Skip to main content
Erschienen in: Journal of Materials Science 1/2015

01.01.2015 | Original Paper

Kinetics of triple-junctions in eutectic solidification: a sharp interface model

verfasst von: Haifeng Wang, Feng Liu, D. M. Herlach

Erschienen in: Journal of Materials Science | Ausgabe 1/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The kinetics of triple-junctions (TJs) in eutectic solidification is modeled by the thermodynamic extremum principle (TEP). It consists of two parts. First, TJs as the interaction of interfaces follow the interface kinetics according to which the temperature and concentration at the TJs are determined. This interface part of TJ kinetics is closely related to the eutectic point in the kinetic phase diagram. Second, TJs have their specific kinetics according to which their morphology (e.g., the contact angles in two dimensions) is determined. Using a new solution of solute diffusion in liquid, the TJ kinetics is incorporated into the current lamellar eutectic growth model. The model is applicable to the concentrated alloy systems and can be extended to any kind of eutectics. Simulation results of the rapid solidification of a lamellar Ni5Si2–Ni2Si (γδ) eutectic show that both parts of TJ kinetics can play important roles in eutectic solidification and need to be considered to improve the current eutectic theory.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
There is no experimental work on the TJ line energy for solidification up to now, although it is measurable in grain growth. For example, Zhao et al. [8, 9, 16] measured the TJ line energy in the copper tri-crystal and found that it has a considerable effect on grain growth and particle-boundary interaction.
 
2
For the SSP, the total driving free energy at the interface can be divided into the driving free energy for the interface migration and the trans-interface diffusion by moving the solid tangent at \( C_{\text{S}}^{*} \) to the liquid at \( C_{\text{L}}^{*} \) in the molar Gibbs energy diagram; see Fig. 2 in Ref. [40]. There is, however, no tangent of SC due to its concentration-independent Gibbs energy.
 
3
Due to the curvature effect, the concentration at the TJs deviates from the eutectic composition. The deviation, however, is insignificant because the interface energy is much smaller than the Gibbs energy of bulk phases. Note that the deviation of concentration at the TJs from the eutectic composition does occur for the JH-kind [2426] and TMK-kind [7, 2833] solutions, which is not because of the curvature effect and the interface part of TJ kinetics but the solutions themselves [39].
 
Literatur
1.
Zurück zum Zitat Kurz W, Fisher DJ (1979) Dendrite growth in eutectic alloys: the coupled zone. Inter Mater Rev 5(6):177–204CrossRef Kurz W, Fisher DJ (1979) Dendrite growth in eutectic alloys: the coupled zone. Inter Mater Rev 5(6):177–204CrossRef
5.
Zurück zum Zitat Waku Y, Nakagawa N, Wakamoto T et al (1997) A ductile ceramic eutectic composite with high strength at 1873 K. Nature 389:49–52CrossRef Waku Y, Nakagawa N, Wakamoto T et al (1997) A ductile ceramic eutectic composite with high strength at 1873 K. Nature 389:49–52CrossRef
6.
Zurück zum Zitat Wang WH, Dong C, Shek CH (2004) Bulk metallic glasses. Mater Sci Eng R 44:45–89CrossRef Wang WH, Dong C, Shek CH (2004) Bulk metallic glasses. Mater Sci Eng R 44:45–89CrossRef
7.
Zurück zum Zitat Wang N, Kalay YE, Trivedi R (2011) Eutectic-to-metallic glass transition in the Al–Sm system. Acta Mater 59:6604–6619CrossRef Wang N, Kalay YE, Trivedi R (2011) Eutectic-to-metallic glass transition in the Al–Sm system. Acta Mater 59:6604–6619CrossRef
8.
Zurück zum Zitat Zhao B, Verhasselt J-Ch, Shvindlerman LS, Gottstein G (2010) Measurement of grain boundary triple line energy in copper. Acta Mater 58:5646–5653CrossRef Zhao B, Verhasselt J-Ch, Shvindlerman LS, Gottstein G (2010) Measurement of grain boundary triple line energy in copper. Acta Mater 58:5646–5653CrossRef
9.
Zurück zum Zitat Zhao B, Ziemons A, Shvindlerman LS, Gottstein G (2012) Surface topography and energy of grain boundary triple junctions in copper tricrystals. Acta Mater 60:811–818CrossRef Zhao B, Ziemons A, Shvindlerman LS, Gottstein G (2012) Surface topography and energy of grain boundary triple junctions in copper tricrystals. Acta Mater 60:811–818CrossRef
10.
Zurück zum Zitat Frolov T, Mishin Y (2009) Temperature dependence of the surface free energy and surface stress: an atomistic calculation for Cu (110). Phys Rev B 79:174110CrossRef Frolov T, Mishin Y (2009) Temperature dependence of the surface free energy and surface stress: an atomistic calculation for Cu (110). Phys Rev B 79:174110CrossRef
11.
Zurück zum Zitat Czubayko U, Sursaeva VG, Gottstein G, Shvindlerman LS (1998) Influence of triple junctions on grain boundary motion. Acta Mater 46:5863–5871CrossRef Czubayko U, Sursaeva VG, Gottstein G, Shvindlerman LS (1998) Influence of triple junctions on grain boundary motion. Acta Mater 46:5863–5871CrossRef
12.
Zurück zum Zitat Upmanyu M, Srolovitz DJ, Shvindlerman LS, Gottstein G (2002) Molecular dynamics simulation of triple junction migration. Acta Mater 50:1405–1420CrossRef Upmanyu M, Srolovitz DJ, Shvindlerman LS, Gottstein G (2002) Molecular dynamics simulation of triple junction migration. Acta Mater 50:1405–1420CrossRef
13.
Zurück zum Zitat Marks RA, Glaeser AM (2012) Equilibrium and stability of triple junctions in anisotropic systems. Acta Mater 60:349–358CrossRef Marks RA, Glaeser AM (2012) Equilibrium and stability of triple junctions in anisotropic systems. Acta Mater 60:349–358CrossRef
14.
Zurück zum Zitat Fischer FD, Svoboda J, Hackl K (2012) Modelling the kinetics of a triple junction. Acta Mater 60:4704–4711CrossRef Fischer FD, Svoboda J, Hackl K (2012) Modelling the kinetics of a triple junction. Acta Mater 60:4704–4711CrossRef
15.
Zurück zum Zitat Gottstein G, King AH, Shvindlerman LS (2000) The effect of triple-junction drag on grain growth. Acta Mater 48:397–403CrossRef Gottstein G, King AH, Shvindlerman LS (2000) The effect of triple-junction drag on grain growth. Acta Mater 48:397–403CrossRef
16.
Zurück zum Zitat Zhao B, Gottstein G, Shvindlerman LS (2011) Triple junction effects in solids. Acta Mater 59:3510–3518CrossRef Zhao B, Gottstein G, Shvindlerman LS (2011) Triple junction effects in solids. Acta Mater 59:3510–3518CrossRef
17.
Zurück zum Zitat Johnson OK, Schuh CA (2013) The uncorrelated triple junction distribution function: towards grain boundary network design. Acta Mater 61:2863–2873CrossRef Johnson OK, Schuh CA (2013) The uncorrelated triple junction distribution function: towards grain boundary network design. Acta Mater 61:2863–2873CrossRef
18.
Zurück zum Zitat Akamatsu S, Plapp M, Faivre G, Karma A (2002) Pattern stability and trijunction motion in eutectic solidification. Phys Rev E 66:030502(R)CrossRef Akamatsu S, Plapp M, Faivre G, Karma A (2002) Pattern stability and trijunction motion in eutectic solidification. Phys Rev E 66:030502(R)CrossRef
19.
Zurück zum Zitat Akamatsu S, Plapp M, Faivre G, Karma A (2004) Overstability of lamellar eutectic growth below the minimum-undercooling spacing. Metal Mater Trans A 35:1815–1828CrossRef Akamatsu S, Plapp M, Faivre G, Karma A (2004) Overstability of lamellar eutectic growth below the minimum-undercooling spacing. Metal Mater Trans A 35:1815–1828CrossRef
20.
Zurück zum Zitat Langer JS (1980) Eutectic solidification and marginal stability. Phys Rev Lett 44:1023–1026CrossRef Langer JS (1980) Eutectic solidification and marginal stability. Phys Rev Lett 44:1023–1026CrossRef
21.
Zurück zum Zitat Datye V, Langer JS (1981) Stability of thin lamellar eutectic growth. Phys Rev B 24:4155–4169CrossRef Datye V, Langer JS (1981) Stability of thin lamellar eutectic growth. Phys Rev B 24:4155–4169CrossRef
22.
Zurück zum Zitat Akamatsu S, Perrut M, Bottin-Rousseau S, Faivre G (2010) Spiral two-phase dendrites. Phys Rev Lett 104:056101CrossRef Akamatsu S, Perrut M, Bottin-Rousseau S, Faivre G (2010) Spiral two-phase dendrites. Phys Rev Lett 104:056101CrossRef
23.
Zurück zum Zitat Mullins WW, Sekerka RF (1964) Stability of a planar interface during solidification of a dilute binary alloy. J Appl Phys 35:444–451CrossRef Mullins WW, Sekerka RF (1964) Stability of a planar interface during solidification of a dilute binary alloy. J Appl Phys 35:444–451CrossRef
24.
Zurück zum Zitat Jackson KA, Hunt JD (1966) Lamellar and rod eutectic growth. Trans AIME 236:1129–1142 Jackson KA, Hunt JD (1966) Lamellar and rod eutectic growth. Trans AIME 236:1129–1142
25.
Zurück zum Zitat Choudhury A, Plapp M, Nestler B (2011) Theoretical and numerical study of lamellar eutectic three-phase growth in ternary alloys. Phys Rev E 83:051608CrossRef Choudhury A, Plapp M, Nestler B (2011) Theoretical and numerical study of lamellar eutectic three-phase growth in ternary alloys. Phys Rev E 83:051608CrossRef
26.
Zurück zum Zitat Ankit K, Choudhury A, Qin C et al (2013) Theoretical and numerical study of lamellar eutectoid growth influenced by volume diffusion. Acta Mater 61:4245–4253CrossRef Ankit K, Choudhury A, Qin C et al (2013) Theoretical and numerical study of lamellar eutectoid growth influenced by volume diffusion. Acta Mater 61:4245–4253CrossRef
27.
Zurück zum Zitat Donaghey LF, Tiller WA (1968/69) On the diffusion of solute during the eutectoid and eutectic transformations, part I. Mater Sci Eng 3:231–239 Donaghey LF, Tiller WA (1968/69) On the diffusion of solute during the eutectoid and eutectic transformations, part I. Mater Sci Eng 3:231–239
28.
Zurück zum Zitat Trivedi R, Magnin P, Kurz W (1987) Theory of eutectic growth under rapid solidification conditions. Acta Metall 35:971–980CrossRef Trivedi R, Magnin P, Kurz W (1987) Theory of eutectic growth under rapid solidification conditions. Acta Metall 35:971–980CrossRef
29.
Zurück zum Zitat Kurz W, Trivedi R (1991) Eutectic growth under rapid solidification conditions. Metall Trans A 22:3051–3057CrossRef Kurz W, Trivedi R (1991) Eutectic growth under rapid solidification conditions. Metall Trans A 22:3051–3057CrossRef
30.
Zurück zum Zitat Galenko PK, Herlach DM (2006) Diffusion less crystal growth in rapidly solidifying eutectic systems. Phys Rev Lett 96:150602CrossRef Galenko PK, Herlach DM (2006) Diffusion less crystal growth in rapidly solidifying eutectic systems. Phys Rev Lett 96:150602CrossRef
31.
Zurück zum Zitat Goetzinger R, Barth M, Herlach DM (1998) Growth of lamellar eutectic dendrites in undercooled melts. J Appl Phys 84:1643–1649CrossRef Goetzinger R, Barth M, Herlach DM (1998) Growth of lamellar eutectic dendrites in undercooled melts. J Appl Phys 84:1643–1649CrossRef
32.
Zurück zum Zitat Li JF, Zhou YH (2005) Eutectic growth in bulk undercooled melts. Acta Mater 53:2351–2359CrossRef Li JF, Zhou YH (2005) Eutectic growth in bulk undercooled melts. Acta Mater 53:2351–2359CrossRef
33.
Zurück zum Zitat Liu L, Li JF, Zhou YH (2009) Solidification of undercooled eutectic alloys containing a third element. Acta Mater 57:1536–1545CrossRef Liu L, Li JF, Zhou YH (2009) Solidification of undercooled eutectic alloys containing a third element. Acta Mater 57:1536–1545CrossRef
34.
Zurück zum Zitat Caroli C, Misbah C (1997) On static and dynamical Young’s condition at a trijunction. J Phys I France 7:1259–1265CrossRef Caroli C, Misbah C (1997) On static and dynamical Young’s condition at a trijunction. J Phys I France 7:1259–1265CrossRef
35.
Zurück zum Zitat Folch R, Plapp M (2003) Towards a quantitative phase-field model of two-phase solidification. Phys Rev E 68:010602(R)CrossRef Folch R, Plapp M (2003) Towards a quantitative phase-field model of two-phase solidification. Phys Rev E 68:010602(R)CrossRef
36.
Zurück zum Zitat Folch R, Plapp M (2005) Quantitative phase-field modeling of two-phase growth. Phys Rev E 72:011602CrossRef Folch R, Plapp M (2005) Quantitative phase-field modeling of two-phase growth. Phys Rev E 72:011602CrossRef
37.
Zurück zum Zitat Parisi A, Plapp M (2008) Stability of lamellar eutectic growth. Acta Mater 56:1348–1357CrossRef Parisi A, Plapp M (2008) Stability of lamellar eutectic growth. Acta Mater 56:1348–1357CrossRef
38.
Zurück zum Zitat Hackl K, Fischer FD, Klevakina K et al (2013) A variational approach to growing and wetting. Acta Mater 61:1581–1591CrossRef Hackl K, Fischer FD, Klevakina K et al (2013) A variational approach to growing and wetting. Acta Mater 61:1581–1591CrossRef
39.
Zurück zum Zitat Wang HF, Liu F, Herlach DM (2014) On the solution of solute diffusion during eutectic growth. J Cryst Growth 389:68–73CrossRef Wang HF, Liu F, Herlach DM (2014) On the solution of solute diffusion during eutectic growth. J Cryst Growth 389:68–73CrossRef
40.
Zurück zum Zitat Wang HF, Liu F, Zhai HM, Wang K (2012) Application of the maximal entropy production principle to rapid solidification: a sharp interface model. Acta Mater 60:1444–1454CrossRef Wang HF, Liu F, Zhai HM, Wang K (2012) Application of the maximal entropy production principle to rapid solidification: a sharp interface model. Acta Mater 60:1444–1454CrossRef
41.
Zurück zum Zitat Wang K, Wang HF, Liu F, Zhai HM (2013) Modeling rapid solidification of multi-component concentrated alloys. Acta Mater 61:1359–1372CrossRef Wang K, Wang HF, Liu F, Zhai HM (2013) Modeling rapid solidification of multi-component concentrated alloys. Acta Mater 61:1359–1372CrossRef
42.
Zurück zum Zitat Wang HF, Liu F, Ehlen GJ, Herlach DM (2013) Application of the maximal entropy production principle to rapid solidification: a multi-phase-field model. Acta Mater 61:2617–2627CrossRef Wang HF, Liu F, Ehlen GJ, Herlach DM (2013) Application of the maximal entropy production principle to rapid solidification: a multi-phase-field model. Acta Mater 61:2617–2627CrossRef
43.
Zurück zum Zitat Onsager L (1931) Reciprocal relations in irreversible processes I. Phys Rev 15:405–426CrossRef Onsager L (1931) Reciprocal relations in irreversible processes I. Phys Rev 15:405–426CrossRef
44.
Zurück zum Zitat Martyushev LM, Seleznev VD (2006) Maximum entropy production principle in physics, chemistry and biology. Phys Rep 426:1–45CrossRef Martyushev LM, Seleznev VD (2006) Maximum entropy production principle in physics, chemistry and biology. Phys Rep 426:1–45CrossRef
45.
Zurück zum Zitat Ziegler H (1983) An introduction to thermodynamics. North-Holland, Amsterdam Ziegler H (1983) An introduction to thermodynamics. North-Holland, Amsterdam
46.
Zurück zum Zitat Svoboda J, Turek I (1991) On diffusion-controlled evolution of closed solid-state thermodynamic systems at constant temperature and pressure. Philos Mag B 64:749–759CrossRef Svoboda J, Turek I (1991) On diffusion-controlled evolution of closed solid-state thermodynamic systems at constant temperature and pressure. Philos Mag B 64:749–759CrossRef
47.
Zurück zum Zitat Svoboda J, Turek I, Fischer FD (2005) Application of the thermodynamic extremal principle to modeling of thermodynamic processes in material sciences. Philos Mag 85:3699–3707CrossRef Svoboda J, Turek I, Fischer FD (2005) Application of the thermodynamic extremal principle to modeling of thermodynamic processes in material sciences. Philos Mag 85:3699–3707CrossRef
48.
Zurück zum Zitat Svoboda J, Fischer FD, Fratzl P, Kroupa A (2002) Diffusion in multi-component systems with no or dense sources and sinks for vacancies. Acta Mater 50:1369–1381CrossRef Svoboda J, Fischer FD, Fratzl P, Kroupa A (2002) Diffusion in multi-component systems with no or dense sources and sinks for vacancies. Acta Mater 50:1369–1381CrossRef
49.
Zurück zum Zitat Fischer FD, Svoboda J, Petryk H (2014) Thermodynamic extremal principles for irreversible processes in materials science. Acta Mater 67:1–20CrossRef Fischer FD, Svoboda J, Petryk H (2014) Thermodynamic extremal principles for irreversible processes in materials science. Acta Mater 67:1–20CrossRef
51.
Zurück zum Zitat Aziz MJ, Kaplan T (1988) Continuous growth model for interface motion during alloy solidification. Acta Metall 36:2335–2347CrossRef Aziz MJ, Kaplan T (1988) Continuous growth model for interface motion during alloy solidification. Acta Metall 36:2335–2347CrossRef
52.
Zurück zum Zitat Boettinger WJ, Aziz MJ (1989) Theory for the trapping of disorder and solute in intermetallic phases by rapid solidification. Acta Mater 37:3379–3391CrossRef Boettinger WJ, Aziz MJ (1989) Theory for the trapping of disorder and solute in intermetallic phases by rapid solidification. Acta Mater 37:3379–3391CrossRef
53.
Zurück zum Zitat Du Y, Schuster JC (1999) Experimental investigations and thermodynamic descriptions of the Ni–Si and C–Ni–Si systems. Metall Mater Trans A 30:2409–2417CrossRef Du Y, Schuster JC (1999) Experimental investigations and thermodynamic descriptions of the Ni–Si and C–Ni–Si systems. Metall Mater Trans A 30:2409–2417CrossRef
54.
Zurück zum Zitat Schuster JC, Du Y (2000) Experimental investigation and thermodynamic modeling of the Cr–Ni–Si system. Metall Mater Trans A 31:1795–1803CrossRef Schuster JC, Du Y (2000) Experimental investigation and thermodynamic modeling of the Cr–Ni–Si system. Metall Mater Trans A 31:1795–1803CrossRef
55.
Zurück zum Zitat Aziz MJ, Boettinger WJ (1994) On the transition from short-range diffusion-limited to collision-limited growth in alloy solidification. Acta Metall Mater 42:527–537CrossRef Aziz MJ, Boettinger WJ (1994) On the transition from short-range diffusion-limited to collision-limited growth in alloy solidification. Acta Metall Mater 42:527–537CrossRef
56.
Zurück zum Zitat Tang CG, Harrowell P (2013) Anomalously slow crystal growth of the glass-forming alloy CuZr. Nature Mater 12:507–511CrossRef Tang CG, Harrowell P (2013) Anomalously slow crystal growth of the glass-forming alloy CuZr. Nature Mater 12:507–511CrossRef
57.
Zurück zum Zitat Wang H, Herlach DM, Liu RP (2014) Dendrite growth in Cu50Zr50 glass-forming melts, thermodynamics vs. kinetics. EPL 105:36001CrossRef Wang H, Herlach DM, Liu RP (2014) Dendrite growth in Cu50Zr50 glass-forming melts, thermodynamics vs. kinetics. EPL 105:36001CrossRef
58.
Zurück zum Zitat Ediger MD, Harrowell P, Yu L (2008) Crystal growth kinetics exhibit a fragility-dependent decoupling from viscosity. J Chem Phys 128:034709CrossRef Ediger MD, Harrowell P, Yu L (2008) Crystal growth kinetics exhibit a fragility-dependent decoupling from viscosity. J Chem Phys 128:034709CrossRef
59.
Zurück zum Zitat Shun Y, Xi HM, Chen S et al (2008) Crystallization near glass transition: transition from diffusion-controlled to diffusionless crystal growth studied with seven polymorphs. J Phys Chem B 112:5594–5601CrossRef Shun Y, Xi HM, Chen S et al (2008) Crystallization near glass transition: transition from diffusion-controlled to diffusionless crystal growth studied with seven polymorphs. J Phys Chem B 112:5594–5601CrossRef
60.
Zurück zum Zitat Fischer FD, Simha NK (2004) Influence of material flux on the jump relations at a singular interface in a multicomponent solid. Acta Mech 171:213–223CrossRef Fischer FD, Simha NK (2004) Influence of material flux on the jump relations at a singular interface in a multicomponent solid. Acta Mech 171:213–223CrossRef
Metadaten
Titel
Kinetics of triple-junctions in eutectic solidification: a sharp interface model
verfasst von
Haifeng Wang
Feng Liu
D. M. Herlach
Publikationsdatum
01.01.2015
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 1/2015
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-014-8577-5

Weitere Artikel der Ausgabe 1/2015

Journal of Materials Science 1/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.