Skip to main content
Erschienen in: Journal of Computational Neuroscience 1/2012

01.02.2012

A simple integrative electrophysiological model of bursting GnRH neurons

verfasst von: Dávid Csercsik, Imre Farkas, Erik Hrabovszky, Zsolt Liposits

Erschienen in: Journal of Computational Neuroscience | Ausgabe 1/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper a modular model of the GnRH neuron is presented. For the aim of simplicity, the currents corresponding to fast time scales and action potential generation are described by an impulsive system, while the slower currents and calcium dynamics are described by usual ordinary differential equations (ODEs). The model is able to reproduce the depolarizing afterpotentials, afterhyperpolarization, periodic bursting behavior and the corresponding calcium transients observed in the case of GnRH neurons.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Ábrahám, I., Han, S., Todman, M., Korach, K. & Herbison, A. (2003). Estrogen receptor beta mediates rapid estrogen actions on gonadotropin-releasing hormone neurons in vivo. Journal of Neuroscience, 23(13), 5771–5777.PubMed Ábrahám, I., Han, S., Todman, M., Korach, K. & Herbison, A. (2003). Estrogen receptor beta mediates rapid estrogen actions on gonadotropin-releasing hormone neurons in vivo. Journal of Neuroscience, 23(13), 5771–5777.PubMed
Zurück zum Zitat Bainov, D. & Simeonov, P. (Eds.). (1989). Systems With Impulse Effect Systems with impulse effect. Ellis Horwood Limited. Bainov, D. & Simeonov, P. (Eds.). (1989). Systems With Impulse Effect Systems with impulse effect. Ellis Horwood Limited.
Zurück zum Zitat Bezprozvanny, I., Watras, J. & Ehrlich, B. (1991). Bell-shaped calcium-response curves of Ins(1,4,5)–P3–and calcium gated channels from endoplasmic reticulum of cerebellum. Nature, 351, 751–754.PubMedCrossRef Bezprozvanny, I., Watras, J. & Ehrlich, B. (1991). Bell-shaped calcium-response curves of Ins(1,4,5)–P3–and calcium gated channels from endoplasmic reticulum of cerebellum. Nature, 351, 751–754.PubMedCrossRef
Zurück zum Zitat Caeser, M., Brown, D., Gahwiler, B. & Knopfel, T. (2006). Characterization of a calcium-dependent current generating a slow afterdepolarization of CA3 pyramidal cells in rat hippocampal slice cultures. European Journal of Neuroscience, 5, 560–569.CrossRef Caeser, M., Brown, D., Gahwiler, B. & Knopfel, T. (2006). Characterization of a calcium-dependent current generating a slow afterdepolarization of CA3 pyramidal cells in rat hippocampal slice cultures. European Journal of Neuroscience, 5, 560–569.CrossRef
Zurück zum Zitat Campbell, R., Gaidamaka, G., Han, S. & Herbison, A. (2009). Dendro-denritic bundling and shared synapses between gonadotropin-releasing hormone neurons. Proceedings of the National Academy of Sciences of the USA, 106, 10835–10840.PubMedCrossRef Campbell, R., Gaidamaka, G., Han, S. & Herbison, A. (2009). Dendro-denritic bundling and shared synapses between gonadotropin-releasing hormone neurons. Proceedings of the National Academy of Sciences of the USA, 106, 10835–10840.PubMedCrossRef
Zurück zum Zitat Campbell, R., Han, S. & Herbison, A. (2005). Biocytin filling of adult gonadotropin-releasing hormone neurons in situ reveals extensive, spiny, dendritic processes. Endocrinology, 146, 1163–1169.PubMedCrossRef Campbell, R., Han, S. & Herbison, A. (2005). Biocytin filling of adult gonadotropin-releasing hormone neurons in situ reveals extensive, spiny, dendritic processes. Endocrinology, 146, 1163–1169.PubMedCrossRef
Zurück zum Zitat Cantrell, A. & Catterall, W. (2001). Neuromodulation of Na +  channels: An unexpected form of cellular plasticity Neuromodulation of Na +  channels: An unexpected form of cellular plasticity. Nature Reviews Neuroscience, 2, 397–407.PubMedCrossRef Cantrell, A. & Catterall, W. (2001). Neuromodulation of Na +  channels: An unexpected form of cellular plasticity Neuromodulation of Na +  channels: An unexpected form of cellular plasticity. Nature Reviews Neuroscience, 2, 397–407.PubMedCrossRef
Zurück zum Zitat Charles, A., Weiner, R. & Costantin, J. (2001). CAMP modulates the excitability of immortalized hypothalamic (GT1) neurons via a cyclic nucleotide gated channel. Molecular Endocrinology, 15, 997–1009.PubMedCrossRef Charles, A., Weiner, R. & Costantin, J. (2001). CAMP modulates the excitability of immortalized hypothalamic (GT1) neurons via a cyclic nucleotide gated channel. Molecular Endocrinology, 15, 997–1009.PubMedCrossRef
Zurück zum Zitat Chu, Z., Andrade, J., Shupnik, M. A. & Moenter, S. M. (2009). Differential regulation of gonadotropin-releasing hormone neuron activity and membrane properties by acutely applied estradiol: Dependence on dose and estrogen receptor subtype. Journal of Neuroscience, 29(17), 5616–5627.PubMedCrossRef Chu, Z., Andrade, J., Shupnik, M. A. & Moenter, S. M. (2009). Differential regulation of gonadotropin-releasing hormone neuron activity and membrane properties by acutely applied estradiol: Dependence on dose and estrogen receptor subtype. Journal of Neuroscience, 29(17), 5616–5627.PubMedCrossRef
Zurück zum Zitat Chu, Z. & Moenter, S. (2006). Physiologic regulation of a tetrodotoxin-sensitive sodium influx that mediates a slow afterdepolarization potential in gonadotropin-releasing hormone neurons: possible implications for the central regulation of fertility. Journal of Neuroscience, 26, 11961–11973.PubMedCrossRef Chu, Z. & Moenter, S. (2006). Physiologic regulation of a tetrodotoxin-sensitive sodium influx that mediates a slow afterdepolarization potential in gonadotropin-releasing hormone neurons: possible implications for the central regulation of fertility. Journal of Neuroscience, 26, 11961–11973.PubMedCrossRef
Zurück zum Zitat Conn, P. & Freeman, M. (2000). Neuroendocrinology in physiology and medicine. 999 Riverview Drive Suite 208 Totowa New Jersey 07512: Humana Press. Conn, P. & Freeman, M. (2000). Neuroendocrinology in physiology and medicine. 999 Riverview Drive Suite 208 Totowa New Jersey 07512: Humana Press.
Zurück zum Zitat Constantin, J. & Charles, A. (1999). Spontaneous action potentials initiate rhythmic intercellular calcium waves in immortalized hypothalamic (GT1-1) neurons. Journal of Neurophysiology, 82, 429–435. Constantin, J. & Charles, A. (1999). Spontaneous action potentials initiate rhythmic intercellular calcium waves in immortalized hypothalamic (GT1-1) neurons. Journal of Neurophysiology, 82, 429–435.
Zurück zum Zitat Csercsik, D., Farkas, I., Szederkényi, G., Hrabovszky, E., Liposits, Z. & Hangos, K. (2010). Hodgkin-Huxley type modelling and parameter estimation of GnRH neurons. BioSystems, 100, 198–207.PubMedCrossRef Csercsik, D., Farkas, I., Szederkényi, G., Hrabovszky, E., Liposits, Z. & Hangos, K. (2010). Hodgkin-Huxley type modelling and parameter estimation of GnRH neurons. BioSystems, 100, 198–207.PubMedCrossRef
Zurück zum Zitat de Roux, N., Genin, E., Carel, J., Matsuda, F., Chaussain, J. & Milgrom, E. (2003). Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci U S A, 100(19), 10972–10976.PubMedCrossRef de Roux, N., Genin, E., Carel, J., Matsuda, F., Chaussain, J. & Milgrom, E. (2003). Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci U S A, 100(19), 10972–10976.PubMedCrossRef
Zurück zum Zitat DeFazio, R., Heger, S., Ojeda, S. & Moenter, S. (2002). Activation of A-type γ-aminobutyric acid receptors excites gonadotropin-releasing hormone neurons. Molecular Endocrinology, 16, 2872–2891.PubMedCrossRef DeFazio, R., Heger, S., Ojeda, S. & Moenter, S. (2002). Activation of A-type γ-aminobutyric acid receptors excites gonadotropin-releasing hormone neurons. Molecular Endocrinology, 16, 2872–2891.PubMedCrossRef
Zurück zum Zitat DeFazio, R. & Moenter, S. (2002). Estradiol feedback alters potassium currents and firing properties of gonadotropin- releasing hormone neurons. Molecular Endocrinology, 16, 2255–2265.PubMedCrossRef DeFazio, R. & Moenter, S. (2002). Estradiol feedback alters potassium currents and firing properties of gonadotropin- releasing hormone neurons. Molecular Endocrinology, 16, 2255–2265.PubMedCrossRef
Zurück zum Zitat Duan, W., Lee, K., Herbison, A. & Sneyd, J. (2011). A mathematical model of adult GnRH neurons in mouse brain and its bifurcation analysis. Journal of Theortical Biology, 276, 22–34.CrossRef Duan, W., Lee, K., Herbison, A. & Sneyd, J. (2011). A mathematical model of adult GnRH neurons in mouse brain and its bifurcation analysis. Journal of Theortical Biology, 276, 22–34.CrossRef
Zurück zum Zitat Farkas, I., Kalló, I., Deli, L., Vida, B., Hrabovszky, E., Fekete, C., et al. (2010). Retrograde endocannabinoid signaling reduces GABAergic synaptic transmission to gonadotropin-releasing hormone neurons. Endocrinology, 151, 5818–5829.PubMedCrossRef Farkas, I., Kalló, I., Deli, L., Vida, B., Hrabovszky, E., Fekete, C., et al. (2010). Retrograde endocannabinoid signaling reduces GABAergic synaptic transmission to gonadotropin-releasing hormone neurons. Endocrinology, 151, 5818–5829.PubMedCrossRef
Zurück zum Zitat Finch, E., Turner, T. & Goldin, S. (1991). Calcium as a coagonist of inositol 1,4,5–trisphosphate–induced calcium release. Science, 252, 443–446.PubMedCrossRef Finch, E., Turner, T. & Goldin, S. (1991). Calcium as a coagonist of inositol 1,4,5–trisphosphate–induced calcium release. Science, 252, 443–446.PubMedCrossRef
Zurück zum Zitat Fletcher, P. & Li, Y. (2009). An integrated model of electrical spiking, bursting, and calcium oscillations in GnRH neurons. Biophysical Journal, 96, 4514–4524.PubMedCrossRef Fletcher, P. & Li, Y. (2009). An integrated model of electrical spiking, bursting, and calcium oscillations in GnRH neurons. Biophysical Journal, 96, 4514–4524.PubMedCrossRef
Zurück zum Zitat Friedmana, A., Arens, J., Heinemann, U. & Gutnick, M. (1992). Slow depolarizing afterpotentials in neocortical neurons are sodium and calcium dependent. Neuroscience Letters, 135, 13–17.CrossRef Friedmana, A., Arens, J., Heinemann, U. & Gutnick, M. (1992). Slow depolarizing afterpotentials in neocortical neurons are sodium and calcium dependent. Neuroscience Letters, 135, 13–17.CrossRef
Zurück zum Zitat Ghamari-Langroudi, M. & Bourque, C. (1998). Caesium blocks depolarizing after-potentials and phasic firing in rat supraoptic neurones. Journal of Physiology, 510, 165–175.PubMedCrossRef Ghamari-Langroudi, M. & Bourque, C. (1998). Caesium blocks depolarizing after-potentials and phasic firing in rat supraoptic neurones. Journal of Physiology, 510, 165–175.PubMedCrossRef
Zurück zum Zitat Han, S., Abraham, I. & Herbison, A. (2002). Effect of GABA on GnRH neurons switches from depolarization to hyperpolarization at puberty in the female mouse. Endocrinology, 143, 1459–1466.PubMedCrossRef Han, S., Abraham, I. & Herbison, A. (2002). Effect of GABA on GnRH neurons switches from depolarization to hyperpolarization at puberty in the female mouse. Endocrinology, 143, 1459–1466.PubMedCrossRef
Zurück zum Zitat Han, S., Todman, M. & Herbison, A. (2004). Endogenous GABA release inhibits the firing of adult gonadotropin-releasing hormone neurons. Endocrinology, 145, 495–499.PubMedCrossRef Han, S., Todman, M. & Herbison, A. (2004). Endogenous GABA release inhibits the firing of adult gonadotropin-releasing hormone neurons. Endocrinology, 145, 495–499.PubMedCrossRef
Zurück zum Zitat Heldring, N., Pike, A., Andersson, S., Matthews, J., Cheng, G., Hartman, J., et al. (2007). Estrogen receptors: how do they signal and what are their targets. Physiological Reviews, 87(3), 905–931.PubMedCrossRef Heldring, N., Pike, A., Andersson, S., Matthews, J., Cheng, G., Hartman, J., et al. (2007). Estrogen receptors: how do they signal and what are their targets. Physiological Reviews, 87(3), 905–931.PubMedCrossRef
Zurück zum Zitat Herbison, A. (2008). Estrogen positive feedback to gonadotropin-releasing hormone (GnRH) neurons in the rodent: The case for the rostral periventricular area of the third ventricle (RP3V). Brain Research Reviews, 57(2), 277–287.PubMedCrossRef Herbison, A. (2008). Estrogen positive feedback to gonadotropin-releasing hormone (GnRH) neurons in the rodent: The case for the rostral periventricular area of the third ventricle (RP3V). Brain Research Reviews, 57(2), 277–287.PubMedCrossRef
Zurück zum Zitat Herbison, A., Pape, J., Simonian, S., Skynner, M. & Sim, J. (2001). Molecular and cellular properties of GnRH neurons revealed through transgenics in mouse. Molecular and Cellular Endocrinology, 185, 185–194.PubMedCrossRef Herbison, A., Pape, J., Simonian, S., Skynner, M. & Sim, J. (2001). Molecular and cellular properties of GnRH neurons revealed through transgenics in mouse. Molecular and Cellular Endocrinology, 185, 185–194.PubMedCrossRef
Zurück zum Zitat Izhikevich, E. (2005). Dynamical systems in neuroscience. Camebridge, Massachusetts, London, England: The MIT Press. Izhikevich, E. (2005). Dynamical systems in neuroscience. Camebridge, Massachusetts, London, England: The MIT Press.
Zurück zum Zitat Jasoni, C., Romano, N., Constantin, S., Lee, K. & Herbison, A. (2010). Calcium dynamics in gonadotropin-releasing hormone neurons. Frontiers in Neuroendocrinology, 31, 259–269.PubMedCrossRef Jasoni, C., Romano, N., Constantin, S., Lee, K. & Herbison, A. (2010). Calcium dynamics in gonadotropin-releasing hormone neurons. Frontiers in Neuroendocrinology, 31, 259–269.PubMedCrossRef
Zurück zum Zitat Kato, M., Ui-Tei, K., Watanabe, M. & Sakuma, Y. (2003). Characterization of voltage-gated calcium currents in gonadotropin-releasing hormone neurons tagged with green fluorescent protein in rats. Endocrinology, 144, 5118–5125.PubMedCrossRef Kato, M., Ui-Tei, K., Watanabe, M. & Sakuma, Y. (2003). Characterization of voltage-gated calcium currents in gonadotropin-releasing hormone neurons tagged with green fluorescent protein in rats. Endocrinology, 144, 5118–5125.PubMedCrossRef
Zurück zum Zitat Knobil, E. (1980). The neuroendocrine control of the menstrual cycle. Hormone Research, 36, 53–88. Knobil, E. (1980). The neuroendocrine control of the menstrual cycle. Hormone Research, 36, 53–88.
Zurück zum Zitat Krsmanovic, L., Stojilkovic, S., Merelli, F., Dufour, S., Virmani, M. & Catt, K. (1992). Calcium signaling and episodic secretion of gonadotropin-releasing hormone in hypothalamic neurons. Proceedings of the National Academy of Sciences of the USA, 89, 8462–8466.PubMedCrossRef Krsmanovic, L., Stojilkovic, S., Merelli, F., Dufour, S., Virmani, M. & Catt, K. (1992). Calcium signaling and episodic secretion of gonadotropin-releasing hormone in hypothalamic neurons. Proceedings of the National Academy of Sciences of the USA, 89, 8462–8466.PubMedCrossRef
Zurück zum Zitat Kuehl-Kovarik, M., Partin, K., Handa, R. & Dudek, F. (2005). Spike-dependent depolarizing afterpotentials contribute to endogenous bursting in gonadotropin releasing hormone neurons. Neuroscience, 134, 295–300.PubMedCrossRef Kuehl-Kovarik, M., Partin, K., Handa, R. & Dudek, F. (2005). Spike-dependent depolarizing afterpotentials contribute to endogenous bursting in gonadotropin releasing hormone neurons. Neuroscience, 134, 295–300.PubMedCrossRef
Zurück zum Zitat Kuehl-Kovarik, M., Pouliot, W., Halterman, G. L. , Handa, R., Dudek, F. & Partin, K. (2002). Episodic bursting activity and response to excitatory amino acids in acutely dissociated gonadotropin-releasing hormone neurons genetically targeted with green fluorescent protein. Journal of Neuroscience, 22, 2313–2322.PubMed Kuehl-Kovarik, M., Pouliot, W., Halterman, G. L. , Handa, R., Dudek, F. & Partin, K. (2002). Episodic bursting activity and response to excitatory amino acids in acutely dissociated gonadotropin-releasing hormone neurons genetically targeted with green fluorescent protein. Journal of Neuroscience, 22, 2313–2322.PubMed
Zurück zum Zitat LeBeau, A., Goor, F. V., Stojilkovic, S. & Sherman, A. (2000). Modeling of membrane excitability in gonadotropin-releasing hormone-secreting hypothalamic neurons regulated by Ca2 + -mobilizing and adenylyl cyclase-coupled receptors. The Journal of Neuroscience, 20, 9290–9297.PubMed LeBeau, A., Goor, F. V., Stojilkovic, S. & Sherman, A. (2000). Modeling of membrane excitability in gonadotropin-releasing hormone-secreting hypothalamic neurons regulated by Ca2 + -mobilizing and adenylyl cyclase-coupled receptors. The Journal of Neuroscience, 20, 9290–9297.PubMed
Zurück zum Zitat Lee, K., Duan, W., Sneyd, J. & Herbison, A. (2010). Two slow calcium-activated afterhyperpolarization currents control burst firing dynamics in gonadotropin-releasing hormone neurons. Journal of Neuroscience, 30, 6214–6224.PubMedCrossRef Lee, K., Duan, W., Sneyd, J. & Herbison, A. (2010). Two slow calcium-activated afterhyperpolarization currents control burst firing dynamics in gonadotropin-releasing hormone neurons. Journal of Neuroscience, 30, 6214–6224.PubMedCrossRef
Zurück zum Zitat Lehman, M., Coolen, L. & Goodman, R. (2010). Minireview: Kisspeptin/neurokinin B/dynorphin (KNDy) cells of the arcuate nucleus: A central node in the control of ronadotropin-releasing hormone secretion. Endocrinology, 151, 3479–3489.PubMedCrossRef Lehman, M., Coolen, L. & Goodman, R. (2010). Minireview: Kisspeptin/neurokinin B/dynorphin (KNDy) cells of the arcuate nucleus: A central node in the control of ronadotropin-releasing hormone secretion. Endocrinology, 151, 3479–3489.PubMedCrossRef
Zurück zum Zitat Li, Y. & Rinzel, J. (2010). Equations for InsP receptor mediated [Ca2 + ] i -oscillations derived from a detailed kinetic model: A Hodgkin-Huxley like formalism. Journal of Theoretical Biology, 166, 461–473.CrossRef Li, Y. & Rinzel, J. (2010). Equations for InsP receptor mediated [Ca2 + ] i -oscillations derived from a detailed kinetic model: A Hodgkin-Huxley like formalism. Journal of Theoretical Biology, 166, 461–473.CrossRef
Zurück zum Zitat Maeda, K., Ohkura, S., Uenoyama, Y., Wakabayashi, Y., Oka, Y., Tsukamura, H., et al. (2010). Neurobiological mechanisms underlying GnRH pulse generation by the hypothalamus. Brain Research, 1364, 103–115.PubMedCrossRef Maeda, K., Ohkura, S., Uenoyama, Y., Wakabayashi, Y., Oka, Y., Tsukamura, H., et al. (2010). Neurobiological mechanisms underlying GnRH pulse generation by the hypothalamus. Brain Research, 1364, 103–115.PubMedCrossRef
Zurück zum Zitat Mayer, M. (1984). A calcium-activated chloride current generates the after-depolarization of rat sensory neurones in culture. Journal of Physiology, 364, 217–239. Mayer, M. (1984). A calcium-activated chloride current generates the after-depolarization of rat sensory neurones in culture. Journal of Physiology, 364, 217–239.
Zurück zum Zitat Moenter, S. & DeFazio, R. (2005). Endogenous γ-aminobutyric acid can excite gonadotropin-releasing hormone neurons. Endocrinology, 146, 5374–5379.PubMedCrossRef Moenter, S. & DeFazio, R. (2005). Endogenous γ-aminobutyric acid can excite gonadotropin-releasing hormone neurons. Endocrinology, 146, 5374–5379.PubMedCrossRef
Zurück zum Zitat Morita, K. & Barret, E. (1989). Calcium dependent depolarizations originating in lizard motor nerve terminals. The Journal of Neuroscience, 9, 3359–3369.PubMed Morita, K. & Barret, E. (1989). Calcium dependent depolarizations originating in lizard motor nerve terminals. The Journal of Neuroscience, 9, 3359–3369.PubMed
Zurück zum Zitat Navarro, V., Gottsch, M., Chavkin, C., Okamura, H., Clifton, D. & Steiner, R. (2009). Regulation of gonadotropin-releasing hormone secretion by Kisspeptin/Dynorphin/Neurokinin B neurons in the arcuate nucleus of the mouse. The Journal of Neuroscience, 29, 11859–11866.PubMedCrossRef Navarro, V., Gottsch, M., Chavkin, C., Okamura, H., Clifton, D. & Steiner, R. (2009). Regulation of gonadotropin-releasing hormone secretion by Kisspeptin/Dynorphin/Neurokinin B neurons in the arcuate nucleus of the mouse. The Journal of Neuroscience, 29, 11859–11866.PubMedCrossRef
Zurück zum Zitat Nunemaker, C., DeFazio, R. & Moenter, S. (2003). Calcium current subtypes in GnRH neurons. Biology of Reproduction, 69, 1914–1922.PubMedCrossRef Nunemaker, C., DeFazio, R. & Moenter, S. (2003). Calcium current subtypes in GnRH neurons. Biology of Reproduction, 69, 1914–1922.PubMedCrossRef
Zurück zum Zitat Parker, I. & Ivorra, I. (1990). Inhibition by [Ca2 + ] i by inositol trisphosphate-mediated [Ca2 + ] i liberation: A possible mechanism for oscillatory release of Ca2 + . Proceedings of the National Academy of Sciences of the USA, 87, 260–264.PubMedCrossRef Parker, I. & Ivorra, I. (1990). Inhibition by [Ca2 + ] i by inositol trisphosphate-mediated [Ca2 + ] i liberation: A possible mechanism for oscillatory release of Ca2 + . Proceedings of the National Academy of Sciences of the USA, 87, 260–264.PubMedCrossRef
Zurück zum Zitat Petersen, S., Ottem, E. & Carpenter, C. (2003). Direct and indirect regulation of gonadotropin-releasing hormone neurons by estradiol. Biol Reprod, 69(6), 1771–1778.PubMedCrossRef Petersen, S., Ottem, E. & Carpenter, C. (2003). Direct and indirect regulation of gonadotropin-releasing hormone neurons by estradiol. Biol Reprod, 69(6), 1771–1778.PubMedCrossRef
Zurück zum Zitat Rance, N., Krajewski, S., Smith, M., Cholanian, M. & Dacks, P. (2010). Neurokinin B and the hypothalamic regulation of reproduction. Brain Research, 1364, 116–128.PubMedCrossRef Rance, N., Krajewski, S., Smith, M., Cholanian, M. & Dacks, P. (2010). Neurokinin B and the hypothalamic regulation of reproduction. Brain Research, 1364, 116–128.PubMedCrossRef
Zurück zum Zitat Roberts, C., Best, J. & Suter, K. (2006). Dendritic processing of excitatory synaptic input in hypothalamic gonadotropin releasing-hormone neurons. Endocrinology, 147, 1545–1555.PubMedCrossRef Roberts, C., Best, J. & Suter, K. (2006). Dendritic processing of excitatory synaptic input in hypothalamic gonadotropin releasing-hormone neurons. Endocrinology, 147, 1545–1555.PubMedCrossRef
Zurück zum Zitat Roberts, C., Campbell, R., Herbison, A. & Suter, K. (2008). Dendritic action potential initiation in hypothalamic gonadotropoin-releasing hormone neurons. Endocrinology, 149, 3355–3360.PubMedCrossRef Roberts, C., Campbell, R., Herbison, A. & Suter, K. (2008). Dendritic action potential initiation in hypothalamic gonadotropoin-releasing hormone neurons. Endocrinology, 149, 3355–3360.PubMedCrossRef
Zurück zum Zitat Roberts, C., Hemond, P. & Suter, K. (2008). Synaptic integration in hypothalamic gonadotropin releasing hormone (GnRH) neurons. Neuroscience, 254, 1337–1351.CrossRef Roberts, C., Hemond, P. & Suter, K. (2008). Synaptic integration in hypothalamic gonadotropin releasing hormone (GnRH) neurons. Neuroscience, 254, 1337–1351.CrossRef
Zurück zum Zitat Roberts, C., O’Boyle, M. & Suter, K. (2009). Dendrites determine the contribution of after depolarization potentials (ADPs) to generation of repetitive action potentials in hypothalamic gonadotropin releasing-hormone (GnRH) neurons. Journal of Computational Neuroscience, 26, 39–53.PubMedCrossRef Roberts, C., O’Boyle, M. & Suter, K. (2009). Dendrites determine the contribution of after depolarization potentials (ADPs) to generation of repetitive action potentials in hypothalamic gonadotropin releasing-hormone (GnRH) neurons. Journal of Computational Neuroscience, 26, 39–53.PubMedCrossRef
Zurück zum Zitat Seminara, S., Messager, S., Chatzidaki, E., Thresher, R., Acierno, J. J., Shagoury, J., et al. (2003). The GPR54 gene as a regulator of puberty. New England Journal of Medicine, 349(17), 1614–1627.PubMedCrossRef Seminara, S., Messager, S., Chatzidaki, E., Thresher, R., Acierno, J. J., Shagoury, J., et al. (2003). The GPR54 gene as a regulator of puberty. New England Journal of Medicine, 349(17), 1614–1627.PubMedCrossRef
Zurück zum Zitat Semple, R., Achermann, J., Ellery, J., Farooqi, I., Karet, F., Stanhope, R., et al. (2005). Two novel missense mutations in g protein-coupled receptor 54 in a patient with hypogonadotropic hypogonadism. Journal of Clinical Endocrinology and Metabolism, 90(3), 1849–1855.PubMedCrossRef Semple, R., Achermann, J., Ellery, J., Farooqi, I., Karet, F., Stanhope, R., et al. (2005). Two novel missense mutations in g protein-coupled receptor 54 in a patient with hypogonadotropic hypogonadism. Journal of Clinical Endocrinology and Metabolism, 90(3), 1849–1855.PubMedCrossRef
Zurück zum Zitat Sim, J., Skynner, M. & Herbison, A. (2001). Heterogeneity in the basic membrane properties of postnatal gonadotropin-releasing hormone neurons in the mouse. The Journal of Neuroscience, 21, 1067–1075.PubMed Sim, J., Skynner, M. & Herbison, A. (2001). Heterogeneity in the basic membrane properties of postnatal gonadotropin-releasing hormone neurons in the mouse. The Journal of Neuroscience, 21, 1067–1075.PubMed
Zurück zum Zitat Spergel, D., Krüth, U., Hanley, D., Sprengel, R. & Seeburg, P. (1999). Gaba- and glutamate-activated channels in green fluorescent protein-tagged gonadotropin-releasing hormone neurons in transgenic mice. The Journal of Neuroscience, 19, 2037–2050.PubMed Spergel, D., Krüth, U., Hanley, D., Sprengel, R. & Seeburg, P. (1999). Gaba- and glutamate-activated channels in green fluorescent protein-tagged gonadotropin-releasing hormone neurons in transgenic mice. The Journal of Neuroscience, 19, 2037–2050.PubMed
Zurück zum Zitat Stojilkovic, S., Krsmanovic, L., Spergel, D. & Catt, K. (1994). GnRH neurons: Intrinsic pulsatility and receptor-mediated regulation. Trends in Endocrinology and Metabolism, 5, 201–209.PubMedCrossRef Stojilkovic, S., Krsmanovic, L., Spergel, D. & Catt, K. (1994). GnRH neurons: Intrinsic pulsatility and receptor-mediated regulation. Trends in Endocrinology and Metabolism, 5, 201–209.PubMedCrossRef
Zurück zum Zitat Suter, K. (2004). Control of firing by small (s)-γ-amino-3-hydroxy-5-methylisoxazolepropionic acid-like inputs in hypothalamic gonadotropin releasing-hormone (GnRH) neurons. Neuroscience, 128, 443–450.PubMedCrossRef Suter, K. (2004). Control of firing by small (s)-γ-amino-3-hydroxy-5-methylisoxazolepropionic acid-like inputs in hypothalamic gonadotropin releasing-hormone (GnRH) neurons. Neuroscience, 128, 443–450.PubMedCrossRef
Zurück zum Zitat Suter, K., Song, W., Sampson, T., Wuarin, J., Saunders, J., Dudek, F., et al. (2000). Genetic targeting of green fluorescent protein to gonadotropin-releasing hormone neurons: Characterization of whole-cell electrophysiological properties and morphology. Endocrinology, 141, 412–419.PubMedCrossRef Suter, K., Song, W., Sampson, T., Wuarin, J., Saunders, J., Dudek, F., et al. (2000). Genetic targeting of green fluorescent protein to gonadotropin-releasing hormone neurons: Characterization of whole-cell electrophysiological properties and morphology. Endocrinology, 141, 412–419.PubMedCrossRef
Zurück zum Zitat Teruyama, R. & Armstrong, W. (2007). Calcium-dependent fast depolarizing afterpotentials in vasopressin neurons in the rat supraoptic nucleus. Journal of Neurophysiology, 98, 2612–2621.PubMedCrossRef Teruyama, R. & Armstrong, W. (2007). Calcium-dependent fast depolarizing afterpotentials in vasopressin neurons in the rat supraoptic nucleus. Journal of Neurophysiology, 98, 2612–2621.PubMedCrossRef
Zurück zum Zitat Van Goor, F., LeBeau, A., Krsmanovic, L., Sherman, A., Catt, K. & Stojilkovic, S. (2000). Amplitude-dependent spike-broadening and enhanced Ca2 +  signaling in GnRH-secreting neurons. Biophysical Journal, 79, 1310–1323.PubMedCrossRef Van Goor, F., LeBeau, A., Krsmanovic, L., Sherman, A., Catt, K. & Stojilkovic, S. (2000). Amplitude-dependent spike-broadening and enhanced Ca2 +  signaling in GnRH-secreting neurons. Biophysical Journal, 79, 1310–1323.PubMedCrossRef
Zurück zum Zitat Verkhratsky, A. (2005). Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. Physiological Reviews, 85, 201–279.PubMedCrossRef Verkhratsky, A. (2005). Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. Physiological Reviews, 85, 201–279.PubMedCrossRef
Zurück zum Zitat Vitalis, E., Costantin, J., Tsai, P., Sakakibara, H., Paruthiyil, S., Iiri, T., et al. (2000). Role of the cAMP signaling pathway in the regulation of gonadotropin-releasing hormone secretion in GT1 cells. Proceedings of the National Academy of Sciences of the United States of America, 97, 1861–1866.PubMedCrossRef Vitalis, E., Costantin, J., Tsai, P., Sakakibara, H., Paruthiyil, S., Iiri, T., et al. (2000). Role of the cAMP signaling pathway in the regulation of gonadotropin-releasing hormone secretion in GT1 cells. Proceedings of the National Academy of Sciences of the United States of America, 97, 1861–1866.PubMedCrossRef
Zurück zum Zitat Watanabe, M., Sakuma, Y. & Kato, M. (2004). High expression of the R-type voltage-gated Ca 2 +  channel and its involvement in Ca 2 + -dependent gonadotropin-releasing hormone release in GT1-7 cells. Endocrinology, 145, 2375–2388.PubMedCrossRef Watanabe, M., Sakuma, Y. & Kato, M. (2004). High expression of the R-type voltage-gated Ca 2 +  channel and its involvement in Ca 2 + -dependent gonadotropin-releasing hormone release in GT1-7 cells. Endocrinology, 145, 2375–2388.PubMedCrossRef
Zurück zum Zitat Watanabe, M., Sakuma, Y. & Kato, M. (2009). GABAA receptors mediate excitation in adult rat GnRH neurons. Biology of Reproduction, 81, 327–332.PubMedCrossRef Watanabe, M., Sakuma, Y. & Kato, M. (2009). GABAA receptors mediate excitation in adult rat GnRH neurons. Biology of Reproduction, 81, 327–332.PubMedCrossRef
Zurück zum Zitat Wintermantel, T., Campbell, R., Porteous, R., Bock, D., Grone, H., Todman, M. et al. (2006). Definition of estrogen receptor pathway critical for estrogen positive feedback to gonadotropin-releasing hormone neurons and fertility. Neuron, 52(2), 271–280.PubMedCrossRef Wintermantel, T., Campbell, R., Porteous, R., Bock, D., Grone, H., Todman, M. et al. (2006). Definition of estrogen receptor pathway critical for estrogen positive feedback to gonadotropin-releasing hormone neurons and fertility. Neuron, 52(2), 271–280.PubMedCrossRef
Zurück zum Zitat Yin, C., Ishii, H., Tanaka, N., Sakuma, Y. & Kato, M. (2008). Activation of A-type γ-amino butyric acid receptors excites gonadotrophin-releasing hormone neurones isolated from adult rats. Journal of Neuroendocrinology, 20, 566–575.PubMedCrossRef Yin, C., Ishii, H., Tanaka, N., Sakuma, Y. & Kato, M. (2008). Activation of A-type γ-amino butyric acid receptors excites gonadotrophin-releasing hormone neurones isolated from adult rats. Journal of Neuroendocrinology, 20, 566–575.PubMedCrossRef
Metadaten
Titel
A simple integrative electrophysiological model of bursting GnRH neurons
verfasst von
Dávid Csercsik
Imre Farkas
Erik Hrabovszky
Zsolt Liposits
Publikationsdatum
01.02.2012
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 1/2012
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-011-0343-y

Weitere Artikel der Ausgabe 1/2012

Journal of Computational Neuroscience 1/2012 Zur Ausgabe

Premium Partner