO, Strømme M, Mihranyan A (2014) Convenient one-pot formation of 2,3-dialdehyde cellulose beads via periodate oxidation of cellulose in water. Biomacromol 15:1928–1932CrossRef Lindh J, Carlsson DO, Strømme M, Mihranyan A (2014) Convenient one-pot formation of 2,3-dialdehyde cellulose beads via periodate oxidation of cellulose in water. Biomacromol 15:1928–1932CrossRef
Zurück zum Zitat Lindh J, Ruan C, Stromme M, Mihranyan A (2016) Preparation of porous cellulose beads via introduction of diamine spacers. Langmuir 32:5600–5607PubMedCrossRef Lindh J, Ruan C, Stromme M, Mihranyan A (2016) Preparation of porous cellulose beads via introduction of diamine spacers. Langmuir 32:5600–5607PubMedCrossRef
Zurück zum Zitat Liu X, Wang L, Song X, Song H, Zhao JR, Wang S (2012) A kinetic model for oxidative degradation of bagasse pulp fiber by sodium periodate. Carbohydr Polym 90:218–223PubMedCrossRef Liu X, Wang L, Song X, Song H, Zhao JR, Wang S (2012) A kinetic model for oxidative degradation of bagasse pulp fiber by sodium periodate. Carbohydr Polym 90:218–223PubMedCrossRef
Zurück zum Zitat Liu P, Mai C, Zhang K (2017) Formation of uniform multi-stimuli-responsive and multiblock hydrogels from dialdehyde cellulose. ACS Sustain Chem Eng 5(6):5313–5319CrossRef Liu P, Mai C, Zhang K (2017) Formation of uniform multi-stimuli-responsive and multiblock hydrogels from dialdehyde cellulose. ACS Sustain Chem Eng 5(6):5313–5319CrossRef
Zurück zum Zitat Liu P, Mai C, Zhang K (2018) Preparation of hydrogels with uniform and gradient chemical structures using dialdehyde cellulose and diamine by aerating ammonia gas. Front Chem Sci Eng 12(3):383–389CrossRef Liu P, Mai C, Zhang K (2018) Preparation of hydrogels with uniform and gradient chemical structures using dialdehyde cellulose and diamine by aerating ammonia gas. Front Chem Sci Eng 12(3):383–389CrossRef
Zurück zum Zitat Liu P, Pang B, Dechert S, Zhang XC, Andreas LB, Fischer S, Meyer F, Zhang K (2020) Structure selectivity of alkaline periodate oxidation on lignocellulose for facile isolation of cellulose nanocrystals. Angew Chem 59:3218–3225CrossRef Liu P, Pang B, Dechert S, Zhang XC, Andreas LB, Fischer S, Meyer F, Zhang K (2020) Structure selectivity of alkaline periodate oxidation on lignocellulose for facile isolation of cellulose nanocrystals. Angew Chem 59:3218–3225CrossRef
Zurück zum Zitat Liu S, Du G, Yang H, Su H, Ran X, Li J, Zhang L, Gao W, Yang L (2021) Developing high-performance cellulose-based wood adhesive with a cross-linked network. ACS Sustain Chem Eng 9:16849–16861CrossRef Liu S, Du G, Yang H, Su H, Ran X, Li J, Zhang L, Gao W, Yang L (2021) Developing high-performance cellulose-based wood adhesive with a cross-linked network. ACS Sustain Chem Eng 9:16849–16861CrossRef
Zurück zum Zitat Lu T, Li Q, Chen W, Yu H (2014) Composite aerogels based on dialdehyde nanocellulose and collagen for potential applications as wound dressing and tissue engineering scaffold. Comp Sci Technol 94:132–138CrossRef Lu T, Li Q, Chen W, Yu H (2014) Composite aerogels based on dialdehyde nanocellulose and collagen for potential applications as wound dressing and tissue engineering scaffold. Comp Sci Technol 94:132–138CrossRef
Zurück zum Zitat Lucia A, Van Herwijnen HWG, Oberlerchner JT, Rosenau T, Beaumont M (2019) Resource-saving production of dialdehyde cellulose: optimization of the process at high-consistency. Chemsuschem 12:4679–4684PubMedPubMedCentralCrossRef Lucia A, Van Herwijnen HWG, Oberlerchner JT, Rosenau T, Beaumont M (2019) Resource-saving production of dialdehyde cellulose: optimization of the process at high-consistency. Chemsuschem 12:4679–4684PubMedPubMedCentralCrossRef
Zurück zum Zitat Lucia A, Bacher M, van Herwijnen HW, Rosenau T (2020) A direct silanization protocol for dialdehyde cellulose. Molecules 25(10):2458PubMedCentralCrossRef Lucia A, Bacher M, van Herwijnen HW, Rosenau T (2020) A direct silanization protocol for dialdehyde cellulose. Molecules 25(10):2458PubMedCentralCrossRef
Zurück zum Zitat Luo X, Zhang L (2010) New solvents and functional materials prepared from cellulose solutions in alkali/urea aqueous system. Food Resour Int 52(1):387–400CrossRef Luo X, Zhang L (2010) New solvents and functional materials prepared from cellulose solutions in alkali/urea aqueous system. Food Resour Int 52(1):387–400CrossRef
Zurück zum Zitat Luo P, Liu L, Xu W, Fan L, Nie M (2018) Preparation and characterization of aminated hyaluronic acid/oxidized hydroxyethyl cellulose hydrogel. Carbohydr Polym 199:170–177PubMedCrossRef Luo P, Liu L, Xu W, Fan L, Nie M (2018) Preparation and characterization of aminated hyaluronic acid/oxidized hydroxyethyl cellulose hydrogel. Carbohydr Polym 199:170–177PubMedCrossRef
Zurück zum Zitat Lv M, Ma X, Anderson DP, Chang PR (2017) Immobilization of urease onto cellulose spheres for the selective removal of urea. Cellulose 25:233–243CrossRef Lv M, Ma X, Anderson DP, Chang PR (2017) Immobilization of urease onto cellulose spheres for the selective removal of urea. Cellulose 25:233–243CrossRef
Zurück zum Zitat Ma J, Wang T, Yu S, Zhang Y, Lyu B (2021a) Preparation and application of dialdehyde nanocellulose reinforced jatropha oil based polymer emulsions as leather fatliquors. Cellulose 28:331–346CrossRef Ma J, Wang T, Yu S, Zhang Y, Lyu B (2021a) Preparation and application of dialdehyde nanocellulose reinforced jatropha oil based polymer emulsions as leather fatliquors. Cellulose 28:331–346CrossRef
Zurück zum Zitat Ma Y, Guo J, Zhao M, Gong Y, You X (2021b) The effect of sulfates on properties of cellulose/dialdehyde cellulose/Antartic krill protein composite fibers. Fibre Polym 22:2680–2688CrossRef Ma Y, Guo J, Zhao M, Gong Y, You X (2021b) The effect of sulfates on properties of cellulose/dialdehyde cellulose/Antartic krill protein composite fibers. Fibre Polym 22:2680–2688CrossRef
Zurück zum Zitat Madivoli ES, Kareru PG, Gachanja AN, Mugo SM, Makhanu DS (2019) Synthesis and characterization of dialdehyde cellulose nanofibers from O. sativa husks. SN Appl Sci 1:723CrossRef Madivoli ES, Kareru PG, Gachanja AN, Mugo SM, Makhanu DS (2019) Synthesis and characterization of dialdehyde cellulose nanofibers from O. sativa husks. SN Appl Sci 1:723CrossRef
Zurück zum Zitat Maekawa E, Koshijima T (1984) Properties of 2,3-Dicarboxy cellulose combined with various metallic ions. J Appl Polym Sci 29:2289–2297CrossRef Maekawa E, Koshijima T (1984) Properties of 2,3-Dicarboxy cellulose combined with various metallic ions. J Appl Polym Sci 29:2289–2297CrossRef
Zurück zum Zitat Maekawa E, Koshijima T (1990) Preparation and chifferization of hydroxamic acid derivatives and its metal complexes derived from cellulose. J Appl Polym Sci 40(9–10):1601–1613CrossRef Maekawa E, Koshijima T (1990) Preparation and chifferization of hydroxamic acid derivatives and its metal complexes derived from cellulose. J Appl Polym Sci 40(9–10):1601–1613CrossRef
Zurück zum Zitat Malaprade L (1928) Action of polyalcohols on periodic acid analytical application. Bull Soc Chim Fr 43:683–696 Malaprade L (1928) Action of polyalcohols on periodic acid analytical application. Bull Soc Chim Fr 43:683–696
Zurück zum Zitat Malaprade L (1934) A study if the action of polyalcohols on periodic acid and alkaline periodates. Bull Soc Chim Fr 5:833–852 Malaprade L (1934) A study if the action of polyalcohols on periodic acid and alkaline periodates. Bull Soc Chim Fr 5:833–852
Zurück zum Zitat Mary G, Bajpai SK, Chand N (2009) Copper (II) ions and copper nanoparticles-loaded chemically modified cotton cellulose fibers with fair antibacterial properties. J Appl Polym Sci 113:757–766CrossRef Mary G, Bajpai SK, Chand N (2009) Copper (II) ions and copper nanoparticles-loaded chemically modified cotton cellulose fibers with fair antibacterial properties. J Appl Polym Sci 113:757–766CrossRef
Zurück zum Zitat Mateo C, Palomo JM, Lorente GF, Guisan JM, Lafuente RF (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Technol 40:1451–1463CrossRef Mateo C, Palomo JM, Lorente GF, Guisan JM, Lafuente RF (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Technol 40:1451–1463CrossRef
Zurück zum Zitat Mayer S, Tallawi M, Luca ID, Calarco A, Reinhardt N, Gray LA, Drechsler K, Moeini A, Germann N (2021) Antimicrobial and physicochemical characterization of 2,3-dialdehyde cellulose-based wound dressings systems. Carbohydr Polym 272:118506PubMedCrossRef Mayer S, Tallawi M, Luca ID, Calarco A, Reinhardt N, Gray LA, Drechsler K, Moeini A, Germann N (2021) Antimicrobial and physicochemical characterization of 2,3-dialdehyde cellulose-based wound dressings systems. Carbohydr Polym 272:118506PubMedCrossRef
Zurück zum Zitat Meng Z, Yin J, Li M, Liang Y, Wang X, Wu Y, Kou J, Wang Z, Yang Y (2022) A novel Schiff base-modified dialdehyde cellulose-based fluorescent probe for Al3+ and its application in environmental analysis. Macromol Rapid Comm 43:2100608CrossRef Meng Z, Yin J, Li M, Liang Y, Wang X, Wu Y, Kou J, Wang Z, Yang Y (2022) A novel Schiff base-modified dialdehyde cellulose-based fluorescent probe for Al3+ and its application in environmental analysis. Macromol Rapid Comm 43:2100608CrossRef
Zurück zum Zitat Mester LJ (1955) The formazan reaction in proving the structure of periodate oxidized polysaccharides. Am Chem Soc 77:5452–5453CrossRef Mester LJ (1955) The formazan reaction in proving the structure of periodate oxidized polysaccharides. Am Chem Soc 77:5452–5453CrossRef
Zurück zum Zitat Mihranyan A (2011) Cellulose from Cladophorales green algae: from environmental problem to high-tech composite materials. J Appl Polym Sci 119:2449–2460CrossRef Mihranyan A (2011) Cellulose from Cladophorales green algae: from environmental problem to high-tech composite materials. J Appl Polym Sci 119:2449–2460CrossRef
Zurück zum Zitat Mishra D, Yotshna SA, Chanda D, Shanker K, Khare P (2019) Potential of di-aldehyde cellulose for sustained release of oxytetracycline: a pharmacokinetic study. Int J Biol Macromol 136:97–105PubMedCrossRef Mishra D, Yotshna SA, Chanda D, Shanker K, Khare P (2019) Potential of di-aldehyde cellulose for sustained release of oxytetracycline: a pharmacokinetic study. Int J Biol Macromol 136:97–105PubMedCrossRef
Zurück zum Zitat Morooka T, Norimoto M, Yamada T (1989) Periodate-oxidation of cellulose by homogeneous reaction. J Appl Polym Sci 38(5):849–858CrossRef Morooka T, Norimoto M, Yamada T (1989) Periodate-oxidation of cellulose by homogeneous reaction. J Appl Polym Sci 38(5):849–858CrossRef
Zurück zum Zitat Mou K, Li J, Wang Y, Cha R, Jiang X (2017) 2,3-Dialdehyde nanofibrillated cellulose as a potential material for the treatment of MRSA infection. J Mater Chem B 5:7876–7884PubMedCrossRef Mou K, Li J, Wang Y, Cha R, Jiang X (2017) 2,3-Dialdehyde nanofibrillated cellulose as a potential material for the treatment of MRSA infection. J Mater Chem B 5:7876–7884PubMedCrossRef
Zurück zum Zitat Muchova M, Munster L, Capakova Z, Mikulcova V, Kurtika I, Vicha J (2020) Design of dialdehyde cellulose crosslinked poly(vinyl alcohol) hydrogels for transdermal drug delivery and wound dressings. Mater Sci Eng C 116:111242CrossRef Muchova M, Munster L, Capakova Z, Mikulcova V, Kurtika I, Vicha J (2020) Design of dialdehyde cellulose crosslinked poly(vinyl alcohol) hydrogels for transdermal drug delivery and wound dressings. Mater Sci Eng C 116:111242CrossRef
Zurück zum Zitat Muchova M, Munster L, Vavrova A, Capakova Z, Kuritka I, Vicha J (2022) Comparison of dialdehyde polysaccharides as crosslinkers for hydrogels: the case of poly(vinyl alcohol). Carbohydr Polym 279:119022PubMedCrossRef Muchova M, Munster L, Vavrova A, Capakova Z, Kuritka I, Vicha J (2022) Comparison of dialdehyde polysaccharides as crosslinkers for hydrogels: the case of poly(vinyl alcohol). Carbohydr Polym 279:119022PubMedCrossRef
Zurück zum Zitat Munster L, Vicha J, Klofac J, Masar M, Kucharczyk P, Kurtika I (2017) Stability and aging of solubilized dialdehyde cellulose. Cellulose 24:2753–2766CrossRef Munster L, Vicha J, Klofac J, Masar M, Kucharczyk P, Kurtika I (2017) Stability and aging of solubilized dialdehyde cellulose. Cellulose 24:2753–2766CrossRef
Zurück zum Zitat Munster L, Capakova Z, Fisera M, Kuritka I, Vicha J (2019) Biocompatible dialdehyde cellulose/poly(vinyl alcohol) hydrogels with tunable properties. Carbohydr Polym 218:333–342PubMedCrossRef Munster L, Capakova Z, Fisera M, Kuritka I, Vicha J (2019) Biocompatible dialdehyde cellulose/poly(vinyl alcohol) hydrogels with tunable properties. Carbohydr Polym 218:333–342PubMedCrossRef
Zurück zum Zitat Münster L, Vícha J, Klofáč J, Masař M, Hurajová A, Kuřitka I (2018) Dialdehyde cellulose crosslinked poly(vinyl alcohol) hydrogels: influence of catalyst and crosslinker shelf life. Carbohydr Polym 198:181–190PubMedCrossRef Münster L, Vícha J, Klofáč J, Masař M, Hurajová A, Kuřitka I (2018) Dialdehyde cellulose crosslinked poly(vinyl alcohol) hydrogels: influence of catalyst and crosslinker shelf life. Carbohydr Polym 198:181–190PubMedCrossRef
Zurück zum Zitat Nada AA, Hassan ML (2000) Thermal behaviour of cellulose and some cellulose derivatives. Polym Degrad Stab 67:111CrossRef Nada AA, Hassan ML (2000) Thermal behaviour of cellulose and some cellulose derivatives. Polym Degrad Stab 67:111CrossRef
Zurück zum Zitat Nasseri R, Tam KC (2020) Stimuli-responsive hydrogel consisting of hydrazide-functionalized poly(oligo(ethylene glycol) methacrylate) and dialdehyde cellulose nanocrystals. Mater Adv 1:1631–1643CrossRef Nasseri R, Tam KC (2020) Stimuli-responsive hydrogel consisting of hydrazide-functionalized poly(oligo(ethylene glycol) methacrylate) and dialdehyde cellulose nanocrystals. Mater Adv 1:1631–1643CrossRef
Zurück zum Zitat Nasseri R, Tam KC (2021) Sticky hydrogels from hydrazide-functionalized poly(oligo(ethylene glycol) methacrylate) and dialdehyde cellulose nanocrystals with tunable thermal and strain-hardening characteristics. ACS Sustain Chem Eng 9:10424–10430CrossRef Nasseri R, Tam KC (2021) Sticky hydrogels from hydrazide-functionalized poly(oligo(ethylene glycol) methacrylate) and dialdehyde cellulose nanocrystals with tunable thermal and strain-hardening characteristics. ACS Sustain Chem Eng 9:10424–10430CrossRef
Zurück zum Zitat Nematdoust S, Najjar R, Bresser D, Passerini S (2020) Partially oxidized cellulose grafted with polyethylene glycol mono-methyl ether (m-PEG) as electrolyte material for lithium polymer battery. Carbohydr Polym 240:116339PubMedCrossRef Nematdoust S, Najjar R, Bresser D, Passerini S (2020) Partially oxidized cellulose grafted with polyethylene glycol mono-methyl ether (m-PEG) as electrolyte material for lithium polymer battery. Carbohydr Polym 240:116339PubMedCrossRef
Zurück zum Zitat Nikolic T, Kostic M, Praskalo J, Pejic B, Petronijevic Z, Skundric P (2010) Sodium periodate oxidized cotton yarn as carrier for immobilization of trypsin. Carbohydr Polym 82:976–981CrossRef Nikolic T, Kostic M, Praskalo J, Pejic B, Petronijevic Z, Skundric P (2010) Sodium periodate oxidized cotton yarn as carrier for immobilization of trypsin. Carbohydr Polym 82:976–981CrossRef
Zurück zum Zitat Nikolic T, Milanovic J, Kramer A, Petronijevic Z, Milenkovic L, Kostic M (2014) Preparation of cellulosic fibers with biological activity by immobilization of trypsin on periodate oxidized viscose fibers. Cellulose 21:1369–1380CrossRef Nikolic T, Milanovic J, Kramer A, Petronijevic Z, Milenkovic L, Kostic M (2014) Preparation of cellulosic fibers with biological activity by immobilization of trypsin on periodate oxidized viscose fibers. Cellulose 21:1369–1380CrossRef
Zurück zum Zitat Nypelo T, Berke B, Spirk S, Sirviö JS (2021) Review: Periodate oxidation of wood polysaccharides – modulation of hierarchies. Carbohydr Polym 252:117105PubMedCrossRef Nypelo T, Berke B, Spirk S, Sirviö JS (2021) Review: Periodate oxidation of wood polysaccharides – modulation of hierarchies. Carbohydr Polym 252:117105PubMedCrossRef
Zurück zum Zitat Ojala J, Sirviö JA, Liimatainen H (2016) Nanoparticle emulsifiers based on bifunctionalized cellulose nanocrystals as marine diesel oil–water emulsion stabilizers. Chem Eng J 288:312–320CrossRef Ojala J, Sirviö JA, Liimatainen H (2016) Nanoparticle emulsifiers based on bifunctionalized cellulose nanocrystals as marine diesel oil–water emulsion stabilizers. Chem Eng J 288:312–320CrossRef
Zurück zum Zitat Ojala J, Sirviö JA, Liimatainen H (2018) Preparation of cellulose nanocrystals from lignin-rich reject material for oil emulsification in an aqueous environment. Cellulose 25:293–304CrossRef Ojala J, Sirviö JA, Liimatainen H (2018) Preparation of cellulose nanocrystals from lignin-rich reject material for oil emulsification in an aqueous environment. Cellulose 25:293–304CrossRef
Zurück zum Zitat Pang B, Zhang H, Schilling M, Liu H, Wang X, Rehfeldt F, Zhang K (2020) High-internal phase Pickering emulsions stabilized by dialdehyde cellulose-based nanoparticles. ACS Sustain Chem Eng 8:7371–7379CrossRef Pang B, Zhang H, Schilling M, Liu H, Wang X, Rehfeldt F, Zhang K (2020) High-internal phase Pickering emulsions stabilized by dialdehyde cellulose-based nanoparticles. ACS Sustain Chem Eng 8:7371–7379CrossRef
Zurück zum Zitat Pedige MPH, Asoh T-A, Hsu Y-I, Uyama H (2022) Stimuli-responsive composite hydrogels with three-dimensional stability prepared using oxidized cellulose nanofibers and chitosan. Carbohydr Polym 278:118907PubMedCrossRef Pedige MPH, Asoh T-A, Hsu Y-I, Uyama H (2022) Stimuli-responsive composite hydrogels with three-dimensional stability prepared using oxidized cellulose nanofibers and chitosan. Carbohydr Polym 278:118907PubMedCrossRef
Zurück zum Zitat Peng Y, Gelder VV, Amaladoss A, Patel KH (2016) Covalent binding of antibodies to cellulose paper discs and their applications in naked-eye colorimetric immunoassays. J vis Exp 116:54111 Peng Y, Gelder VV, Amaladoss A, Patel KH (2016) Covalent binding of antibodies to cellulose paper discs and their applications in naked-eye colorimetric immunoassays. J vis Exp 116:54111
Zurück zum Zitat Pfeifer VF, Sohns VE, Conway HF, Lancaster EB, Dabic S, Griffin EL (1960) Two stage process for dialdehyde starch using electrolytic regeneration of periodic acid. Ind Eng Chem 52:201–206CrossRef Pfeifer VF, Sohns VE, Conway HF, Lancaster EB, Dabic S, Griffin EL (1960) Two stage process for dialdehyde starch using electrolytic regeneration of periodic acid. Ind Eng Chem 52:201–206CrossRef
Zurück zum Zitat Pietrucha K, Safandowska M (2015) Dialdehyde cellulose-crosslinked collagen and its physicochemical properties. Process Biochem 50:2105–2111CrossRef Pietrucha K, Safandowska M (2015) Dialdehyde cellulose-crosslinked collagen and its physicochemical properties. Process Biochem 50:2105–2111CrossRef
Zurück zum Zitat Plappert SF, Quraishi S, Pircher N, Mikkonen KS, Veigel S, Klinger KM, Potthast A, Rosenau T, Liebner FW (2018) Transparent, flexible, and strong 2,3-dialdehyde cellulose films with high oxygen barrier properties. Biomacromol 19:2969–2978CrossRef Plappert SF, Quraishi S, Pircher N, Mikkonen KS, Veigel S, Klinger KM, Potthast A, Rosenau T, Liebner FW (2018) Transparent, flexible, and strong 2,3-dialdehyde cellulose films with high oxygen barrier properties. Biomacromol 19:2969–2978CrossRef
Zurück zum Zitat Potthast A, Kostic M, Schiehser S, Kosma P, Rosenau T (2007) Studies on oxidative modifications of cellulose in the periodate system: molecular weight distribution and carbonyl group profiles. Holzforschung 61:662–667CrossRef Potthast A, Kostic M, Schiehser S, Kosma P, Rosenau T (2007) Studies on oxidative modifications of cellulose in the periodate system: molecular weight distribution and carbonyl group profiles. Holzforschung 61:662–667CrossRef
Zurück zum Zitat Potthast A, Schiehser S, Rosenau T, Kostic M (2009) Oxidative modifications of cellulose in the periodate system – reduction and beta-elimination reactions. Holzforschung 63:12–17 Potthast A, Schiehser S, Rosenau T, Kostic M (2009) Oxidative modifications of cellulose in the periodate system – reduction and beta-elimination reactions. Holzforschung 63:12–17
Zurück zum Zitat Qiao W, Zhang Z, Qian Y, Xu L, Guo H (2022) Bacterial laccase immobilized on a magnetic dialdehyde cellulose without cross-linking agents for decolorization. Colloid Surf A Physicochem Eng Aspect 632:127818CrossRef Qiao W, Zhang Z, Qian Y, Xu L, Guo H (2022) Bacterial laccase immobilized on a magnetic dialdehyde cellulose without cross-linking agents for decolorization. Colloid Surf A Physicochem Eng Aspect 632:127818CrossRef
Zurück zum Zitat Raghunath A, Perumal E (2017) Metal oxide nanoparticles as antimicrobial agents: a promise for the future. Int J Antimicrob Agent 49:137–152CrossRef Raghunath A, Perumal E (2017) Metal oxide nanoparticles as antimicrobial agents: a promise for the future. Int J Antimicrob Agent 49:137–152CrossRef
Zurück zum Zitat Rajalaxmi D, Jiang N, Leslie G, Ragauskas AJ (2010) Synthesis of novel water-soluble sulfonated cellulose. Carbohydr Res 345(2):284–290PubMedCrossRef Rajalaxmi D, Jiang N, Leslie G, Ragauskas AJ (2010) Synthesis of novel water-soluble sulfonated cellulose. Carbohydr Res 345(2):284–290PubMedCrossRef
Zurück zum Zitat Rangel-Vázquez NA, Guilbert-García E, Salgado-Delgado R, Rubio-Rosas E, Hernandez EG, Vargas-Galarza Z, Crispín-Espino I (2010) Synthesis and characterization of chitosan coated dialdehyde cellulose with potential antimicrobial behavior. J Mater Sci Eng 4(12):62–67 Rangel-Vázquez NA, Guilbert-García E, Salgado-Delgado R, Rubio-Rosas E, Hernandez EG, Vargas-Galarza Z, Crispín-Espino I (2010) Synthesis and characterization of chitosan coated dialdehyde cellulose with potential antimicrobial behavior. J Mater Sci Eng 4(12):62–67
Zurück zum Zitat Rojas J, Azevedo E (2011) Functionalization and crosslinking of microcrystalline cellulose in aqueous media: a safe and economic approach. Int J Pharm Sci Rev Res 8:28–36 Rojas J, Azevedo E (2011) Functionalization and crosslinking of microcrystalline cellulose in aqueous media: a safe and economic approach. Int J Pharm Sci Rev Res 8:28–36
Zurück zum Zitat Rowland SP, Cousins ER (1966) Periodate oxidative decrystallization of cotton cellulose. J Polym Sci Part A 4:793–799CrossRef Rowland SP, Cousins ER (1966) Periodate oxidative decrystallization of cotton cellulose. J Polym Sci Part A 4:793–799CrossRef
Zurück zum Zitat RoyChowdhury P, Kumar V (2006) Fabrication and evaluation of porous 2,3- dialdehydecellulose membrane as a potential biodegradable tissue-engineering scaffold. J Biomed Mater Res 76A:300–309CrossRef RoyChowdhury P, Kumar V (2006) Fabrication and evaluation of porous 2,3- dialdehydecellulose membrane as a potential biodegradable tissue-engineering scaffold. J Biomed Mater Res 76A:300–309CrossRef
Zurück zum Zitat Ruan C-Q, Stromme M, Lindh J (2016) A green and simple method for preparation of an efficient palladium adsorbent based on cysteine functionalized 2,3-dialdehyde cellulose. Cellulose 23:2627–2638CrossRef Ruan C-Q, Stromme M, Lindh J (2016) A green and simple method for preparation of an efficient palladium adsorbent based on cysteine functionalized 2,3-dialdehyde cellulose. Cellulose 23:2627–2638CrossRef
Zurück zum Zitat Ruan C-Q, Stromme M, Lindh J (2018a) Preparation of porous 2,3-dialdehyde cellulose beads crosslinked with chitosan and their application in adsorption of Congo red dye. Carbohydr Polym 181:200–207PubMedCrossRef Ruan C-Q, Stromme M, Lindh J (2018a) Preparation of porous 2,3-dialdehyde cellulose beads crosslinked with chitosan and their application in adsorption of Congo red dye. Carbohydr Polym 181:200–207PubMedCrossRef
Zurück zum Zitat Ruan C-Q, Wang Z, Lindh J, Stromme M (2018b) Carbonized cellulose beads for efficient capacitive energy storage. Cellulose 25:3545–3556CrossRef Ruan C-Q, Wang Z, Lindh J, Stromme M (2018b) Carbonized cellulose beads for efficient capacitive energy storage. Cellulose 25:3545–3556CrossRef
Zurück zum Zitat Ruan C-Q, Kang X, Zeng K (2022) Preparation of water-soluble dialdehyde cellulose enhanced chitosan coating and its application on the preservation of mandarin fruit. Int J Biol Macromol 203:184–194PubMedCrossRef Ruan C-Q, Kang X, Zeng K (2022) Preparation of water-soluble dialdehyde cellulose enhanced chitosan coating and its application on the preservation of mandarin fruit. Int J Biol Macromol 203:184–194PubMedCrossRef
Zurück zum Zitat Saedi S, Garcia CV, Kim JT, Shin GH (2021) Physical and chemical modifications of cellulose fibers for food packaging applications. Cellulose 28:8877–8897CrossRef Saedi S, Garcia CV, Kim JT, Shin GH (2021) Physical and chemical modifications of cellulose fibers for food packaging applications. Cellulose 28:8877–8897CrossRef
Zurück zum Zitat Sahin Y, Tuerkoglu N, Guersu H (2020) Production of a biodegradable wound dressing comprising graphene-based 2,3 dialdehyde bacterial cellulose, PCT/TR2020/051079; filed Nov. 11, 2020 Sahin Y, Tuerkoglu N, Guersu H (2020) Production of a biodegradable wound dressing comprising graphene-based 2,3 dialdehyde bacterial cellulose, PCT/TR2020/051079; filed Nov. 11, 2020
Zurück zum Zitat Salama A, Shukry N, El-Gendy A, El-Sakhawy M (2017) Bioactive cellulose grafted soy protein isolate towards biomimetic calcium phosphate mineralization. Ind Crop Product 95:170–174CrossRef Salama A, Shukry N, El-Gendy A, El-Sakhawy M (2017) Bioactive cellulose grafted soy protein isolate towards biomimetic calcium phosphate mineralization. Ind Crop Product 95:170–174CrossRef
Zurück zum Zitat Saravanan R, Ravikumar L (2017) Renewable modified cellulose bearing chelating chiff base for adsorptive removal of heavy metal ions and antibacterial action. Water Environ Res 89(7):629–640PubMedCrossRef Saravanan R, Ravikumar L (2017) Renewable modified cellulose bearing chelating chiff base for adsorptive removal of heavy metal ions and antibacterial action. Water Environ Res 89(7):629–640PubMedCrossRef
Zurück zum Zitat Sen CK (2019) Human wounds and its burden: an updated compendium of estimates. Adv Wound Care 8:39–48CrossRef Sen CK (2019) Human wounds and its burden: an updated compendium of estimates. Adv Wound Care 8:39–48CrossRef
Zurück zum Zitat Sethi S, Kaith BS, Kaur M, Sharma N, Khullar S (2020) A hydrogel based on dialdehyde carboxymethyl cellulose–gelatin and its utilization as a bio adsorbent. J Chem Sci 132:15CrossRef Sethi S, Kaith BS, Kaur M, Sharma N, Khullar S (2020) A hydrogel based on dialdehyde carboxymethyl cellulose–gelatin and its utilization as a bio adsorbent. J Chem Sci 132:15CrossRef
Zurück zum Zitat Shaikh H, Adsul M, Gokhale D, Varma A (2011) Enhanced enzymatic hydrolysis of cellulose by partial modification of its chemical structure. Carbohydr Polym 86:962–968CrossRef Shaikh H, Adsul M, Gokhale D, Varma A (2011) Enhanced enzymatic hydrolysis of cellulose by partial modification of its chemical structure. Carbohydr Polym 86:962–968CrossRef
Zurück zum Zitat She Q, Li J, Lu Y, Lin S, You R (2021) In situ synthesis of silver nanoparticles on dialdehyde cellulose as reliable SERS substrate. Cellulose 28:10827–10840CrossRef She Q, Li J, Lu Y, Lin S, You R (2021) In situ synthesis of silver nanoparticles on dialdehyde cellulose as reliable SERS substrate. Cellulose 28:10827–10840CrossRef
Zurück zum Zitat Shen G, Zhang X, Zhang S (2014) A label-free electrochemical aptamer sensor based on dialdehyde cellulose/carbon nanotube/ionic liquid nanocomposite. J Electrochem Soc 161:B256–B260CrossRef Shen G, Zhang X, Zhang S (2014) A label-free electrochemical aptamer sensor based on dialdehyde cellulose/carbon nanotube/ionic liquid nanocomposite. J Electrochem Soc 161:B256–B260CrossRef
Zurück zum Zitat Shen G, Zhang X, Shen Y, Zhang S, Fang L (2015) One-step immobilization of antibodies for α-1 fetoprotein immunosensor based on dialdehyde cellulose/ionic liquid composite. Anal Biochem 471:38–43PubMedCrossRef Shen G, Zhang X, Shen Y, Zhang S, Fang L (2015) One-step immobilization of antibodies for α-1 fetoprotein immunosensor based on dialdehyde cellulose/ionic liquid composite. Anal Biochem 471:38–43PubMedCrossRef
Zurück zum Zitat Shen Q, Liu M, Lu Y, Zhang D, Cheng Z, Liu Y, Gao H, Jin Z (2019) Label-free electrochemical immunosensor based on a functionalized ionic liquid and helical carbon nanotubes for the determination of cardiac troponin I. ACS Omega 4:11888–11892PubMedPubMedCentralCrossRef Shen Q, Liu M, Lu Y, Zhang D, Cheng Z, Liu Y, Gao H, Jin Z (2019) Label-free electrochemical immunosensor based on a functionalized ionic liquid and helical carbon nanotubes for the determination of cardiac troponin I. ACS Omega 4:11888–11892PubMedPubMedCentralCrossRef
Zurück zum Zitat Shih IL, Shen MH, Van YT (2006) Microbial synthesis of poly(e-lysine) and its various applications. Bioresour Technol 97(9):1148–1159PubMedCrossRef Shih IL, Shen MH, Van YT (2006) Microbial synthesis of poly(e-lysine) and its various applications. Bioresour Technol 97(9):1148–1159PubMedCrossRef
Zurück zum Zitat Sichinga MC, Kline T, Whitehead MA, van de Van TGM (2022a) One-pot eco-friendly oxidative synthesis of imine carboxymethyl dialdehyde cellulosic fibers. Cellulose 29:799–815CrossRef Sichinga MC, Kline T, Whitehead MA, van de Van TGM (2022a) One-pot eco-friendly oxidative synthesis of imine carboxymethyl dialdehyde cellulosic fibers. Cellulose 29:799–815CrossRef
Zurück zum Zitat Sichinga MC, Koshani R, van de Ven TGM (2022b) Chemisorption of basic fuchsine in packed beds of dialdehyde cellulose fibres. Colloid Surf A Physicochem Eng Aspect 632:127726CrossRef Sichinga MC, Koshani R, van de Ven TGM (2022b) Chemisorption of basic fuchsine in packed beds of dialdehyde cellulose fibres. Colloid Surf A Physicochem Eng Aspect 632:127726CrossRef
Zurück zum Zitat Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015 CA: a cancer. J Clin 65:5 Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015 CA: a cancer. J Clin 65:5
Zurück zum Zitat Siller M, Amer H, Bacher M, Roggenstein W, Rosenau T, Potthast A (2015) Effects of periodate oxidation on cellulose polymorphs. Cellulose 22:2245–2261CrossRef Siller M, Amer H, Bacher M, Roggenstein W, Rosenau T, Potthast A (2015) Effects of periodate oxidation on cellulose polymorphs. Cellulose 22:2245–2261CrossRef
Zurück zum Zitat Simon J, Tsetsgee O, Iqbal NA, Sapkota J, Ristolainen M, Rosenau T, Potthast A (2022a) A fast method to measure the degree of oxidation of dialdehyde celluloses using multivariate calibration and infrared spectroscopy. Carbohydr Polym 278:118887PubMedCrossRef Simon J, Tsetsgee O, Iqbal NA, Sapkota J, Ristolainen M, Rosenau T, Potthast A (2022a) A fast method to measure the degree of oxidation of dialdehyde celluloses using multivariate calibration and infrared spectroscopy. Carbohydr Polym 278:118887PubMedCrossRef
Zurück zum Zitat Simon J, Tsetsgee O, Iqbal NA, Sapkota J, Ristolainen M, Rosenau T, Potthast A (2022b) Fourier transform and near infrared dataset of dialdehyde celluloses used to determine the degree of oxidation with chemometric analysis. Data Brief 40:107757PubMedCrossRef Simon J, Tsetsgee O, Iqbal NA, Sapkota J, Ristolainen M, Rosenau T, Potthast A (2022b) Fourier transform and near infrared dataset of dialdehyde celluloses used to determine the degree of oxidation with chemometric analysis. Data Brief 40:107757PubMedCrossRef
Zurück zum Zitat Singh M, Ray AR, Vasudevan P, Verma K, Guha SK (1979) Potential biosoluble carriers: biocompatibility and biodegradability of oxidized cellulose. Biomater Med Devices Artif Organs 4:495–512CrossRef Singh M, Ray AR, Vasudevan P, Verma K, Guha SK (1979) Potential biosoluble carriers: biocompatibility and biodegradability of oxidized cellulose. Biomater Med Devices Artif Organs 4:495–512CrossRef
Zurück zum Zitat Singh M, Vasudevan P, Sinha TJM, Ray AR, Misro MM, Guha SK (1981) An insulin delivery system from oxidized cellulose. J Biomed Mater Res 15:655–661PubMedCrossRef Singh M, Vasudevan P, Sinha TJM, Ray AR, Misro MM, Guha SK (1981) An insulin delivery system from oxidized cellulose. J Biomed Mater Res 15:655–661PubMedCrossRef
Zurück zum Zitat Singh M, Ray AR, Vasudevan P (1982) Biodegradation studies on periodate oxidized cellulose. Biomaterials 3:16–22PubMedCrossRef Singh M, Ray AR, Vasudevan P (1982) Biodegradation studies on periodate oxidized cellulose. Biomaterials 3:16–22PubMedCrossRef
Zurück zum Zitat Sirviö J, Hyvakko U, Liimatainen H, Niinimaki J, Hormi O (2011a) Periodate oxidation of cellulose at elevated temperatures using metal salts as cellulose activators. Carbohydr Polym 83:1293–1297CrossRef Sirviö J, Hyvakko U, Liimatainen H, Niinimaki J, Hormi O (2011a) Periodate oxidation of cellulose at elevated temperatures using metal salts as cellulose activators. Carbohydr Polym 83:1293–1297CrossRef
Zurück zum Zitat Sirviö J, Liimatainen H, Niinimaki J, Hormi O (2011b) Dialdehyde cellulose microfibers generated from wood pulp by milling-induced periodate oxidation. Carbohydr Polym 86:260–265CrossRef Sirviö J, Liimatainen H, Niinimaki J, Hormi O (2011b) Dialdehyde cellulose microfibers generated from wood pulp by milling-induced periodate oxidation. Carbohydr Polym 86:260–265CrossRef
Zurück zum Zitat Sirviö J, Liimatainen H, Visanko M, Niinimki J (2014) Optimization of dicarboxylic acid cellulose synthesis: reaction stoichiometry and role of hypochlorite scavengers. Carbohydr Polym 114:73–77PubMedCrossRef Sirviö J, Liimatainen H, Visanko M, Niinimki J (2014) Optimization of dicarboxylic acid cellulose synthesis: reaction stoichiometry and role of hypochlorite scavengers. Carbohydr Polym 114:73–77PubMedCrossRef
Zurück zum Zitat Sirviö JA, Hasa T, Ahola J, Liimatainen H, Niinimäki J, Hormi O (2015a) Phosphonated nanocelluloses from sequential oxidative–reductive treatment—physicochemical characteristics and thermal properties. Carbohydr Polym 133:524–532PubMedCrossRef Sirviö JA, Hasa T, Ahola J, Liimatainen H, Niinimäki J, Hormi O (2015a) Phosphonated nanocelluloses from sequential oxidative–reductive treatment—physicochemical characteristics and thermal properties. Carbohydr Polym 133:524–532PubMedCrossRef
Zurück zum Zitat Sirviö JA, Honkaniemi S, Visanko M, Liimatainen H (2015b) Composite films of poly (vinyl alcohol) and bifunctional cross-linking cellulose nanocrystals. ACS Appl Mater Interface 7(35):19691–19699CrossRef Sirviö JA, Honkaniemi S, Visanko M, Liimatainen H (2015b) Composite films of poly (vinyl alcohol) and bifunctional cross-linking cellulose nanocrystals. ACS Appl Mater Interface 7(35):19691–19699CrossRef
Zurück zum Zitat Sirviö JA, Visanko M, Laitinen O, Ammala A, Liimatainen H (2016) Amino-modified cellulose nanocrystals with adjustable hydrophobicity from combined regioselective oxidation and reductive amination. Carbohydr Polym 136:581–587PubMedCrossRef Sirviö JA, Visanko M, Laitinen O, Ammala A, Liimatainen H (2016) Amino-modified cellulose nanocrystals with adjustable hydrophobicity from combined regioselective oxidation and reductive amination. Carbohydr Polym 136:581–587PubMedCrossRef
Zurück zum Zitat Song K, Xu H, Xie K, Yang Y (2017) Keratin-based biocomposites reinforced and cross-linked with dual-functional cellulose nanocrystals. ACS Sustain Chem Eng 5:5669–5678CrossRef Song K, Xu H, Xie K, Yang Y (2017) Keratin-based biocomposites reinforced and cross-linked with dual-functional cellulose nanocrystals. ACS Sustain Chem Eng 5:5669–5678CrossRef
Zurück zum Zitat Spedding H (1960) Infrared spectra of periodate-oxidised cellulose J Chem Soc 3147 – 3152 Spedding H (1960) Infrared spectra of periodate-oxidised cellulose J Chem Soc 3147 – 3152
Zurück zum Zitat Strong EB, Kirschbaum CW, Martinez AW, Martinez NW (2018) Paper miniaturization via periodate oxidation of cellulose. Cellulose 25:3211–3217CrossRef Strong EB, Kirschbaum CW, Martinez AW, Martinez NW (2018) Paper miniaturization via periodate oxidation of cellulose. Cellulose 25:3211–3217CrossRef
Zurück zum Zitat Strong EB, Lore BA, Christensen ER, Martinez NW, Martinez AW (2019) How to shrink paper money: a macroscopic demonstration of the Malaprade reaction. J Chem Educ 96:1199–1204CrossRef Strong EB, Lore BA, Christensen ER, Martinez NW, Martinez AW (2019) How to shrink paper money: a macroscopic demonstration of the Malaprade reaction. J Chem Educ 96:1199–1204CrossRef
Zurück zum Zitat Su S, Nutiu R, Filipe CDM, Li Y, Pelton R (2007) Adsorption and covalent coupling of ATP-binding DNA aptamers onto cellulose. Langmuir 23:1300–1302PubMedCrossRef Su S, Nutiu R, Filipe CDM, Li Y, Pelton R (2007) Adsorption and covalent coupling of ATP-binding DNA aptamers onto cellulose. Langmuir 23:1300–1302PubMedCrossRef
Zurück zum Zitat Sulaeva I, Klinger KM, Amer H, Henniges U, Rosenau T, Potthast A (2015) Determination of molar mass distributions of highly oxidized dialdehyde cellulose by size exclusion chromatography and asymmetric flow field-flow fractionation. Cellulose 22:3569–3581CrossRef Sulaeva I, Klinger KM, Amer H, Henniges U, Rosenau T, Potthast A (2015) Determination of molar mass distributions of highly oxidized dialdehyde cellulose by size exclusion chromatography and asymmetric flow field-flow fractionation. Cellulose 22:3569–3581CrossRef
Zurück zum Zitat Sun B, Hou Q, Liu Z, Ni Y (2015) Sodium periodate oxidation of cellulose nanocrystal and its application as a paper wet strength additive. Cellulose 22:1135–1146CrossRef Sun B, Hou Q, Liu Z, Ni Y (2015) Sodium periodate oxidation of cellulose nanocrystal and its application as a paper wet strength additive. Cellulose 22:1135–1146CrossRef
Zurück zum Zitat Sun F, Liu W, Dong Z, Deng Y (2017) Underwater superoleophobicity cellulose nanofibril aerogel through regioselective sulfonation for oil/water separation. Chem Eng J 330:774–782CrossRef Sun F, Liu W, Dong Z, Deng Y (2017) Underwater superoleophobicity cellulose nanofibril aerogel through regioselective sulfonation for oil/water separation. Chem Eng J 330:774–782CrossRef
Zurück zum Zitat Sung B, Prasad S, Yadav VR, Aggarwal BB (2012) Cancer cell signaling pathways targeted by spice-derived nutraceuticals. Nutr Cancer 64:173–197PubMedCrossRef Sung B, Prasad S, Yadav VR, Aggarwal BB (2012) Cancer cell signaling pathways targeted by spice-derived nutraceuticals. Nutr Cancer 64:173–197PubMedCrossRef
Zurück zum Zitat Szycher M, Lee SJ (1992) Modern wound dressings: a systemic approach to wound healing. J Biomater Appl 7:142–213PubMedCrossRef Szycher M, Lee SJ (1992) Modern wound dressings: a systemic approach to wound healing. J Biomater Appl 7:142–213PubMedCrossRef
Zurück zum Zitat Thiangtham S, Runt J, Manuspiya H (2019) Sulfonation of dialdehyde cellulose extracted from sugarcane bagasse for synergistically enhanced water solubility. Carbohydr Polym 208:3140–3322CrossRef Thiangtham S, Runt J, Manuspiya H (2019) Sulfonation of dialdehyde cellulose extracted from sugarcane bagasse for synergistically enhanced water solubility. Carbohydr Polym 208:3140–3322CrossRef
Zurück zum Zitat Tian X, Jiang X (2018) Preparing water-soluble 2, 3-dialdehyde cellulose as a bio-origin cross-linker of chitosan. Cellulose 25:987–998CrossRef Tian X, Jiang X (2018) Preparing water-soluble 2, 3-dialdehyde cellulose as a bio-origin cross-linker of chitosan. Cellulose 25:987–998CrossRef
Zurück zum Zitat Tian X, Yan D, Lu Q, Jiang X (2016) Cationic surface modification of nanocrystalline cellulose as reinforcements for preparation of the chitosan-based nanocomposite films. Cellulose 24:163–174CrossRef Tian X, Yan D, Lu Q, Jiang X (2016) Cationic surface modification of nanocrystalline cellulose as reinforcements for preparation of the chitosan-based nanocomposite films. Cellulose 24:163–174CrossRef
Zurück zum Zitat Treesuppharat W, Rojanapanthu P, Siangsanoh C, Manuspiya H, Ummartyotin S (2017) Synthesis and characterization of bacterial cellulose and gelatin-based hydrogel composites for drug delivery systems. Biotechnol Reports 15:84–91CrossRef Treesuppharat W, Rojanapanthu P, Siangsanoh C, Manuspiya H, Ummartyotin S (2017) Synthesis and characterization of bacterial cellulose and gelatin-based hydrogel composites for drug delivery systems. Biotechnol Reports 15:84–91CrossRef
Zurück zum Zitat Turbak AF, Snyder FW, Sandberg KRJ (1983) Microfibrillated cellulose, a new cellulose product: properties, uses and commercial potential. J Appl Polym Sci 37:815–827 Turbak AF, Snyder FW, Sandberg KRJ (1983) Microfibrillated cellulose, a new cellulose product: properties, uses and commercial potential. J Appl Polym Sci 37:815–827
Zurück zum Zitat Ullah H, Santos HA, Khan T (2016) Applications of bacterial cellulose in food, cosmetics and drug delivery. Cellulose 23:2291–2314CrossRef Ullah H, Santos HA, Khan T (2016) Applications of bacterial cellulose in food, cosmetics and drug delivery. Cellulose 23:2291–2314CrossRef
Zurück zum Zitat Varavinit S, Chaokasem N, Shobsngob S (2001) Covalent immobilization of glucoamylase to bagasse dialdehyde cellulose. World J Microbiol Biotechnol 17:721–725CrossRef Varavinit S, Chaokasem N, Shobsngob S (2001) Covalent immobilization of glucoamylase to bagasse dialdehyde cellulose. World J Microbiol Biotechnol 17:721–725CrossRef
Zurück zum Zitat Varma AJ, Chavan VB (1995) A study of crystallinity changes in oxidised celluloses. Polym Degrad Stab 49:245–250CrossRef Varma AJ, Chavan VB (1995) A study of crystallinity changes in oxidised celluloses. Polym Degrad Stab 49:245–250CrossRef
Zurück zum Zitat Varma AJ, Kulkarni MP (2002) Oxidation of cellulose under controlled conditions. Polym Degrad Stab 77:25–27CrossRef Varma AJ, Kulkarni MP (2002) Oxidation of cellulose under controlled conditions. Polym Degrad Stab 77:25–27CrossRef
Zurück zum Zitat Varma AJ, Chavan VB, Rajmohanan PR, Ganapathy S (1997) Some observations on the high-resolution solid-state CP-MAS 13C-NMR spectra of periodate-oxidised cellulose. Polym Degrad Stab 58:257–260CrossRef Varma AJ, Chavan VB, Rajmohanan PR, Ganapathy S (1997) Some observations on the high-resolution solid-state CP-MAS 13C-NMR spectra of periodate-oxidised cellulose. Polym Degrad Stab 58:257–260CrossRef
Zurück zum Zitat Verma NK, Raghav N (2022) In-silico identification of lysine residue for α-Amylase immobilization on dialdehyde cellulose. Int J Biol Macromol 200:618–625PubMedCrossRef Verma NK, Raghav N (2022) In-silico identification of lysine residue for α-Amylase immobilization on dialdehyde cellulose. Int J Biol Macromol 200:618–625PubMedCrossRef
Zurück zum Zitat Vicini S, Princi E, Luciano G, Franceschi E, Pedemonte E, Oldak D, Kaczmarek H, Sionkowska A (2004) Thermal analysis and characterisation of cellulose oxidised with sodium methaperiodate. Themochim Acta 418:123–130CrossRef Vicini S, Princi E, Luciano G, Franceschi E, Pedemonte E, Oldak D, Kaczmarek H, Sionkowska A (2004) Thermal analysis and characterisation of cellulose oxidised with sodium methaperiodate. Themochim Acta 418:123–130CrossRef
Zurück zum Zitat Vinklárkova L, Masteiková R, Foltýnová G, Muselík J, Pavloková S, Bernatonienė J, Vetchý D (2017) Film wound dressing with local anesthetic based on insoluble carboxymethycellulose matrix. J Appl Biomed 15:313–320CrossRef Vinklárkova L, Masteiková R, Foltýnová G, Muselík J, Pavloková S, Bernatonienė J, Vetchý D (2017) Film wound dressing with local anesthetic based on insoluble carboxymethycellulose matrix. J Appl Biomed 15:313–320CrossRef
Zurück zum Zitat Visanko M, Liimatainen H, Sirviö JA, Mikkonen KS, Tenkanen M, Sliz R, Hormi O, Niinimäki J (2015) Butylamino-functionalized cellulose nanocrystal films: barrier properties and mechanical strength. RSC Adv 5(20):15140–15146CrossRef Visanko M, Liimatainen H, Sirviö JA, Mikkonen KS, Tenkanen M, Sliz R, Hormi O, Niinimäki J (2015) Butylamino-functionalized cellulose nanocrystal films: barrier properties and mechanical strength. RSC Adv 5(20):15140–15146CrossRef
Zurück zum Zitat Wang X, Wang Y, Li L, Gu Z, Yu X (2015) Feasibility study of the naturally occurring dialdehyde carboxymethyl cellulose for biological tissue fixation. Carbohydr Polym 115:54–61PubMedCrossRef Wang X, Wang Y, Li L, Gu Z, Yu X (2015) Feasibility study of the naturally occurring dialdehyde carboxymethyl cellulose for biological tissue fixation. Carbohydr Polym 115:54–61PubMedCrossRef
Zurück zum Zitat Wang B, Ma C et al (2018) Synthesis and characterization of dialdehyde cellulose/ silver composites by microwave-assisted hydrothermal method. BioRes 13:5793–5804CrossRef Wang B, Ma C et al (2018) Synthesis and characterization of dialdehyde cellulose/ silver composites by microwave-assisted hydrothermal method. BioRes 13:5793–5804CrossRef
Zurück zum Zitat Wang P, He H, Cai R, Tao G, Yang M, Zuo H, Umar A, Wang Y (2019a) Cross-linking of dialdehyde carboxymethyl cellulose with silk sericin to reinforce sericin film for potential biomedical application. Carbohydr Polym 212:403–411PubMedCrossRef Wang P, He H, Cai R, Tao G, Yang M, Zuo H, Umar A, Wang Y (2019a) Cross-linking of dialdehyde carboxymethyl cellulose with silk sericin to reinforce sericin film for potential biomedical application. Carbohydr Polym 212:403–411PubMedCrossRef
Zurück zum Zitat Wang Y, Xiao G, Peng Y, Chen L, Fu S (2019b) Effects of cellulose nanofibrils on dialdehyde carboxymethyl cellulose based dual responsive self-healing hydrogel. Cellulose 26:8813–8827CrossRef Wang Y, Xiao G, Peng Y, Chen L, Fu S (2019b) Effects of cellulose nanofibrils on dialdehyde carboxymethyl cellulose based dual responsive self-healing hydrogel. Cellulose 26:8813–8827CrossRef
Zurück zum Zitat Wang Z, Yao M, Wang X, Li S, Liu Y, Yang G (2020) Influence of reaction media on synthesis of dialdehyde cellulose/GO composites and their adsorption performances on heavy metals. Carbohydr Polym 232:115781PubMedCrossRef Wang Z, Yao M, Wang X, Li S, Liu Y, Yang G (2020) Influence of reaction media on synthesis of dialdehyde cellulose/GO composites and their adsorption performances on heavy metals. Carbohydr Polym 232:115781PubMedCrossRef
Zurück zum Zitat Wei B, Yang G, Hong F (2011) Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties. Carbohydr Polym 84:533–538CrossRef Wei B, Yang G, Hong F (2011) Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties. Carbohydr Polym 84:533–538CrossRef
Zurück zum Zitat Wei J, Du C, Liu H, Chen Y, Yu H, Zhou Z (2016) Preparation and characterization of aldehyde-functionalized cellulosic fibers through periodate oxidization of bamboo pulp. BioRes 11(4):8386–8395CrossRef Wei J, Du C, Liu H, Chen Y, Yu H, Zhou Z (2016) Preparation and characterization of aldehyde-functionalized cellulosic fibers through periodate oxidization of bamboo pulp. BioRes 11(4):8386–8395CrossRef
Zurück zum Zitat Wei D, Liu Q, Liu Z, Liu J, Zheng X, Pei Y, Tang K (2019) Modified nano microfibrillated cellulose/carboxymethyl chitosan composite hydrogel with giant network structure and quick gelation formability. Int J Biol Macromol 135:561–568PubMedCrossRef Wei D, Liu Q, Liu Z, Liu J, Zheng X, Pei Y, Tang K (2019) Modified nano microfibrillated cellulose/carboxymethyl chitosan composite hydrogel with giant network structure and quick gelation formability. Int J Biol Macromol 135:561–568PubMedCrossRef
Zurück zum Zitat Wen X, Zheng Y, Wu J, Wang LN, Yuan Z, Peng J, Meng H (2015) Immobilization of collagen peptide on dialdehyde bacterial cellulose nanofibers via covalent bonds for tissue engineering and regeneration. Int J Nanomed 10:4623–4637 Wen X, Zheng Y, Wu J, Wang LN, Yuan Z, Peng J, Meng H (2015) Immobilization of collagen peptide on dialdehyde bacterial cellulose nanofibers via covalent bonds for tissue engineering and regeneration. Int J Nanomed 10:4623–4637
Zurück zum Zitat Williams D (2008) Biocompatibility. In: van Blitterswijk C et al (eds) Tissue Engineering. Academic Press, pp 255–278CrossRef Williams D (2008) Biocompatibility. In: van Blitterswijk C et al (eds) Tissue Engineering. Academic Press, pp 255–278CrossRef
Zurück zum Zitat Woo M-H, Lee J-H, Rho S-G, Ulmer K, Welch JC, Wu C-Y, Song L, Baney RH (2011) Evaluation of the performance of dialdehyde cellulose filters against airborne and waterborne bacteria and viruses. Ind Eng Chem Res 50:11636–11643CrossRef Woo M-H, Lee J-H, Rho S-G, Ulmer K, Welch JC, Wu C-Y, Song L, Baney RH (2011) Evaluation of the performance of dialdehyde cellulose filters against airborne and waterborne bacteria and viruses. Ind Eng Chem Res 50:11636–11643CrossRef
Zurück zum Zitat Wu M, Kuga S (2006) Cationization of cellulose fabrics by polyallylamine binding. J Appl Polym Sci 100(2):1668–1672CrossRef Wu M, Kuga S (2006) Cationization of cellulose fabrics by polyallylamine binding. J Appl Polym Sci 100(2):1668–1672CrossRef
Zurück zum Zitat Wu J, Zheng Y, Yang Z, Lin Q, Qiao K, Chen X, Peng Y (2014) Influence of dialdehyde bacterial cellulose with the nonlinear elasticity and topology structure of ECM on cell adhesion and proliferation. RSC Adv 4:3998CrossRef Wu J, Zheng Y, Yang Z, Lin Q, Qiao K, Chen X, Peng Y (2014) Influence of dialdehyde bacterial cellulose with the nonlinear elasticity and topology structure of ECM on cell adhesion and proliferation. RSC Adv 4:3998CrossRef
Zurück zum Zitat Wu Y, Luo X, Li W, Song R, Li J, Li Y, Li B, Liu S (2016) Green and biodegradable composite films with novel antimicrobial performance based on cellulose. Food Chem 197:250–256PubMedCrossRef Wu Y, Luo X, Li W, Song R, Li J, Li Y, Li B, Liu S (2016) Green and biodegradable composite films with novel antimicrobial performance based on cellulose. Food Chem 197:250–256PubMedCrossRef
Zurück zum Zitat Xiao G, Wang Y, Zhang H, Zhu Z, Fu S (2020) Dialdehyde cellulose nanocrystals act as multi-role for the formation of ultra-fine gold nanoparticles with high efficiency. Int J Biol Macromol 163:788–800PubMedCrossRef Xiao G, Wang Y, Zhang H, Zhu Z, Fu S (2020) Dialdehyde cellulose nanocrystals act as multi-role for the formation of ultra-fine gold nanoparticles with high efficiency. Int J Biol Macromol 163:788–800PubMedCrossRef
Zurück zum Zitat Xie F, Fardim P, den Mooter GV (2022) Porous soluble dialdehyde cellulose beads: a new carrier for the formulation of poorly water-soluble drugs. Int J Pharm 615:121491PubMedCrossRef Xie F, Fardim P, den Mooter GV (2022) Porous soluble dialdehyde cellulose beads: a new carrier for the formulation of poorly water-soluble drugs. Int J Pharm 615:121491PubMedCrossRef
Zurück zum Zitat Xing X, Han Y, Jiang O, Sun Y, Wang X, Qu G, Sun G, Li Y (2021) Immobilization of laccases onto cellulose nanocrystals derived from waste newspaper: relationship between immobilized laccase activity and dialdehyde content. Cellulose 28:4793–4805CrossRef Xing X, Han Y, Jiang O, Sun Y, Wang X, Qu G, Sun G, Li Y (2021) Immobilization of laccases onto cellulose nanocrystals derived from waste newspaper: relationship between immobilized laccase activity and dialdehyde content. Cellulose 28:4793–4805CrossRef
Zurück zum Zitat Xu YH, Huang C (2011) Effect of sodium periodate selective oxidation on crystallinity of cotton cellulose. Adv Mater Res 197–198:1201–1204CrossRef Xu YH, Huang C (2011) Effect of sodium periodate selective oxidation on crystallinity of cotton cellulose. Adv Mater Res 197–198:1201–1204CrossRef
Zurück zum Zitat Xu Q, Ji Y, Sun Q, Fu Y, Xu Y, Jin L (2019a) Fabrication of cellulose nanocrystal/chitosan hydrogel for controlled drug release. Nanomaterials 9:253PubMedCentralCrossRef Xu Q, Ji Y, Sun Q, Fu Y, Xu Y, Jin L (2019a) Fabrication of cellulose nanocrystal/chitosan hydrogel for controlled drug release. Nanomaterials 9:253PubMedCentralCrossRef
Zurück zum Zitat Xu Q, Jin L, Wang Y, Chen H, Qin M (2019b) Synthesis of silver nanoparticles using dialdehyde cellulose nanocrystal as a multi-functional agent and application to antibacterial paper. Cellulose 26:1309–1321CrossRef Xu Q, Jin L, Wang Y, Chen H, Qin M (2019b) Synthesis of silver nanoparticles using dialdehyde cellulose nanocrystal as a multi-functional agent and application to antibacterial paper. Cellulose 26:1309–1321CrossRef
Zurück zum Zitat Xu J, Li X, Liu R, Shang Z, Long L, Qiu H, Ni Y (2020) Dialdehyde modified cellulose nanofibers enhanced the physical properties of decorative paper impregnated by aldehyde-free adhesive. Carbohydr Polym 250:116941PubMedCrossRef Xu J, Li X, Liu R, Shang Z, Long L, Qiu H, Ni Y (2020) Dialdehyde modified cellulose nanofibers enhanced the physical properties of decorative paper impregnated by aldehyde-free adhesive. Carbohydr Polym 250:116941PubMedCrossRef
Zurück zum Zitat Xu J, Li X, Xu Y, Wang A, Xu Z, Wu X, Li D, Mu C, Ge L (2021) Dihydromyricetin-loaded pickering emulsions stabilized by dialdehyde cellulose nanocrystals for preparation of antioxidant gelatin–based edible films. Food Bioprocess Technol 14:1648–1661CrossRef Xu J, Li X, Xu Y, Wang A, Xu Z, Wu X, Li D, Mu C, Ge L (2021) Dihydromyricetin-loaded pickering emulsions stabilized by dialdehyde cellulose nanocrystals for preparation of antioxidant gelatin–based edible films. Food Bioprocess Technol 14:1648–1661CrossRef
Zurück zum Zitat Yan G, Zhang X, Li M, Zhao X, Zeng X, Sun Y, Tang X, Lei T, Lin L (2019) Stability of soluble dialdehyde cellulose and the formation of hollow microspheres: optimization and characterization. ACS Sustain Chem Eng 7(2):2151–2159CrossRef Yan G, Zhang X, Li M, Zhao X, Zeng X, Sun Y, Tang X, Lei T, Lin L (2019) Stability of soluble dialdehyde cellulose and the formation of hollow microspheres: optimization and characterization. ACS Sustain Chem Eng 7(2):2151–2159CrossRef
Zurück zum Zitat Yang CW, Choi HM (2020) Preparation of water-soluble dialdehyde nanocelluloses by periodate oxidation under microwave irradiation. Cellulose Chem Technol 54(3–4):247–258CrossRef Yang CW, Choi HM (2020) Preparation of water-soluble dialdehyde nanocelluloses by periodate oxidation under microwave irradiation. Cellulose Chem Technol 54(3–4):247–258CrossRef
Zurück zum Zitat Yang X, Cranston ED (2014) Chemically cross-linked cellulose nanocrystal aerogels with shape recovery and superabsorbent properties. Chem Mater 26:6016–6025CrossRef Yang X, Cranston ED (2014) Chemically cross-linked cellulose nanocrystal aerogels with shape recovery and superabsorbent properties. Chem Mater 26:6016–6025CrossRef
Zurück zum Zitat Yang H, Tejado A, Alam N, Antal M, van de Ven TGM (2012) Films prepared from electrosterically stabilized nanocrystalline cellulose. Langmuir 28:7834–7842PubMedCrossRef Yang H, Tejado A, Alam N, Antal M, van de Ven TGM (2012) Films prepared from electrosterically stabilized nanocrystalline cellulose. Langmuir 28:7834–7842PubMedCrossRef
Zurück zum Zitat Yang H, Chen D, van de Ven TG (2015a) Preparation and characterization of sterically stabilized nanocrystalline cellulose obtained by periodate oxidation of cellulose fibers. Cellulose 22(3):1743–1752CrossRef Yang H, Chen D, van de Ven TG (2015a) Preparation and characterization of sterically stabilized nanocrystalline cellulose obtained by periodate oxidation of cellulose fibers. Cellulose 22(3):1743–1752CrossRef
Zurück zum Zitat Yang X, Shi K, Zhitomirsky I, Cranston ED (2015b) Cellulose nanocrystal aerogels as universal 3D lightweight substrates for supercapacitor materials. Adv Mater 27(40):6104–6109PubMedCrossRef Yang X, Shi K, Zhitomirsky I, Cranston ED (2015b) Cellulose nanocrystal aerogels as universal 3D lightweight substrates for supercapacitor materials. Adv Mater 27(40):6104–6109PubMedCrossRef
Zurück zum Zitat Yao M, Wang Z, Liu Y, Yang G, Chen J (2019) Preparation of dialdehyde cellulose grafted graphene oxide composite and its adsorption behavior for heavy metals from aqueous solution. Carbohydr Polym 212:345–351PubMedCrossRef Yao M, Wang Z, Liu Y, Yang G, Chen J (2019) Preparation of dialdehyde cellulose grafted graphene oxide composite and its adsorption behavior for heavy metals from aqueous solution. Carbohydr Polym 212:345–351PubMedCrossRef
Zurück zum Zitat Yu C, Wu W, Gao M, Liu Y (2022a) Modified cellulose with BINAP-supported Rh as an efficient heterogeneous catalyst for asymmetric hydrogenation. Catalysts 12:83CrossRef Yu C, Wu W, Gao M, Liu Y (2022a) Modified cellulose with BINAP-supported Rh as an efficient heterogeneous catalyst for asymmetric hydrogenation. Catalysts 12:83CrossRef
Zurück zum Zitat Yu C-L, Jhong M-Y, Lin F-Q, Chen M-N, Wang G-M (2022b) Aldehyde content of dialdehyde cellulose determined via nitrate analysis. BioRes 17:2457–2469CrossRef Yu C-L, Jhong M-Y, Lin F-Q, Chen M-N, Wang G-M (2022b) Aldehyde content of dialdehyde cellulose determined via nitrate analysis. BioRes 17:2457–2469CrossRef
Zurück zum Zitat Yuhong F, Jiacheng L, Qiang L, Xibin W, Zhouxin W, Sujuan P, Sun Zhongliang S (2007) Crystallinity and thermal decomposition of dialdehyde celluloses from bacterial cellulose. Key Eng Mater 330–332:1289–1292 Yuhong F, Jiacheng L, Qiang L, Xibin W, Zhouxin W, Sujuan P, Sun Zhongliang S (2007) Crystallinity and thermal decomposition of dialdehyde celluloses from bacterial cellulose. Key Eng Mater 330–332:1289–1292
Zurück zum Zitat Yuldoshov S, Atakhanov A, Rashidova S (2016) Cotton cellulose, microcrystalline cellulose and nanocellulose: Carboxymethylation and oxidation reaction activity. Nano Sci Nano Technol 10:106 Yuldoshov S, Atakhanov A, Rashidova S (2016) Cotton cellulose, microcrystalline cellulose and nanocellulose: Carboxymethylation and oxidation reaction activity. Nano Sci Nano Technol 10:106
Zurück zum Zitat Zeng X, Yan G, Sun Y, Tang X, Lin L, Lei T (2021) Method for preparing dual-sensitive cellulose-based aerogel US Patent Application Pub. No. US 2021/0130567 A1; filed Jan 12, 2021 and Pub Date May 6, 2021 Zeng X, Yan G, Sun Y, Tang X, Lin L, Lei T (2021) Method for preparing dual-sensitive cellulose-based aerogel US Patent Application Pub. No. US 2021/0130567 A1; filed Jan 12, 2021 and Pub Date May 6, 2021
Zurück zum Zitat Zhang Y, Lu X, Fu Z, Wang Z, Zhang J (2011) Sulphated modification of a polysaccharide obtained from fresh persimmon (Diospyros kaki L.) fruit and antioxidant activities of the sulphated derivatives. Food Chem 127:1084–1090PubMedCrossRef Zhang Y, Lu X, Fu Z, Wang Z, Zhang J (2011) Sulphated modification of a polysaccharide obtained from fresh persimmon (Diospyros kaki L.) fruit and antioxidant activities of the sulphated derivatives. Food Chem 127:1084–1090PubMedCrossRef
Zurück zum Zitat Zhang X, Zhu J, Liu X (2012) Preparation and characterization of regenerated cellulose blend films containing high amount of poly(vinyl alcohol) (PVA) in ionic liquid. Macromol Res 20:703–708CrossRef Zhang X, Zhu J, Liu X (2012) Preparation and characterization of regenerated cellulose blend films containing high amount of poly(vinyl alcohol) (PVA) in ionic liquid. Macromol Res 20:703–708CrossRef
Zurück zum Zitat Zhang X, Shen G, Sun S, Shen Y, Zhang C, Xiao A (2014) Direct immobilization of antibodies on dialdehyde cellulose film for convenient construction of an electrochemical immunosensor. Sensors Actuators B 200:304–309CrossRef Zhang X, Shen G, Sun S, Shen Y, Zhang C, Xiao A (2014) Direct immobilization of antibodies on dialdehyde cellulose film for convenient construction of an electrochemical immunosensor. Sensors Actuators B 200:304–309CrossRef
Zurück zum Zitat Zhang L, Ge H, Xu M, Cao J, Dai Y (2017) Physicochemical properties, antioxidant and antibacterial activities of dialdehyde microcrystalline cellulose. Cellulose 24:2287–2298CrossRef Zhang L, Ge H, Xu M, Cao J, Dai Y (2017) Physicochemical properties, antioxidant and antibacterial activities of dialdehyde microcrystalline cellulose. Cellulose 24:2287–2298CrossRef
Zurück zum Zitat Zhang L, Zhang Q, Zheng Y, He Z, Guan P, He X, Hui L, Dai Y (2018) Study of Schiff base formation between dialdehyde cellulose and proteins, and its application for the deproteinization of crude polysaccharide extracts. Ind Crop Product 112:532–540CrossRef Zhang L, Zhang Q, Zheng Y, He Z, Guan P, He X, Hui L, Dai Y (2018) Study of Schiff base formation between dialdehyde cellulose and proteins, and its application for the deproteinization of crude polysaccharide extracts. Ind Crop Product 112:532–540CrossRef
Zurück zum Zitat Zhang H, Liu P, Musa SM, Mai C, Zhang K (2019a) Dialdehyde cellulose as a bio-based robust adhesive for wood bonding. ACS Sustain Chem Eng 7:10452–10459CrossRef Zhang H, Liu P, Musa SM, Mai C, Zhang K (2019a) Dialdehyde cellulose as a bio-based robust adhesive for wood bonding. ACS Sustain Chem Eng 7:10452–10459CrossRef
Zurück zum Zitat Zhang S, Kai C, Liu B, Zhang S, Wei W, Xu X, Zhou Z (2019b) Preparation, characterization and antibacterial properties of cellulose membrane containing N-halamine. Cellulose 26:5621–5633CrossRef Zhang S, Kai C, Liu B, Zhang S, Wei W, Xu X, Zhou Z (2019b) Preparation, characterization and antibacterial properties of cellulose membrane containing N-halamine. Cellulose 26:5621–5633CrossRef
Zurück zum Zitat Zhang et al (2020a) Facile fabrication of cellulose membrane containing polyiodides and its antibacterial properties. Appl Surf Sci 500:144046CrossRef Zhang et al (2020a) Facile fabrication of cellulose membrane containing polyiodides and its antibacterial properties. Appl Surf Sci 500:144046CrossRef
Zurück zum Zitat Zhang L, Yan P, Li Y, He X, Dai Y, Tan Z (2020b) Preparation and antibacterial activity of a cellulose-based Schiff base derived from dialdehyde cellulose and L-lysine. Ind Crop Prod 145:112126CrossRef Zhang L, Yan P, Li Y, He X, Dai Y, Tan Z (2020b) Preparation and antibacterial activity of a cellulose-based Schiff base derived from dialdehyde cellulose and L-lysine. Ind Crop Prod 145:112126CrossRef
Zurück zum Zitat Zhang S, Liu B, Hu D, Zhang S, Pei Y, Gong Z (2020c) Sensitive and visual detection of p-phenylenediamine by using dialdehyde cellulose membrane as a solid matrix. Anal Chim Acta 1139:189–197PubMedCrossRef Zhang S, Liu B, Hu D, Zhang S, Pei Y, Gong Z (2020c) Sensitive and visual detection of p-phenylenediamine by using dialdehyde cellulose membrane as a solid matrix. Anal Chim Acta 1139:189–197PubMedCrossRef
Zurück zum Zitat Zheng X, Zhang Q, Liu J, Pei Y, Tang K (2016) A unique high mechanical strength dialdehyde microfibrillated cellulose/gelatin composite hydrogel with a giant network structure. RSC Adv 6:71999CrossRef Zheng X, Zhang Q, Liu J, Pei Y, Tang K (2016) A unique high mechanical strength dialdehyde microfibrillated cellulose/gelatin composite hydrogel with a giant network structure. RSC Adv 6:71999CrossRef
Zurück zum Zitat Zheng X, Li X, Li J, Wang L, Jin W, Liu J, Pei Y, Tang K (2018) Efficient removal of anionic dye (Congo red) by dialdehyde microfibrillated cellulose/chitosan composite film with significantly improved stability in dye solution. Int J Biol Macromol 108:283–289CrossRef Zheng X, Li X, Li J, Wang L, Jin W, Liu J, Pei Y, Tang K (2018) Efficient removal of anionic dye (Congo red) by dialdehyde microfibrillated cellulose/chitosan composite film with significantly improved stability in dye solution. Int J Biol Macromol 108:283–289CrossRef
Zurück zum Zitat Zhu W et al (2016) Functionalization of cellulose with hyperbranched polyethylenimine for selective dye adsorption and separation. Cellulose 23:3785–3797CrossRef Zhu W et al (2016) Functionalization of cellulose with hyperbranched polyethylenimine for selective dye adsorption and separation. Cellulose 23:3785–3797CrossRef
Zurück zum Zitat Zhu L, Liu Y, Jiang Z, Sakai E, Qiu J, Zhu P (2019) Highly temperature resistant cellulose nanofiber/polyvinyl alcohol hydrogel using aldehyde cellulose nanofiber as crosslinker. Cellulose 26:5291–5303CrossRef Zhu L, Liu Y, Jiang Z, Sakai E, Qiu J, Zhu P (2019) Highly temperature resistant cellulose nanofiber/polyvinyl alcohol hydrogel using aldehyde cellulose nanofiber as crosslinker. Cellulose 26:5291–5303CrossRef
Metadaten
Titel
Dialdehyde cellulose as a niche material for versatile applications: an overview
verfasst von
Ganeswar Dalei
Subhraseema Das
Manoranjan Pradhan
Publikationsdatum
24.05.2022
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 10/2022
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-022-04619-1

Weitere Artikel der Ausgabe 10/2022

Cellulose 10/2022 Zur Ausgabe