Skip to main content
Erschienen in: Journal of Computational Neuroscience 3/2010

01.12.2010

Intrinsic dendritic filtering gives low-pass power spectra of local field potentials

verfasst von: Henrik Lindén, Klas H. Pettersen, Gaute T. Einevoll

Erschienen in: Journal of Computational Neuroscience | Ausgabe 3/2010

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The local field potential (LFP) is among the most important experimental measures when probing neural population activity, but a proper understanding of the link between the underlying neural activity and the LFP signal is still missing. Here we investigate this link by mathematical modeling of contributions to the LFP from a single layer-5 pyramidal neuron and a single layer-4 stellate neuron receiving synaptic input. An intrinsic dendritic low-pass filtering effect of the LFP signal, previously demonstrated for extracellular signatures of action potentials, is seen to strongly affect the LFP power spectra, even for frequencies as low as 10 Hz for the example pyramidal neuron. Further, the LFP signal is found to depend sensitively on both the recording position and the position of the synaptic input: the LFP power spectra recorded close to the active synapse are typically found to be less low-pass filtered than spectra recorded further away. Some recording positions display striking band-pass characteristics of the LFP. The frequency dependence of the properties of the current dipole moment set up by the synaptic input current is found to qualitatively account for several salient features of the observed LFP. Two approximate schemes for calculating the LFP, the dipole approximation and the two-monopole approximation, are tested and found to be potentially useful for translating results from large-scale neural network models into predictions for results from electroencephalographic (EEG) or electrocorticographic (ECoG) recordings.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Arieli, A. (1992). Novel strategies to unravel mechanisms of cortical function: From macro- to micro-electrophysiological recordings. In A. Aertsen, & V. Braitenberg (Eds.), Information processing in the cortex. New York: Springer. Arieli, A. (1992). Novel strategies to unravel mechanisms of cortical function: From macro- to micro-electrophysiological recordings. In A. Aertsen, & V. Braitenberg (Eds.), Information processing in the cortex. New York: Springer.
Zurück zum Zitat Bedard, C., Kröger H., & Destexhe A. (2004). Modeling extracellular field potentials and the frequency-filtering properties of extracellular space. Biophysical Journal, 86, 1829–1842.CrossRefPubMed Bedard, C., Kröger H., & Destexhe A. (2004). Modeling extracellular field potentials and the frequency-filtering properties of extracellular space. Biophysical Journal, 86, 1829–1842.CrossRefPubMed
Zurück zum Zitat Bedard, C., Kröger, H., & Destexhe, A. (2006a). Model of low-pass filtering of local field potentials. Physical Review E, 73, 051911.CrossRef Bedard, C., Kröger, H., & Destexhe, A. (2006a). Model of low-pass filtering of local field potentials. Physical Review E, 73, 051911.CrossRef
Zurück zum Zitat Bedard, C., Kröger, H., & Destexhe, A. (2006b). Does the 1/f frequency scaling of brain signals reflect self-organized critical states? Physical Review Letters, 97, 118102.CrossRefPubMed Bedard, C., Kröger, H., & Destexhe, A. (2006b). Does the 1/f frequency scaling of brain signals reflect self-organized critical states? Physical Review Letters, 97, 118102.CrossRefPubMed
Zurück zum Zitat Bedard, C., & Destexhe, A. (2009) Macroscopic models of local field potentials and the apparent 1/f noise in brain activity. Biophysical Journal, 96, 2589–2603.CrossRefPubMed Bedard, C., & Destexhe, A. (2009) Macroscopic models of local field potentials and the apparent 1/f noise in brain activity. Biophysical Journal, 96, 2589–2603.CrossRefPubMed
Zurück zum Zitat Beggs, J. M., & Plenz, D. (2003). Neuronal avalanches in neocortical circuits. Journal of Neuroscience, 23, 11167–11177.PubMed Beggs, J. M., & Plenz, D. (2003). Neuronal avalanches in neocortical circuits. Journal of Neuroscience, 23, 11167–11177.PubMed
Zurück zum Zitat Berens, P., Keliris, G. A., Ecker, A. S., Logothetis, N., & Tolias, A. S. (2008). Comparing the feature selectivity of the gamma-band of the local field potential and the underlying spiking activity in primate visual cortex. Frontiers in Systems Neuroscience, 2(2). doi:10.3389/neuro.06/002.2008.PubMed Berens, P., Keliris, G. A., Ecker, A. S., Logothetis, N., & Tolias, A. S. (2008). Comparing the feature selectivity of the gamma-band of the local field potential and the underlying spiking activity in primate visual cortex. Frontiers in Systems Neuroscience, 2(2). doi:10.​3389/​neuro.​06/​002.​2008.PubMed
Zurück zum Zitat Buzsáki, G. (2004). Large-scale recording of neuronal ensembles. Nature Neuroscience, 7, 446–451.CrossRefPubMed Buzsáki, G. (2004). Large-scale recording of neuronal ensembles. Nature Neuroscience, 7, 446–451.CrossRefPubMed
Zurück zum Zitat Buzsáki, G. (2006). Rhythms of the brain. New York: Oxford University Press.CrossRef Buzsáki, G. (2006). Rhythms of the brain. New York: Oxford University Press.CrossRef
Zurück zum Zitat Carnevale, N. T., & Hines, M. L. (2006). The NEURON book. Cambridge, UK: Cambridge University Press.CrossRef Carnevale, N. T., & Hines, M. L. (2006). The NEURON book. Cambridge, UK: Cambridge University Press.CrossRef
Zurück zum Zitat Church, P., Leduc, A., & Beique, R. A. (1985). Sensitivity analysis of depth EEG electrodes to dipolar electric sources. IEEE Transactions on Biomedical Engineering, 32, 554–560.CrossRefPubMed Church, P., Leduc, A., & Beique, R. A. (1985). Sensitivity analysis of depth EEG electrodes to dipolar electric sources. IEEE Transactions on Biomedical Engineering, 32, 554–560.CrossRefPubMed
Zurück zum Zitat Coombes, S. (2005). Waves, bumps, and patterns in neural field theories. Biological Cybernetics, 93, 91–108.CrossRefPubMed Coombes, S. (2005). Waves, bumps, and patterns in neural field theories. Biological Cybernetics, 93, 91–108.CrossRefPubMed
Zurück zum Zitat Di, S., Baumgartner, C., & Barth, D. S., (1990). Laminar analysis of extracellular field potentials in rat vibrissa/barrel cortex. Journal of Neurophysiology, 63, 832–840.PubMed Di, S., Baumgartner, C., & Barth, D. S., (1990). Laminar analysis of extracellular field potentials in rat vibrissa/barrel cortex. Journal of Neurophysiology, 63, 832–840.PubMed
Zurück zum Zitat Einevoll, G. T., Pettersen, K. H., Devor, A., Ulbert, I., Halgren, E., & Dale, A. M. (2007). Laminar population analysis: Estimating firing rates and evoked synaptic activity from multielectrode recordings in rat barrel cortex. Journal of Neurophysiology, 97, 2174–2190.CrossRefPubMed Einevoll, G. T., Pettersen, K. H., Devor, A., Ulbert, I., Halgren, E., & Dale, A. M. (2007). Laminar population analysis: Estimating firing rates and evoked synaptic activity from multielectrode recordings in rat barrel cortex. Journal of Neurophysiology, 97, 2174–2190.CrossRefPubMed
Zurück zum Zitat Freeman, W. J. (1980). Use of spatial deconvolution to compensate distortion of EEG by volume conduction. IEEE Transactions on Biomedical Engineering, 27, 421–429.CrossRefPubMed Freeman, W. J. (1980). Use of spatial deconvolution to compensate distortion of EEG by volume conduction. IEEE Transactions on Biomedical Engineering, 27, 421–429.CrossRefPubMed
Zurück zum Zitat Freeman, W. J., Holmes, M. D., Burke, B. C., & Vanthalo, S. (2003). Spatial spectra of scalp EEG and EMB from awake humans. Clinical Neurophysiology, 114, 1053–1068.CrossRefPubMed Freeman, W. J., Holmes, M. D., Burke, B. C., & Vanthalo, S. (2003). Spatial spectra of scalp EEG and EMB from awake humans. Clinical Neurophysiology, 114, 1053–1068.CrossRefPubMed
Zurück zum Zitat Gabriel, S., Lau, R. W., & Gabriel, C. (1996). The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Physics in Medicine & Biology, 41, 2271–2293.CrossRef Gabriel, S., Lau, R. W., & Gabriel, C. (1996). The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Physics in Medicine & Biology, 41, 2271–2293.CrossRef
Zurück zum Zitat Godey, B., Schwartz, D., de Graaf, J. B., Chauvel, P., & Liegeois-Chauvel, C. (2001). Neuromagnetic source localization of auditory evoked fields and intracerebral evoked potentials: A comparison of data in the same patients. Clinical neurophysiology, 112, 1850–1859.CrossRefPubMed Godey, B., Schwartz, D., de Graaf, J. B., Chauvel, P., & Liegeois-Chauvel, C. (2001). Neuromagnetic source localization of auditory evoked fields and intracerebral evoked potentials: A comparison of data in the same patients. Clinical neurophysiology, 112, 1850–1859.CrossRefPubMed
Zurück zum Zitat Grech, R., Cassar, T., Muscat, J., Camilleri, K. P., Fabri, S. G., Zervakis, M., et al. (2008). Review on solving the inverse problem in EEG source analysis. Journal of Neuroengineering and Rehabilitation 5, 25.CrossRefPubMed Grech, R., Cassar, T., Muscat, J., Camilleri, K. P., Fabri, S. G., Zervakis, M., et al. (2008). Review on solving the inverse problem in EEG source analysis. Journal of Neuroengineering and Rehabilitation 5, 25.CrossRefPubMed
Zurück zum Zitat Hämäläinen, M., Hari, R., Ilmoniemi, R. J., Knuutila, J., & Lounasmaa, O. V. (1993). Magnetoencephalography theory, instrumentation, and applications to noninvasive studies of the working human brain. Reviews of Modern Physics, 65, 413–449.CrossRef Hämäläinen, M., Hari, R., Ilmoniemi, R. J., Knuutila, J., & Lounasmaa, O. V. (1993). Magnetoencephalography theory, instrumentation, and applications to noninvasive studies of the working human brain. Reviews of Modern Physics, 65, 413–449.CrossRef
Zurück zum Zitat Hines, M. L, Davison, A. P. & Muller E. (2009). NEURON and Python. Frontiers in Neuroinformatics, 3, 1.CrossRefPubMed Hines, M. L, Davison, A. P. & Muller E. (2009). NEURON and Python. Frontiers in Neuroinformatics, 3, 1.CrossRefPubMed
Zurück zum Zitat Holt, G. R. & Koch, C. (1999). Electrical interactions via the extracellular potential near cell bodies. Journal of Computational Neuroscience, 6, 169–184.CrossRefPubMed Holt, G. R. & Koch, C. (1999). Electrical interactions via the extracellular potential near cell bodies. Journal of Computational Neuroscience, 6, 169–184.CrossRefPubMed
Zurück zum Zitat Jackson, J. (1998). Classical Electrodynamics. NJ: Wiley, Hoboken. Jackson, J. (1998). Classical Electrodynamics. NJ: Wiley, Hoboken.
Zurück zum Zitat Jirsa, V. K., & Haken, H. (1997). A derivation of a macroscopic field theory of the brain from the quasi-microscopic neural dynamics. Physica D, 99, 503–526.CrossRef Jirsa, V. K., & Haken, H. (1997). A derivation of a macroscopic field theory of the brain from the quasi-microscopic neural dynamics. Physica D, 99, 503–526.CrossRef
Zurück zum Zitat Jirsa, V. K., Jantzen, K. J., Fuchs, A., & Kelso, J. A. S. (2002). Spatiotemporal forward solution of the EEG and MEG using network modeling. IEEE Transactions on Medical Imaging, 21, 493–504.CrossRefPubMed Jirsa, V. K., Jantzen, K. J., Fuchs, A., & Kelso, J. A. S. (2002). Spatiotemporal forward solution of the EEG and MEG using network modeling. IEEE Transactions on Medical Imaging, 21, 493–504.CrossRefPubMed
Zurück zum Zitat Johnston, D., & Wu, S. M.-S. (1995) Foundations of cellular neurophysiology, (Chapter 14). Cambridge, MA: MIT Press. Johnston, D., & Wu, S. M.-S. (1995) Foundations of cellular neurophysiology, (Chapter 14). Cambridge, MA: MIT Press.
Zurück zum Zitat Katzner, S., Nauhaus, I., Benucci, A., Bonin, V., Ringach, D. L., & Carandini, M. (2009). Local origin of field potentials in visual cortex. Neuron, 61, 35–41.CrossRefPubMed Katzner, S., Nauhaus, I., Benucci, A., Bonin, V., Ringach, D. L., & Carandini, M. (2009). Local origin of field potentials in visual cortex. Neuron, 61, 35–41.CrossRefPubMed
Zurück zum Zitat Koch, C. (1998). Biophysics of computation. New York, NY: Oxford. Koch, C. (1998). Biophysics of computation. New York, NY: Oxford.
Zurück zum Zitat Kreiman, G., Hung, C. P, Kraskov, A., Quiroga, R. Q., Poggio, T., & DiCarlo, J. J. (2006). Object selectivity of local field potentials and spikes in the macaque inferior temporal cortex. Neuron, 49, 433–445.CrossRefPubMed Kreiman, G., Hung, C. P, Kraskov, A., Quiroga, R. Q., Poggio, T., & DiCarlo, J. J. (2006). Object selectivity of local field potentials and spikes in the macaque inferior temporal cortex. Neuron, 49, 433–445.CrossRefPubMed
Zurück zum Zitat Lindén, H., Pettersen, K. H., & Einevoll, G. T. (2008). Frequency scaling in local field potentials: A neuron population forward modelling study Frontiers in Neuroinformatics. Conference Abstract: Neuroinformatics, 2008. doi:10.3389/conf.neuro.11.2008.01.026. Lindén, H., Pettersen, K. H., & Einevoll, G. T. (2008). Frequency scaling in local field potentials: A neuron population forward modelling study Frontiers in Neuroinformatics. Conference Abstract: Neuroinformatics, 2008. doi:10.​3389/​conf.​neuro.​11.​2008.​01.​026.
Zurück zum Zitat Lindén, H., Pettersen, K. H., Tetzlaff, T., Potjans, T., Denker, M., Diesmann, M., et al. (2009a). Estimating the spatial range of local field potentials in a cortical population model. BMC Neuroscience, 10(1), 224.CrossRef Lindén, H., Pettersen, K. H., Tetzlaff, T., Potjans, T., Denker, M., Diesmann, M., et al. (2009a). Estimating the spatial range of local field potentials in a cortical population model. BMC Neuroscience, 10(1), 224.CrossRef
Zurück zum Zitat Lindén, H., Potjans, T. C., Einevoll, G. T., Grün, S., & Diesmann, M. (2009b). Modeling the local field potential by a large-scale layered cortical network model. Frontiers in Neuroinformatics, Conference Abstract: 2nd INCF Congress of Neuroinformatics. doi:10.3389/conf.neuro.11.2009.08.046. Lindén, H., Potjans, T. C., Einevoll, G. T., Grün, S., & Diesmann, M. (2009b). Modeling the local field potential by a large-scale layered cortical network model. Frontiers in Neuroinformatics, Conference Abstract: 2nd INCF Congress of Neuroinformatics. doi:10.​3389/​conf.​neuro.​11.​2009.​08.​046.
Zurück zum Zitat Liu, J., & Newsome, W. T. (2006). Local field potential in cortical area MT. Stimulus tuning and behavioral correlations. Journal of Neuroscience, 26, 7779–7790.CrossRefPubMed Liu, J., & Newsome, W. T. (2006). Local field potential in cortical area MT. Stimulus tuning and behavioral correlations. Journal of Neuroscience, 26, 7779–7790.CrossRefPubMed
Zurück zum Zitat Logothetis, N. K., Kayser, C., & Oeltermann, A. (2007). In vivo measurement of cortical impedance spectrum in monkeys: Implications for signal propagation. Neuron, 55, 809–823.CrossRefPubMed Logothetis, N. K., Kayser, C., & Oeltermann, A. (2007). In vivo measurement of cortical impedance spectrum in monkeys: Implications for signal propagation. Neuron, 55, 809–823.CrossRefPubMed
Zurück zum Zitat Lorente de Nó, R. (1947). Action potential of the motoneurons of the hypoglossus nucleus. Journal of Cellular and Comparative Physiology, 29, 207–287.CrossRef Lorente de Nó, R. (1947). Action potential of the motoneurons of the hypoglossus nucleus. Journal of Cellular and Comparative Physiology, 29, 207–287.CrossRef
Zurück zum Zitat Mainen, Z. F., & Sejnowski, T. J. (1996). Influence of dendritic structure on firing pattern in model neocortical neurons. Nature, 382, 363–366.CrossRefPubMed Mainen, Z. F., & Sejnowski, T. J. (1996). Influence of dendritic structure on firing pattern in model neocortical neurons. Nature, 382, 363–366.CrossRefPubMed
Zurück zum Zitat Mazzoni, A., Panzeri, S., Logothetis, N. K., & Brunel, N. (2008). Encoding of naturalistic stimuli by local field potential spectra in networks of excitatory and inhibitory neurons. PLoS Computers in Biology, 4, e1000239.CrossRef Mazzoni, A., Panzeri, S., Logothetis, N. K., & Brunel, N. (2008). Encoding of naturalistic stimuli by local field potential spectra in networks of excitatory and inhibitory neurons. PLoS Computers in Biology, 4, e1000239.CrossRef
Zurück zum Zitat Miller, K. J., Sorensen, L. B., Ojemann, J. G., & den Nijs, M. (2009). Power-law scaling in the brain surface electric potential. PLoS Computers in Biology, 5, e1000609.CrossRef Miller, K. J., Sorensen, L. B., Ojemann, J. G., & den Nijs, M. (2009). Power-law scaling in the brain surface electric potential. PLoS Computers in Biology, 5, e1000609.CrossRef
Zurück zum Zitat Milstein, J. N., & Koch, C. (2008). Dynamic moment analysis of the extracellular electric field of a biologically realistic spiking neuron. Neural Computation, 20, 2070–2084.CrossRefPubMed Milstein, J. N., & Koch, C. (2008). Dynamic moment analysis of the extracellular electric field of a biologically realistic spiking neuron. Neural Computation, 20, 2070–2084.CrossRefPubMed
Zurück zum Zitat Milstein, J., Mormann, F., Fried, I., & Koch., C (2009). Neuronal shot noise and Brownian 1/f2 behavior in the local field potential. PLoS ONE, 4, e4338.CrossRef Milstein, J., Mormann, F., Fried, I., & Koch., C (2009). Neuronal shot noise and Brownian 1/f2 behavior in the local field potential. PLoS ONE, 4, e4338.CrossRef
Zurück zum Zitat Mitzdorf, U. (1985). Current source-density method and application in cat cerebral cortex: Investigation of evoked potentials and EEG phenomena. Physiological Reviews, 65, 37–99.PubMed Mitzdorf, U. (1985). Current source-density method and application in cat cerebral cortex: Investigation of evoked potentials and EEG phenomena. Physiological Reviews, 65, 37–99.PubMed
Zurück zum Zitat Murakami, S., & Okada, Y. (2006). Contributions of principal neocortical neurons to magnetoencephalography and electroencephalography signals. Journal of Physiology, 575, 925–936.CrossRefPubMed Murakami, S., & Okada, Y. (2006). Contributions of principal neocortical neurons to magnetoencephalography and electroencephalography signals. Journal of Physiology, 575, 925–936.CrossRefPubMed
Zurück zum Zitat Nauhaus, I., Busse, L., Carandini, M., & Ringach, D. L. (2009). Stimulus contrast modulates functional connectivity in visual cortex. Nature Neuroscience, 12, 70–76.CrossRefPubMed Nauhaus, I., Busse, L., Carandini, M., & Ringach, D. L. (2009). Stimulus contrast modulates functional connectivity in visual cortex. Nature Neuroscience, 12, 70–76.CrossRefPubMed
Zurück zum Zitat Nicholson, C., & Freeman, J. A. (1975). Theory of current source-density analysis and determination of conductivity tensor for anuran cerebellum. Journal of Neurophysiology, 38, 356–368.PubMed Nicholson, C., & Freeman, J. A. (1975). Theory of current source-density analysis and determination of conductivity tensor for anuran cerebellum. Journal of Neurophysiology, 38, 356–368.PubMed
Zurück zum Zitat Normann, R. A., Maynard, E. M., Rousche, P. J., & Warren, D. J. (1999). A neural interface for a cortical vision prosthesis. Vision Research, 39, 2577–2587.CrossRefPubMed Normann, R. A., Maynard, E. M., Rousche, P. J., & Warren, D. J. (1999). A neural interface for a cortical vision prosthesis. Vision Research, 39, 2577–2587.CrossRefPubMed
Zurück zum Zitat Nunez, P. L., & Srinavasan, R. (2006). Electric fields of the brain: The neurophysics of EEG. Oxford: Oxford University Press.CrossRef Nunez, P. L., & Srinavasan, R. (2006). Electric fields of the brain: The neurophysics of EEG. Oxford: Oxford University Press.CrossRef
Zurück zum Zitat Pettersen, K. H., & Einevoll, G. T. (2008). Amplitude variability and extracellular low-pass filtering of neuronal spikes. Biophysical Journal, 94, 784–802.CrossRefPubMed Pettersen, K. H., & Einevoll, G. T. (2008). Amplitude variability and extracellular low-pass filtering of neuronal spikes. Biophysical Journal, 94, 784–802.CrossRefPubMed
Zurück zum Zitat Pettersen, K. H., Hagen, E., & Einevoll, G. T. (2008). Estimation of population firing rates and current source densities from laminar electrode recordings. Journal of Computational Neuroscience, 24, 291–313.CrossRefPubMed Pettersen, K. H., Hagen, E., & Einevoll, G. T. (2008). Estimation of population firing rates and current source densities from laminar electrode recordings. Journal of Computational Neuroscience, 24, 291–313.CrossRefPubMed
Zurück zum Zitat Pettersen, K. H., Lindén, H., Dale, A. M., & Einevoll, G. T. (2010). Extracellular spikes and current-source density. In R. Brette, & A. Destexhe (Eds.), Handbook of neural activity measurements. Cambridge, UK: Cambridge University Press. Pettersen, K. H., Lindén, H., Dale, A. M., & Einevoll, G. T. (2010). Extracellular spikes and current-source density. In R. Brette, & A. Destexhe (Eds.), Handbook of neural activity measurements. Cambridge, UK: Cambridge University Press.
Zurück zum Zitat Plonsey, R. (1969). Bioelectric phenomena. New York: McGraw-Hill. Plonsey, R. (1969). Bioelectric phenomena. New York: McGraw-Hill.
Zurück zum Zitat Plonsey, R., & Barr, R. C. (2007). Bioelectricity: A quantitative approach. New York: Springer. Plonsey, R., & Barr, R. C. (2007). Bioelectricity: A quantitative approach. New York: Springer.
Zurück zum Zitat Pritchard, W. S. (1992). The brain in fractal time: 1/f-like power spectrum scaling of the human electroencephalogram. International Journal of Neuroscience, 66, 119–129.CrossRefPubMed Pritchard, W. S. (1992). The brain in fractal time: 1/f-like power spectrum scaling of the human electroencephalogram. International Journal of Neuroscience, 66, 119–129.CrossRefPubMed
Zurück zum Zitat Rall, W. (1962). Electrophysiology of a dendritic neuron model. Biophysical Journal, 2, 145–167.CrossRefPubMed Rall, W. (1962). Electrophysiology of a dendritic neuron model. Biophysical Journal, 2, 145–167.CrossRefPubMed
Zurück zum Zitat Xing, D., Yeh, C.-I., & Shapley, R. M. (2009). Spatial spread of the local field potential and its laminar variation in visual cortex. Journal of Neuroscience, 29, 11540–11549.CrossRefPubMed Xing, D., Yeh, C.-I., & Shapley, R. M. (2009). Spatial spread of the local field potential and its laminar variation in visual cortex. Journal of Neuroscience, 29, 11540–11549.CrossRefPubMed
Zurück zum Zitat Yvert, B., Fischer, C., Bertrand, O., & Pernier, J. (2001). Localization of human supratemporal auditory areas from intracerebral auditory evoked potentials using distributed source models. NeuroImage, 28, 140–153.CrossRef Yvert, B., Fischer, C., Bertrand, O., & Pernier, J. (2001). Localization of human supratemporal auditory areas from intracerebral auditory evoked potentials using distributed source models. NeuroImage, 28, 140–153.CrossRef
Metadaten
Titel
Intrinsic dendritic filtering gives low-pass power spectra of local field potentials
verfasst von
Henrik Lindén
Klas H. Pettersen
Gaute T. Einevoll
Publikationsdatum
01.12.2010
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 3/2010
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-010-0245-4

Weitere Artikel der Ausgabe 3/2010

Journal of Computational Neuroscience 3/2010 Zur Ausgabe

Premium Partner