Skip to main content
Erschienen in: Journal of Materials Science 2/2016

21.09.2015 | Review

CVD growth of 1D and 2D sp2 carbon nanomaterials

verfasst von: Jinbo Pang, Alicja Bachmatiuk, Imad Ibrahim, Lei Fu, Daniela Placha, Grazyna Simha Martynkova, Barbara Trzebicka, Thomas Gemming, Juergen Eckert, Mark H. Rümmeli

Erschienen in: Journal of Materials Science | Ausgabe 2/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The discovery of graphene and carbon nanotubes (rolled-up graphene) has excited the world because their extraordinary properties promise tremendous developments in many areas. Like any materials with application potential, it needs to be fabricated in an economically viable manner and at the same time provides the necessary quality for relevant applications. Graphene and carbon nanotubes are no exception to this. In both cases, chemical vapor deposition (CVD) has emerged as the dominant synthesis route since it is already a well-established process both in industry and laboratories. In this work, we review the CVD fabrication of graphene and carbon nanotubes. Initially, we briefly introduce the materials and the CVD process. We then discuss pretreatment steps prior to the CVD reaction. The discussion then switches to the CVD process, provides comparative data for thermal CVD and plasma-enhanced CVD, and includes coverage of kinetics, thermodynamics, catalyst choice, and other aspects of growth as well as post production treatments. Finally, conclusions are drawn and presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Warner JH, Schäffel F, Bachmatiuk A, Rümmeli MH (2013) Graphene fundamentals and emergent applications, 1st edn. Elsevier, Waltham Warner JH, Schäffel F, Bachmatiuk A, Rümmeli MH (2013) Graphene fundamentals and emergent applications, 1st edn. Elsevier, Waltham
2.
Zurück zum Zitat Rummeli MH, Ayala P, Pichler T (2010) Carbon nanotubes and related structures: production and formation. In: Guldi DM, Martín N (eds) Carbon nanotub. Relat. Struct. Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim, Germany, pp 1–21 Rummeli MH, Ayala P, Pichler T (2010) Carbon nanotubes and related structures: production and formation. In: Guldi DM, Martín N (eds) Carbon nanotub. Relat. Struct. Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim, Germany, pp 1–21
3.
Zurück zum Zitat Liu Z, Liu JZ, Cheng Y et al (2012) Interlayer binding energy of graphite: a mesoscopic determination from deformation. Phys Rev B 85:205418CrossRef Liu Z, Liu JZ, Cheng Y et al (2012) Interlayer binding energy of graphite: a mesoscopic determination from deformation. Phys Rev B 85:205418CrossRef
4.
Zurück zum Zitat Rümmeli MH, Rocha CG, Ortmann F et al (2011) Graphene: piecing it together. Adv Mater 23:4471–4490CrossRef Rümmeli MH, Rocha CG, Ortmann F et al (2011) Graphene: piecing it together. Adv Mater 23:4471–4490CrossRef
5.
Zurück zum Zitat Fallahazad B, Hao Y, Lee K et al (2012) Quantum Hall effect in Bernal stacked and twisted bilayer graphene grown on Cu by chemical vapor deposition. Phys Rev B 85:1–5CrossRef Fallahazad B, Hao Y, Lee K et al (2012) Quantum Hall effect in Bernal stacked and twisted bilayer graphene grown on Cu by chemical vapor deposition. Phys Rev B 85:1–5CrossRef
6.
Zurück zum Zitat Novoselov KS, Jiang Z, Zhang Y et al (2007) Room-temperature quantum Hall effect in graphene. Science 315:1379CrossRef Novoselov KS, Jiang Z, Zhang Y et al (2007) Room-temperature quantum Hall effect in graphene. Science 315:1379CrossRef
7.
Zurück zum Zitat Han P, Akagi K, Canova FF et al (2014) Bottom-up graphene-nanoribbon fabrication reveals chiral edges and enantioselectivity. ACS Nano 8:9181–9187CrossRef Han P, Akagi K, Canova FF et al (2014) Bottom-up graphene-nanoribbon fabrication reveals chiral edges and enantioselectivity. ACS Nano 8:9181–9187CrossRef
8.
Zurück zum Zitat Sangwan VK, Jariwala D, Everaerts K et al (2014) Wafer-scale solution-derived molecular gate dielectrics for low-voltage graphene electronics. Appl Phys Lett 104:083503CrossRef Sangwan VK, Jariwala D, Everaerts K et al (2014) Wafer-scale solution-derived molecular gate dielectrics for low-voltage graphene electronics. Appl Phys Lett 104:083503CrossRef
9.
Zurück zum Zitat Ang PK, Li A, Jaiswal M et al (2011) Flow sensing of single cell by graphene transistor in a microfluidic channel. Nano Lett 11:5240–5246CrossRef Ang PK, Li A, Jaiswal M et al (2011) Flow sensing of single cell by graphene transistor in a microfluidic channel. Nano Lett 11:5240–5246CrossRef
10.
Zurück zum Zitat Yan Z, Peng Z, Sun Z et al (2011) Growth of bilayer graphene on insulating substrates. ACS Nano 5:8187–8192CrossRef Yan Z, Peng Z, Sun Z et al (2011) Growth of bilayer graphene on insulating substrates. ACS Nano 5:8187–8192CrossRef
11.
Zurück zum Zitat Liu L, Zhou H, Cheng R et al (2012) High-yield chemical vapor deposition growth of high-quality large-area AB-stacked bilayer graphene. ACS Nano 6:8241–8249CrossRef Liu L, Zhou H, Cheng R et al (2012) High-yield chemical vapor deposition growth of high-quality large-area AB-stacked bilayer graphene. ACS Nano 6:8241–8249CrossRef
12.
Zurück zum Zitat Wu Y, Chou H, Ji H et al (2012) Growth mechanism and controlled synthesis of AB-stacked bilayer graphene on Cu-Ni alloy foils. ACS Nano 6:7731–7738CrossRef Wu Y, Chou H, Ji H et al (2012) Growth mechanism and controlled synthesis of AB-stacked bilayer graphene on Cu-Ni alloy foils. ACS Nano 6:7731–7738CrossRef
13.
Zurück zum Zitat Yan K, Peng H, Zhou Y et al (2011) Formation of bilayer bernal graphene: Layer-by-layer epitaxy via chemical vapor deposition. Nano Lett 11:1106–1110CrossRef Yan K, Peng H, Zhou Y et al (2011) Formation of bilayer bernal graphene: Layer-by-layer epitaxy via chemical vapor deposition. Nano Lett 11:1106–1110CrossRef
14.
Zurück zum Zitat Xia F, Farmer DB, Lin YM, Avouris P (2010) Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett 10:715–718CrossRef Xia F, Farmer DB, Lin YM, Avouris P (2010) Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett 10:715–718CrossRef
15.
Zurück zum Zitat Yu WJ, Liao L, Chae SH et al (2011) Toward tunable band gap and tunable dirac point in bilayer graphene with molecular doping. Nano Lett 11:4759–4763CrossRef Yu WJ, Liao L, Chae SH et al (2011) Toward tunable band gap and tunable dirac point in bilayer graphene with molecular doping. Nano Lett 11:4759–4763CrossRef
16.
Zurück zum Zitat Bachmatiuk A, Mendes RG, Hirsch C et al (2013) Few-layer graphene shells and nonmagnetic encapsulates: a versatile and nontoxic carbon nanomaterial. ACS Nano 7:10552–10562CrossRef Bachmatiuk A, Mendes RG, Hirsch C et al (2013) Few-layer graphene shells and nonmagnetic encapsulates: a versatile and nontoxic carbon nanomaterial. ACS Nano 7:10552–10562CrossRef
17.
Zurück zum Zitat Deng J, Chen L, Sun Y et al (2015) Interconnected MnO2 nanoflakes assembled on graphene foam as a binder-free and long-cycle life lithium battery anode. Carbon 92:177–184CrossRef Deng J, Chen L, Sun Y et al (2015) Interconnected MnO2 nanoflakes assembled on graphene foam as a binder-free and long-cycle life lithium battery anode. Carbon 92:177–184CrossRef
18.
Zurück zum Zitat Guo J, Zhang T, Hu C, Fu L (2015) A three-dimensional nitrogen-doped graphene structure: a highly efficient carrier of enzymes for biosensors. Nanoscale 7:1290–1295CrossRef Guo J, Zhang T, Hu C, Fu L (2015) A three-dimensional nitrogen-doped graphene structure: a highly efficient carrier of enzymes for biosensors. Nanoscale 7:1290–1295CrossRef
19.
Zurück zum Zitat Hu X, Ma M, Zeng M et al (2014) Supercritical carbon dioxide anchored Fe3O4 nanoparticles on graphene foam and lithium battery performance. ACS Appl Mater Interfaces 6:22527–22533CrossRef Hu X, Ma M, Zeng M et al (2014) Supercritical carbon dioxide anchored Fe3O4 nanoparticles on graphene foam and lithium battery performance. ACS Appl Mater Interfaces 6:22527–22533CrossRef
20.
Zurück zum Zitat Liu J, Leng X, Xiao Y et al (2015) 3D nitrogen-doped graphene/β-cyclodextrin: host–guest interactions for electrochemical sensing. Nanoscale 7:11922–11927CrossRef Liu J, Leng X, Xiao Y et al (2015) 3D nitrogen-doped graphene/β-cyclodextrin: host–guest interactions for electrochemical sensing. Nanoscale 7:11922–11927CrossRef
21.
Zurück zum Zitat Bachmatiuk A, Boeckl J, Smith H et al (2015) Vertical graphene growth from amorphous carbon films using oxidizing gases. J Phys Chem C 119:17965–17970CrossRef Bachmatiuk A, Boeckl J, Smith H et al (2015) Vertical graphene growth from amorphous carbon films using oxidizing gases. J Phys Chem C 119:17965–17970CrossRef
22.
Zurück zum Zitat Davami K, Shaygan M, Kheirabi N et al (2014) Synthesis and characterization of carbon nanowalls on different substrates by radio frequency plasma enhanced chemical vapor deposition. Carbon 72:372–380CrossRef Davami K, Shaygan M, Kheirabi N et al (2014) Synthesis and characterization of carbon nanowalls on different substrates by radio frequency plasma enhanced chemical vapor deposition. Carbon 72:372–380CrossRef
23.
Zurück zum Zitat Zhao J, Shaygan M, Eckert J et al (2014) A growth mechanism for free-standing vertical graphene. Nano Lett 14:3064–3071CrossRef Zhao J, Shaygan M, Eckert J et al (2014) A growth mechanism for free-standing vertical graphene. Nano Lett 14:3064–3071CrossRef
24.
Zurück zum Zitat Park H, Chang S, Jean J et al (2013) Graphene cathode-based ZnO nanowire hybrid solar cells. Nano Lett 13:233–239CrossRef Park H, Chang S, Jean J et al (2013) Graphene cathode-based ZnO nanowire hybrid solar cells. Nano Lett 13:233–239CrossRef
25.
Zurück zum Zitat Chattopadhyay S, Lipson AL, Karmel HJ et al (2012) In situ X-ray study of the solid electrolyte interphase (SEI) formation on graphene as a model Li-ion battery anode. Chem Mater 24:3038–3043CrossRef Chattopadhyay S, Lipson AL, Karmel HJ et al (2012) In situ X-ray study of the solid electrolyte interphase (SEI) formation on graphene as a model Li-ion battery anode. Chem Mater 24:3038–3043CrossRef
26.
Zurück zum Zitat Cheng Y, Lu S, Zhang H et al (2012) Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors. Nano Lett 12:4206–4211CrossRef Cheng Y, Lu S, Zhang H et al (2012) Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors. Nano Lett 12:4206–4211CrossRef
27.
Zurück zum Zitat Liang YT, Vijayan BK, Gray KA, Hersam MC (2011) Minimizing graphene defects enhances titania nanocomposite-based photocatalytic reduction of CO2 for improved solar fuel production. Nano Lett 11:2865–2870CrossRef Liang YT, Vijayan BK, Gray KA, Hersam MC (2011) Minimizing graphene defects enhances titania nanocomposite-based photocatalytic reduction of CO2 for improved solar fuel production. Nano Lett 11:2865–2870CrossRef
28.
Zurück zum Zitat Lu S, Cheng Y, Wu X, Liu J (2013) Significantly improved long-cycle stability in high-rate Li-S batteries enabled by coaxial graphene wrapping over sulfur-coated carbon nanofibers. Nano Lett 13:2485–2489CrossRef Lu S, Cheng Y, Wu X, Liu J (2013) Significantly improved long-cycle stability in high-rate Li-S batteries enabled by coaxial graphene wrapping over sulfur-coated carbon nanofibers. Nano Lett 13:2485–2489CrossRef
29.
Zurück zum Zitat Ma Y, Li P, Sedloff JW et al (2015) conductive graphene fibers for wire-shaped supercapacitors strengthened by unfunctionalized few-walled carbon nanotubes. ACS Nano 9:1352–1359CrossRef Ma Y, Li P, Sedloff JW et al (2015) conductive graphene fibers for wire-shaped supercapacitors strengthened by unfunctionalized few-walled carbon nanotubes. ACS Nano 9:1352–1359CrossRef
30.
Zurück zum Zitat Wang Y, Tong SW, Xu XF et al (2011) Interface engineering of layer-by-layer stacked graphene anodes for high-performance organic solar cells. Adv Mater 23:1514–1518CrossRef Wang Y, Tong SW, Xu XF et al (2011) Interface engineering of layer-by-layer stacked graphene anodes for high-performance organic solar cells. Adv Mater 23:1514–1518CrossRef
31.
Zurück zum Zitat Yusoff ARBM, Dai L, Cheng H-M, Liu J (2015) Graphene based energy devices. Nanoscale 7:6881–6882 Yusoff ARBM, Dai L, Cheng H-M, Liu J (2015) Graphene based energy devices. Nanoscale 7:6881–6882
32.
Zurück zum Zitat Zang J, Cao C, Feng Y et al (2014) Stretchable and high-performance supercapacitors with crumpled graphene papers. Sci Rep 4:6492CrossRef Zang J, Cao C, Feng Y et al (2014) Stretchable and high-performance supercapacitors with crumpled graphene papers. Sci Rep 4:6492CrossRef
33.
Zurück zum Zitat Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRef Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRef
34.
Zurück zum Zitat Zhao H, Min K, Aluru NR (2009) Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. Nano Lett 9:3012–3015CrossRef Zhao H, Min K, Aluru NR (2009) Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. Nano Lett 9:3012–3015CrossRef
35.
Zurück zum Zitat Kalaitzidou K, Fukushima H, Askeland P, Drzal LT (2008) The nucleating effect of exfoliated graphite nanoplatelets and their influence on the crystal structure and electrical conductivity of polypropylene nanocomposites. J Mater Sci 43:2895–2907CrossRef Kalaitzidou K, Fukushima H, Askeland P, Drzal LT (2008) The nucleating effect of exfoliated graphite nanoplatelets and their influence on the crystal structure and electrical conductivity of polypropylene nanocomposites. J Mater Sci 43:2895–2907CrossRef
36.
Zurück zum Zitat Bao Q, Zhang H, Wang B et al (2011) Broadband graphene polarizer. Nat Photonics 5:411–415CrossRef Bao Q, Zhang H, Wang B et al (2011) Broadband graphene polarizer. Nat Photonics 5:411–415CrossRef
37.
Zurück zum Zitat Nair RR, Blake P, Grigorenko AN et al (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308CrossRef Nair RR, Blake P, Grigorenko AN et al (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308CrossRef
38.
Zurück zum Zitat Huang PY, Ruiz-Vargas CS, van der Zande AM et al (2011) Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469:389–392CrossRef Huang PY, Ruiz-Vargas CS, van der Zande AM et al (2011) Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469:389–392CrossRef
39.
Zurück zum Zitat Kim K, Lee Z, Regan W et al (2011) Grain boundary mapping in polycrystalline graphene. ACS Nano 5:2142–2146CrossRef Kim K, Lee Z, Regan W et al (2011) Grain boundary mapping in polycrystalline graphene. ACS Nano 5:2142–2146CrossRef
40.
Zurück zum Zitat Liu Z, Suenaga K, Harris PJF, Iijima S (2009) Open and closed edges of graphene layers. Phys Rev Lett 102:015501CrossRef Liu Z, Suenaga K, Harris PJF, Iijima S (2009) Open and closed edges of graphene layers. Phys Rev Lett 102:015501CrossRef
41.
Zurück zum Zitat Hashimoto A, Suenaga K, Gloter A et al (2004) Direct evidence for atomic defects in graphene layers. Nature 430:870–873CrossRef Hashimoto A, Suenaga K, Gloter A et al (2004) Direct evidence for atomic defects in graphene layers. Nature 430:870–873CrossRef
42.
Zurück zum Zitat Meyer JC, Kisielowski C, Erni R et al (2008) Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett 8:3582–3586CrossRef Meyer JC, Kisielowski C, Erni R et al (2008) Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett 8:3582–3586CrossRef
43.
Zurück zum Zitat Cortijo A, Vozmediano MAH (2007) Electronic properties of curved graphene sheets. Europhys Lett 77:47002CrossRef Cortijo A, Vozmediano MAH (2007) Electronic properties of curved graphene sheets. Europhys Lett 77:47002CrossRef
44.
Zurück zum Zitat Cortijo A, Vozmediano MAH (2007) Effects of topological defects and local curvature on the electronic properties of planar graphene. Nucl Phys B 763:293–308CrossRef Cortijo A, Vozmediano MAH (2007) Effects of topological defects and local curvature on the electronic properties of planar graphene. Nucl Phys B 763:293–308CrossRef
45.
Zurück zum Zitat Banhart F, Kotakoski J, Krasheninnikov AV (2011) Structural defects in graphene. ACS Nano 5:26–41CrossRef Banhart F, Kotakoski J, Krasheninnikov AV (2011) Structural defects in graphene. ACS Nano 5:26–41CrossRef
46.
Zurück zum Zitat Warner JH, Margine ER, Mukai M et al (2012) Dislocation-driven deformations in graphene. Science 337:209–212CrossRef Warner JH, Margine ER, Mukai M et al (2012) Dislocation-driven deformations in graphene. Science 337:209–212CrossRef
47.
Zurück zum Zitat Bao Q, Zhang H, Yang J et al (2010) Graphene-polymer nanofiber membrane for ultrafast photonics. Adv Funct Mater 20:782–791CrossRef Bao Q, Zhang H, Yang J et al (2010) Graphene-polymer nanofiber membrane for ultrafast photonics. Adv Funct Mater 20:782–791CrossRef
48.
Zurück zum Zitat Hossain MZ, Johns JE, Bevan KH et al (2012) Chemically homogeneous and thermally reversible oxidation of epitaxial graphene. Nat Chem 4:305–309CrossRef Hossain MZ, Johns JE, Bevan KH et al (2012) Chemically homogeneous and thermally reversible oxidation of epitaxial graphene. Nat Chem 4:305–309CrossRef
49.
Zurück zum Zitat Hossain MZ, Walsh MA, Hersam MC (2010) Scanning tunneling microscopy, spectroscopy, and nanolithography of epitaxial graphene chemically modified with aryl moieties. J Am Chem Soc 132:15399–15403CrossRef Hossain MZ, Walsh MA, Hersam MC (2010) Scanning tunneling microscopy, spectroscopy, and nanolithography of epitaxial graphene chemically modified with aryl moieties. J Am Chem Soc 132:15399–15403CrossRef
50.
Zurück zum Zitat Manga KK, Wang S, Jaiswal M et al (2010) High-gain graphene-titanium oxide photoconductor made from inkjet printable ionic solution. Adv Mater 22:5265–5270CrossRef Manga KK, Wang S, Jaiswal M et al (2010) High-gain graphene-titanium oxide photoconductor made from inkjet printable ionic solution. Adv Mater 22:5265–5270CrossRef
51.
Zurück zum Zitat Mendes RG, Koch B, Bachmatiuk A et al (2015) A size dependent evaluation of the cytotoxicity and uptake of nanographene oxide. J Mater Chem B 3:2522–2529CrossRef Mendes RG, Koch B, Bachmatiuk A et al (2015) A size dependent evaluation of the cytotoxicity and uptake of nanographene oxide. J Mater Chem B 3:2522–2529CrossRef
52.
Zurück zum Zitat Yan L, Zheng YB, Zhao F et al (2012) Chemistry and physics of a single atomic layer: strategies and challenges for functionalization of graphene and graphene-based materials. Chem Soc Rev 41:97–114CrossRef Yan L, Zheng YB, Zhao F et al (2012) Chemistry and physics of a single atomic layer: strategies and challenges for functionalization of graphene and graphene-based materials. Chem Soc Rev 41:97–114CrossRef
53.
Zurück zum Zitat Johns JE, Hersam MC (2013) Atomic covalent functionalization of graphene. Acc Chem Res 46:77–86CrossRef Johns JE, Hersam MC (2013) Atomic covalent functionalization of graphene. Acc Chem Res 46:77–86CrossRef
54.
Zurück zum Zitat Mendes RG, Bachmatiuk A, Büchner B et al (2013) Carbon nanostructures as multi-functional drug delivery platforms. J Mater Chem B 1:401–428CrossRef Mendes RG, Bachmatiuk A, Büchner B et al (2013) Carbon nanostructures as multi-functional drug delivery platforms. J Mater Chem B 1:401–428CrossRef
55.
Zurück zum Zitat Choi Gill B, Park Jung T, Yang Ho M et al (2010) Solution chemistry of self-assembled graphene nanohybrids for high-performance flexible biosensors. ACS Nano 4:2910–2918CrossRef Choi Gill B, Park Jung T, Yang Ho M et al (2010) Solution chemistry of self-assembled graphene nanohybrids for high-performance flexible biosensors. ACS Nano 4:2910–2918CrossRef
56.
Zurück zum Zitat Bi H, Yin K, Xie X et al (2013) Ultrahigh humidity sensitivity of graphene oxide. Sci Rep 3:2714CrossRef Bi H, Yin K, Xie X et al (2013) Ultrahigh humidity sensitivity of graphene oxide. Sci Rep 3:2714CrossRef
57.
Zurück zum Zitat Liu S, Zeng TH, Hofmann M et al (2011) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5:6971–6980CrossRef Liu S, Zeng TH, Hofmann M et al (2011) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5:6971–6980CrossRef
58.
Zurück zum Zitat Wang H, Cui L-F, Yang Y et al (2010) Mn3O4—graphene hybrid as a high-capacity anode material for lithium ion batteries. J Am Chem Soc 132:13978–13980CrossRef Wang H, Cui L-F, Yang Y et al (2010) Mn3O4—graphene hybrid as a high-capacity anode material for lithium ion batteries. J Am Chem Soc 132:13978–13980CrossRef
59.
Zurück zum Zitat Li Y, Wang H, Xie L et al (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133:7296–7299CrossRef Li Y, Wang H, Xie L et al (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133:7296–7299CrossRef
60.
Zurück zum Zitat Dresselhaus MS, Jorio A, Saito R (2010) Characterizing graphene, graphite, and carbon nanotubes by raman spectroscopy. Annu Rev Condens Matter Phys 1:89–108CrossRef Dresselhaus MS, Jorio A, Saito R (2010) Characterizing graphene, graphite, and carbon nanotubes by raman spectroscopy. Annu Rev Condens Matter Phys 1:89–108CrossRef
61.
Zurück zum Zitat Benedict LX, Crespi VH, Louie SG, Cohen ML (1995) Static conductivity and superconductivity of carbon nanotubes: relations between tubes and sheets. Phys Rev B 52:14935–14940CrossRef Benedict LX, Crespi VH, Louie SG, Cohen ML (1995) Static conductivity and superconductivity of carbon nanotubes: relations between tubes and sheets. Phys Rev B 52:14935–14940CrossRef
62.
Zurück zum Zitat Kim W, Choi HC, Shim M et al (2002) Synthesis of ultralong and high percentage of semiconducting single-walled carbon nanotubes. Nano Lett 2:703–708CrossRef Kim W, Choi HC, Shim M et al (2002) Synthesis of ultralong and high percentage of semiconducting single-walled carbon nanotubes. Nano Lett 2:703–708CrossRef
63.
Zurück zum Zitat Odom TW, Huang J-L, Kim P, Lieber CM (2000) Structure and electronic properties of carbon nanotubes. J Phys Chem B 104:2794–2809CrossRef Odom TW, Huang J-L, Kim P, Lieber CM (2000) Structure and electronic properties of carbon nanotubes. J Phys Chem B 104:2794–2809CrossRef
64.
Zurück zum Zitat Popov VN, Lambin P (2006) Radius and chirality dependence of the radial breathing mode and the G-band phonon modes of single-walled carbon nanotubes. Phys Rev B 73:085407CrossRef Popov VN, Lambin P (2006) Radius and chirality dependence of the radial breathing mode and the G-band phonon modes of single-walled carbon nanotubes. Phys Rev B 73:085407CrossRef
65.
Zurück zum Zitat Sasaki K-I, Saito R, Dresselhaus G et al (2008) Curvature-induced optical phonon frequency shift in metallic carbon nanotubes. Phys Rev B 77:245441CrossRef Sasaki K-I, Saito R, Dresselhaus G et al (2008) Curvature-induced optical phonon frequency shift in metallic carbon nanotubes. Phys Rev B 77:245441CrossRef
66.
Zurück zum Zitat Jiang J, Saito R, Samsonidze GG et al (2007) Chirality dependence of exciton effects in single-wall carbon nanotubes: tight-binding model. Phys Rev B 75:035407CrossRef Jiang J, Saito R, Samsonidze GG et al (2007) Chirality dependence of exciton effects in single-wall carbon nanotubes: tight-binding model. Phys Rev B 75:035407CrossRef
67.
Zurück zum Zitat Popov VN (2004) Curvature effects on the structural, electronic and optical properties of isolated single-walled carbon nanotubes within a symmetry-adapted non-orthogonal tight-binding model. New J Phys 6:17CrossRef Popov VN (2004) Curvature effects on the structural, electronic and optical properties of isolated single-walled carbon nanotubes within a symmetry-adapted non-orthogonal tight-binding model. New J Phys 6:17CrossRef
68.
Zurück zum Zitat Dresselhaus MS, Dresselhaus G, Charlier JC, Hernandez E (2004) Electronic, thermal and mechanical properties of carbon nanotubes. Philos Trans R Soc A Math Phys Eng Sci 362:2065–2098CrossRef Dresselhaus MS, Dresselhaus G, Charlier JC, Hernandez E (2004) Electronic, thermal and mechanical properties of carbon nanotubes. Philos Trans R Soc A Math Phys Eng Sci 362:2065–2098CrossRef
69.
Zurück zum Zitat Dresselhaus MS, Dresselhaus G, Jorio A (2004) Unusual properties and structure of carbon nanotubes. Annu Rev Mater Res 34:247–278CrossRef Dresselhaus MS, Dresselhaus G, Jorio A (2004) Unusual properties and structure of carbon nanotubes. Annu Rev Mater Res 34:247–278CrossRef
70.
Zurück zum Zitat Krasheninnikov AV, Banhart F, Li JX et al (2005) Stability of carbon nanotubes under electron irradiation: role of tube diameter and chirality. Phys Rev B 72:125428CrossRef Krasheninnikov AV, Banhart F, Li JX et al (2005) Stability of carbon nanotubes under electron irradiation: role of tube diameter and chirality. Phys Rev B 72:125428CrossRef
71.
Zurück zum Zitat Sun G, Kürti J, Kertesz M, Baughman RH (2003) Variations of the geometries and band gaps of single-walled carbon nanotubes and the effect of charge injection. J Phys Chem B 107:6924–6931CrossRef Sun G, Kürti J, Kertesz M, Baughman RH (2003) Variations of the geometries and band gaps of single-walled carbon nanotubes and the effect of charge injection. J Phys Chem B 107:6924–6931CrossRef
72.
Zurück zum Zitat Anantram MP, Léonard F (2006) Physics of carbon nanotube electronic devices. Reports Prog Phys 69:507–561CrossRef Anantram MP, Léonard F (2006) Physics of carbon nanotube electronic devices. Reports Prog Phys 69:507–561CrossRef
73.
Zurück zum Zitat Blase X, Benedict LX, Shirley EL, Louie SG (1994) Hybridization effects and metallicity in small radius carbon nanotubes. Phys Rev Lett 72:1878–1881CrossRef Blase X, Benedict LX, Shirley EL, Louie SG (1994) Hybridization effects and metallicity in small radius carbon nanotubes. Phys Rev Lett 72:1878–1881CrossRef
74.
Zurück zum Zitat Stéphan O, Ajayan PM, Colliex C et al (1996) Curvature-induced bonding changes in carbon nanotubes investigated by electron energy-loss spectrometry. Phys Rev B 53:13824–13829CrossRef Stéphan O, Ajayan PM, Colliex C et al (1996) Curvature-induced bonding changes in carbon nanotubes investigated by electron energy-loss spectrometry. Phys Rev B 53:13824–13829CrossRef
75.
Zurück zum Zitat Cabria I, Mintmire JW, White CT (2003) Metallic and semiconducting narrow carbon nanotubes. Phys Rev B 67:121406CrossRef Cabria I, Mintmire JW, White CT (2003) Metallic and semiconducting narrow carbon nanotubes. Phys Rev B 67:121406CrossRef
76.
Zurück zum Zitat Hasan T, Sun Z, Tan P et al (2014) Double-wall carbon nanotubes for wide-band, ultrafast pulse generation. ACS Nano 8:4836–4847CrossRef Hasan T, Sun Z, Tan P et al (2014) Double-wall carbon nanotubes for wide-band, ultrafast pulse generation. ACS Nano 8:4836–4847CrossRef
77.
Zurück zum Zitat Zhang R, Ning Z, Zhang Y et al (2013) Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions. Nat Nanotechnol 8:912–916CrossRef Zhang R, Ning Z, Zhang Y et al (2013) Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions. Nat Nanotechnol 8:912–916CrossRef
78.
Zurück zum Zitat Rümmeli MH, Schäffel F, Bachmatiuk A et al (2010) Investigating the outskirts of Fe and Co catalyst particles in alumina-supported catalytic CVD carbon nanotube growth. ACS Nano 4:1146–1152CrossRef Rümmeli MH, Schäffel F, Bachmatiuk A et al (2010) Investigating the outskirts of Fe and Co catalyst particles in alumina-supported catalytic CVD carbon nanotube growth. ACS Nano 4:1146–1152CrossRef
79.
Zurück zum Zitat Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRef Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRef
80.
Zurück zum Zitat Rümmeli MH, Schäffel F, Kramberger C et al (2007) Oxide-driven carbon nanotube growth in supported catalyst CVD. J Am Chem Soc 129:15772–15773CrossRef Rümmeli MH, Schäffel F, Kramberger C et al (2007) Oxide-driven carbon nanotube growth in supported catalyst CVD. J Am Chem Soc 129:15772–15773CrossRef
81.
Zurück zum Zitat Borowiak-Palen E, Rümmeli MH (2009) Activated Cu catalysts for alcohol CVD synthesized non-magnetic bamboo-like carbon nanotubes and branched bamboo-like carbon nanotubes. Superlattices Microstruct 46:374–378CrossRef Borowiak-Palen E, Rümmeli MH (2009) Activated Cu catalysts for alcohol CVD synthesized non-magnetic bamboo-like carbon nanotubes and branched bamboo-like carbon nanotubes. Superlattices Microstruct 46:374–378CrossRef
82.
Zurück zum Zitat Lin M, Tan JPY, Boothroyd C et al (2007) Dynamical observation of bamboo-like carbon nanotube growth. Nano Lett 7:2234–2238CrossRef Lin M, Tan JPY, Boothroyd C et al (2007) Dynamical observation of bamboo-like carbon nanotube growth. Nano Lett 7:2234–2238CrossRef
83.
Zurück zum Zitat Hofmann S, Sharma R, Ducati C et al (2007) In situ observations of catalyst dynamics during surface-bound carbon nanotube nucleation. Nano Lett 7:602–608CrossRef Hofmann S, Sharma R, Ducati C et al (2007) In situ observations of catalyst dynamics during surface-bound carbon nanotube nucleation. Nano Lett 7:602–608CrossRef
84.
Zurück zum Zitat Ouyang M, Huang J-L, Lieber CM (2002) Fundamental electronic properties and applications of single-walled carbon nanotubes. Acc Chem Res 35:1018–1025CrossRef Ouyang M, Huang J-L, Lieber CM (2002) Fundamental electronic properties and applications of single-walled carbon nanotubes. Acc Chem Res 35:1018–1025CrossRef
85.
Zurück zum Zitat Green AA, Hersam MC (2008) Colored semitransparent conductive coatings consisting of monodisperse metallic single-walled carbon nanotubes. Nano Lett 8:1417–1422CrossRef Green AA, Hersam MC (2008) Colored semitransparent conductive coatings consisting of monodisperse metallic single-walled carbon nanotubes. Nano Lett 8:1417–1422CrossRef
86.
Zurück zum Zitat Lieber CM, Odom TW, Huang J-L, Kim P (1998) Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391:62–64CrossRef Lieber CM, Odom TW, Huang J-L, Kim P (1998) Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391:62–64CrossRef
87.
Zurück zum Zitat Sangwan VK, Ortiz RP, Alaboson JMP et al (2012) Fundamental performance limits of carbon nanotube thin-film transistors achieved using hybrid molecular dielectrics. ACS Nano 6:7480–7488CrossRef Sangwan VK, Ortiz RP, Alaboson JMP et al (2012) Fundamental performance limits of carbon nanotube thin-film transistors achieved using hybrid molecular dielectrics. ACS Nano 6:7480–7488CrossRef
88.
Zurück zum Zitat Wang H, Luo J, Robertson A et al (2010) High-performance field effect transistors from solution processed carbon nanotubes. ACS Nano 4:6659–6664CrossRef Wang H, Luo J, Robertson A et al (2010) High-performance field effect transistors from solution processed carbon nanotubes. ACS Nano 4:6659–6664CrossRef
89.
Zurück zum Zitat Rueckes T, Kim K, Joselevich E et al (2000) Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289:94–97CrossRef Rueckes T, Kim K, Joselevich E et al (2000) Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289:94–97CrossRef
90.
Zurück zum Zitat Amade R, Vila-Costa M, Hussain S et al (2015) Vertically aligned carbon nanotubes coated with manganese dioxide as cathode material for microbial fuel cells. J Mater Sci 50:1214–1220CrossRef Amade R, Vila-Costa M, Hussain S et al (2015) Vertically aligned carbon nanotubes coated with manganese dioxide as cathode material for microbial fuel cells. J Mater Sci 50:1214–1220CrossRef
91.
Zurück zum Zitat Abbas SM, Hussain ST, Ali S et al (2013) Structure and electrochemical performance of ZnO/CNT composite as anode material for lithium-ion batteries. J Mater Sci 48:5429–5436CrossRef Abbas SM, Hussain ST, Ali S et al (2013) Structure and electrochemical performance of ZnO/CNT composite as anode material for lithium-ion batteries. J Mater Sci 48:5429–5436CrossRef
92.
Zurück zum Zitat Deng Q, Wang L, Li J (2015) Electrochemical characterization of Co3O4/MCNTs composite anode materials for sodium-ion batteries. J Mater Sci 50:4142–4148CrossRef Deng Q, Wang L, Li J (2015) Electrochemical characterization of Co3O4/MCNTs composite anode materials for sodium-ion batteries. J Mater Sci 50:4142–4148CrossRef
93.
Zurück zum Zitat Fam DWH, Azoubel S, Liu L et al (2015) Novel felt pseudocapacitor based on carbon nanotube/metal oxides. J Mater Sci 50:6578–6585CrossRef Fam DWH, Azoubel S, Liu L et al (2015) Novel felt pseudocapacitor based on carbon nanotube/metal oxides. J Mater Sci 50:6578–6585CrossRef
94.
Zurück zum Zitat Hussain S, Amade R, Jover E, Bertran E (2013) Nitrogen plasma functionalization of carbon nanotubes for supercapacitor applications. J Mater Sci 48:7620–7628CrossRef Hussain S, Amade R, Jover E, Bertran E (2013) Nitrogen plasma functionalization of carbon nanotubes for supercapacitor applications. J Mater Sci 48:7620–7628CrossRef
95.
Zurück zum Zitat Byrappa K, Dayananda AS, Sajan CP et al (2008) Hydrothermal preparation of ZnO:CNT and TiO2:CNT composites and their photocatalytic applications. J Mater Sci 43:2348–2355CrossRef Byrappa K, Dayananda AS, Sajan CP et al (2008) Hydrothermal preparation of ZnO:CNT and TiO2:CNT composites and their photocatalytic applications. J Mater Sci 43:2348–2355CrossRef
96.
Zurück zum Zitat Hu G, Meng X, Feng X et al (2007) Anatase TiO2 nanoparticles/carbon nanotubes nanofibers: preparation, characterization and photocatalytic properties. J Mater Sci 42:7162–7170CrossRef Hu G, Meng X, Feng X et al (2007) Anatase TiO2 nanoparticles/carbon nanotubes nanofibers: preparation, characterization and photocatalytic properties. J Mater Sci 42:7162–7170CrossRef
97.
Zurück zum Zitat Li X, Wei J, Chai Y et al (2015) Different polyaniline/carbon nanotube composites as Pt catalyst supports for methanol electro-oxidation. J Mater Sci 50:1159–1168CrossRef Li X, Wei J, Chai Y et al (2015) Different polyaniline/carbon nanotube composites as Pt catalyst supports for methanol electro-oxidation. J Mater Sci 50:1159–1168CrossRef
98.
Zurück zum Zitat Dresselhaus MS, Dresselhaus G, Avouris P (2001) Carbon nanotubes synthesis, structure, properties, and applications. Springer, Berlin Dresselhaus MS, Dresselhaus G, Avouris P (2001) Carbon nanotubes synthesis, structure, properties, and applications. Springer, Berlin
99.
Zurück zum Zitat Louie SG (2001) Electronic properties, junctions, and defects of carbon nanotubes. Carbon Nanotub. Springer, Berlin, pp 113–145CrossRef Louie SG (2001) Electronic properties, junctions, and defects of carbon nanotubes. Carbon Nanotub. Springer, Berlin, pp 113–145CrossRef
100.
Zurück zum Zitat Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotubes. Imperial College Press, LondonCrossRef Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotubes. Imperial College Press, LondonCrossRef
101.
Zurück zum Zitat Young PN, Kirkland IA, Briggs Andrew DG et al (2011) Resolving strain in carbon nanotubes at the atomic level. Nat Mater 10:958–962CrossRef Young PN, Kirkland IA, Briggs Andrew DG et al (2011) Resolving strain in carbon nanotubes at the atomic level. Nat Mater 10:958–962CrossRef
102.
Zurück zum Zitat Dresselhaus MS, Avouris P Introduction to Carbon Materials Research. In: Carbon Nanotub. Springer Berlin Heidelberg, Heidelberg, pp 1–9 Dresselhaus MS, Avouris P Introduction to Carbon Materials Research. In: Carbon Nanotub. Springer Berlin Heidelberg, Heidelberg, pp 1–9
103.
Zurück zum Zitat Crespi VH, Cohen ML, Rubio A (1997) In situ band gap engineering of carbon nanotubes. Phys Rev Lett 79:2093–2096CrossRef Crespi VH, Cohen ML, Rubio A (1997) In situ band gap engineering of carbon nanotubes. Phys Rev Lett 79:2093–2096CrossRef
104.
Zurück zum Zitat Odom TW, Hafner JH, Lieber CM (2001) Scanning probe microscopy studies of carbon nanotubes. Carbon Nanotub. Springer, Berlin, pp 173–211CrossRef Odom TW, Hafner JH, Lieber CM (2001) Scanning probe microscopy studies of carbon nanotubes. Carbon Nanotub. Springer, Berlin, pp 173–211CrossRef
105.
Zurück zum Zitat Ouyang M, Huang J-L, Cheung CL, Lieber CM (2001) Energy gaps in “metallic” single-walled carbon nanotubes. Science 292:702–705CrossRef Ouyang M, Huang J-L, Cheung CL, Lieber CM (2001) Energy gaps in “metallic” single-walled carbon nanotubes. Science 292:702–705CrossRef
106.
Zurück zum Zitat Zhou C, Kong J, Dai H (2000) Intrinsic electrical properties of individual single-walled carbon nanotubes with small band gaps. Phys Rev Lett 84:5604–5607CrossRef Zhou C, Kong J, Dai H (2000) Intrinsic electrical properties of individual single-walled carbon nanotubes with small band gaps. Phys Rev Lett 84:5604–5607CrossRef
107.
Zurück zum Zitat Hamada N, Sawada S, Oshiyama A (1992) New one-dimensional conductors: graphitic microtubules. Phys Rev Lett 68:1579–1581CrossRef Hamada N, Sawada S, Oshiyama A (1992) New one-dimensional conductors: graphitic microtubules. Phys Rev Lett 68:1579–1581CrossRef
108.
Zurück zum Zitat Kane CL, Mele EJ (1997) Size, shape, and low energy electronic structure of carbon nanotubes. Phys Rev Lett 78:1932–1935CrossRef Kane CL, Mele EJ (1997) Size, shape, and low energy electronic structure of carbon nanotubes. Phys Rev Lett 78:1932–1935CrossRef
109.
Zurück zum Zitat Mintmire JW, White CT (1995) Electronic and structural properties of carbon nanotubes. Carbon 33:893–902CrossRef Mintmire JW, White CT (1995) Electronic and structural properties of carbon nanotubes. Carbon 33:893–902CrossRef
110.
Zurück zum Zitat Ding JW, Yan XH, Cao JX (2002) Analytical relation of band gaps to both chirality and diameter of single-wall carbon nanotubes. Phys Rev B 66:073401CrossRef Ding JW, Yan XH, Cao JX (2002) Analytical relation of band gaps to both chirality and diameter of single-wall carbon nanotubes. Phys Rev B 66:073401CrossRef
111.
Zurück zum Zitat Dresselhaus MS, Dresselhaus G, Saito R (1992) C60-related tubules. Solid State Commun 84:201–205CrossRef Dresselhaus MS, Dresselhaus G, Saito R (1992) C60-related tubules. Solid State Commun 84:201–205CrossRef
112.
Zurück zum Zitat White CT, Robertson DH, Mintmire JW (1993) Helical and rotational symmetries of nanoscale graphitic tubules. Phys Rev B 47:5485–5488CrossRef White CT, Robertson DH, Mintmire JW (1993) Helical and rotational symmetries of nanoscale graphitic tubules. Phys Rev B 47:5485–5488CrossRef
113.
Zurück zum Zitat Hayashi T, Kim YA, Matoba T et al (2003) Smallest freestanding single-walled carbon nanotube. Nano Lett 3:887–889CrossRef Hayashi T, Kim YA, Matoba T et al (2003) Smallest freestanding single-walled carbon nanotube. Nano Lett 3:887–889CrossRef
114.
Zurück zum Zitat Weisman RB, Bachilo SM (2003) Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: an empirical Kataura plot. Nano Lett 3:1235–1238CrossRef Weisman RB, Bachilo SM (2003) Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: an empirical Kataura plot. Nano Lett 3:1235–1238CrossRef
115.
Zurück zum Zitat O’Connell MJ, Bachilo SM, Huffman CB et al (2002) Band gap fluorescence from individual single-walled carbon nanotubes. Science 297:593–596CrossRef O’Connell MJ, Bachilo SM, Huffman CB et al (2002) Band gap fluorescence from individual single-walled carbon nanotubes. Science 297:593–596CrossRef
116.
Zurück zum Zitat Arnold MS, Green AA, Hulvat JF et al (2006) Sorting carbon nanotubes by electronic structure using density differentiation. Nat Nanotechnol 1:60–65CrossRef Arnold MS, Green AA, Hulvat JF et al (2006) Sorting carbon nanotubes by electronic structure using density differentiation. Nat Nanotechnol 1:60–65CrossRef
117.
Zurück zum Zitat Ebbesen TW, Takada T (1995) Topological and SP3 defect structures in nanotubes. Carbon 33:973–978CrossRef Ebbesen TW, Takada T (1995) Topological and SP3 defect structures in nanotubes. Carbon 33:973–978CrossRef
118.
Zurück zum Zitat Lambin P, Fonseca A, Vigneron JP et al (1995) Structural and electronic properties of bent carbon nanotubes. Chem Phys Lett 245:85–89CrossRef Lambin P, Fonseca A, Vigneron JP et al (1995) Structural and electronic properties of bent carbon nanotubes. Chem Phys Lett 245:85–89CrossRef
119.
Zurück zum Zitat Saito R, Dresselhaus G, Dresselhaus MS (1996) Tunneling conductance of connected carbon nanotubes. Phys Rev B 53:2044–2050CrossRef Saito R, Dresselhaus G, Dresselhaus MS (1996) Tunneling conductance of connected carbon nanotubes. Phys Rev B 53:2044–2050CrossRef
120.
121.
Zurück zum Zitat Charlier J-C, Ebbesen TW, Lambin P (1996) Structural and electronic properties of pentagon-heptagon pair defects in carbon nanotubes. Phys Rev B 53:11108–11113CrossRef Charlier J-C, Ebbesen TW, Lambin P (1996) Structural and electronic properties of pentagon-heptagon pair defects in carbon nanotubes. Phys Rev B 53:11108–11113CrossRef
122.
Zurück zum Zitat Chico L, Crespi VH, Benedict LX et al (1996) Pure carbon nanoscale devices: nanotube heterojunctions. Phys Rev Lett 76:971–974CrossRef Chico L, Crespi VH, Benedict LX et al (1996) Pure carbon nanoscale devices: nanotube heterojunctions. Phys Rev Lett 76:971–974CrossRef
123.
Zurück zum Zitat Chico L, Benedict LX, Louie SG, Cohen ML (1996) Quantum conductance of carbon nanotubes with defects. Phys Rev B 54:2600–2606CrossRef Chico L, Benedict LX, Louie SG, Cohen ML (1996) Quantum conductance of carbon nanotubes with defects. Phys Rev B 54:2600–2606CrossRef
124.
Zurück zum Zitat Wang B, Yanfeng M, Li N et al (2010) Facile and scalable fabrication of well-aligned and closely packed single-walled carbon nanotube films on various substrates. Adv Mater 22:3067–3070CrossRef Wang B, Yanfeng M, Li N et al (2010) Facile and scalable fabrication of well-aligned and closely packed single-walled carbon nanotube films on various substrates. Adv Mater 22:3067–3070CrossRef
125.
Zurück zum Zitat Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277:1971–1975CrossRef Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277:1971–1975CrossRef
126.
Zurück zum Zitat Dufresne A, Paillet M, Putaux JL et al (2002) Processing and characterization of carbon nanotube/poly(styrene-co-butyl acrylate) nanocomposites. J Mater Sci 37:3915–3923CrossRef Dufresne A, Paillet M, Putaux JL et al (2002) Processing and characterization of carbon nanotube/poly(styrene-co-butyl acrylate) nanocomposites. J Mater Sci 37:3915–3923CrossRef
127.
Zurück zum Zitat Hsieh TH, Kinloch AJ, Taylor AC, Kinloch IA (2011) The effect of carbon nanotubes on the fracture toughness and fatigue performance of a thermosetting epoxy polymer. J Mater Sci 46:7525–7535CrossRef Hsieh TH, Kinloch AJ, Taylor AC, Kinloch IA (2011) The effect of carbon nanotubes on the fracture toughness and fatigue performance of a thermosetting epoxy polymer. J Mater Sci 46:7525–7535CrossRef
128.
Zurück zum Zitat Suhr J, Koratkar NA (2008) Energy dissipation in carbon nanotube composites: a review. J Mater Sci 43:4370–4382CrossRef Suhr J, Koratkar NA (2008) Energy dissipation in carbon nanotube composites: a review. J Mater Sci 43:4370–4382CrossRef
129.
Zurück zum Zitat Bozovic D, Bockrath M, Hafner JH et al (2003) Plastic deformations in mechanically strained single-walled carbon nanotubes. Phys Rev B 67:033407CrossRef Bozovic D, Bockrath M, Hafner JH et al (2003) Plastic deformations in mechanically strained single-walled carbon nanotubes. Phys Rev B 67:033407CrossRef
130.
Zurück zum Zitat Dieringa H (2011) Properties of magnesium alloys reinforced with nanoparticles and carbon nanotubes: a review. J Mater Sci 46:289–306CrossRef Dieringa H (2011) Properties of magnesium alloys reinforced with nanoparticles and carbon nanotubes: a review. J Mater Sci 46:289–306CrossRef
131.
Zurück zum Zitat Cho J, Boccaccini AR, Shaffer MSP (2009) Ceramic matrix composites containing carbon nanotubes. J Mater Sci 44:1934–1951CrossRef Cho J, Boccaccini AR, Shaffer MSP (2009) Ceramic matrix composites containing carbon nanotubes. J Mater Sci 44:1934–1951CrossRef
132.
Zurück zum Zitat Kathi J, Rhee KY (2008) Surface modification of multi-walled carbon nanotubes using 3-aminopropyltriethoxysilane. J Mater Sci 43:33–37CrossRef Kathi J, Rhee KY (2008) Surface modification of multi-walled carbon nanotubes using 3-aminopropyltriethoxysilane. J Mater Sci 43:33–37CrossRef
133.
Zurück zum Zitat Chen L, Chin LC, Ashby PD, Lieber CM (2004) Single-walled carbon nanotube AFM probes: optimal imaging resolution of nanoclusters and biomolecules in ambient and fluid environments. Nano Lett 4:1725–1731CrossRef Chen L, Chin LC, Ashby PD, Lieber CM (2004) Single-walled carbon nanotube AFM probes: optimal imaging resolution of nanoclusters and biomolecules in ambient and fluid environments. Nano Lett 4:1725–1731CrossRef
134.
Zurück zum Zitat Kim P, Lieber CM (1999) Nanotube nanotweezers. Science 286:2148–2150CrossRef Kim P, Lieber CM (1999) Nanotube nanotweezers. Science 286:2148–2150CrossRef
135.
Zurück zum Zitat Kim P, Shi L, Majumdar A, McEuen PL (2001) Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett 87:215502CrossRef Kim P, Shi L, Majumdar A, McEuen PL (2001) Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett 87:215502CrossRef
136.
Zurück zum Zitat Yao Z, Wang J-S, Li B, Liu G-R (2005) Thermal conduction of carbon nanotubes using molecular dynamics. Phys Rev B 71:085417CrossRef Yao Z, Wang J-S, Li B, Liu G-R (2005) Thermal conduction of carbon nanotubes using molecular dynamics. Phys Rev B 71:085417CrossRef
137.
Zurück zum Zitat Iijima S (2002) Carbon nanotubes: past, present, and future. Phys B Condens Matter 323:1–5CrossRef Iijima S (2002) Carbon nanotubes: past, present, and future. Phys B Condens Matter 323:1–5CrossRef
138.
Zurück zum Zitat Bajpai A, Gorantla S, Löffler M et al (2012) The filling of carbon nanotubes with magnetoelectric Cr2O3. Carbon 50:1706–1709CrossRef Bajpai A, Gorantla S, Löffler M et al (2012) The filling of carbon nanotubes with magnetoelectric Cr2O3. Carbon 50:1706–1709CrossRef
139.
Zurück zum Zitat Cichocka MO, Zhao J, Bachmatiuk A et al (2014) In situ observations of Pt nanoparticles coalescing inside carbon nanotubes. RSC Adv 4:49442–49445CrossRef Cichocka MO, Zhao J, Bachmatiuk A et al (2014) In situ observations of Pt nanoparticles coalescing inside carbon nanotubes. RSC Adv 4:49442–49445CrossRef
140.
Zurück zum Zitat Gorantla S, Börrnert F, Bachmatiuk A et al (2010) In situ observations of fullerene fusion and ejection in carbon nanotubes. Nanoscale 2:2077CrossRef Gorantla S, Börrnert F, Bachmatiuk A et al (2010) In situ observations of fullerene fusion and ejection in carbon nanotubes. Nanoscale 2:2077CrossRef
141.
Zurück zum Zitat Pohl D, Schäffel F, Rümmeli MH et al (2011) Understanding the metal-carbon interface in FePt catalyzed carbon nanotubes. Phys Rev Lett 107:185501CrossRef Pohl D, Schäffel F, Rümmeli MH et al (2011) Understanding the metal-carbon interface in FePt catalyzed carbon nanotubes. Phys Rev Lett 107:185501CrossRef
142.
Zurück zum Zitat Dillon AC, Jones KM, Bekkedahl TA et al (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature 386:377–379CrossRef Dillon AC, Jones KM, Bekkedahl TA et al (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature 386:377–379CrossRef
143.
Zurück zum Zitat Liu C, Chen Y, Wu C-Z et al (2010) Hydrogen storage in carbon nanotubes revisited. Carbon 48:452–455CrossRef Liu C, Chen Y, Wu C-Z et al (2010) Hydrogen storage in carbon nanotubes revisited. Carbon 48:452–455CrossRef
144.
Zurück zum Zitat Schlapbach L, Züttel A (2001) Hydrogen-storage materials for mobile applications. Nature 414:353–358CrossRef Schlapbach L, Züttel A (2001) Hydrogen-storage materials for mobile applications. Nature 414:353–358CrossRef
145.
Zurück zum Zitat Wang Q, Johnson JK (1999) Molecular simulation of hydrogen adsorption in single-walled carbon nanotubes and idealized carbon slit pores. J Chem Phys 110:577CrossRef Wang Q, Johnson JK (1999) Molecular simulation of hydrogen adsorption in single-walled carbon nanotubes and idealized carbon slit pores. J Chem Phys 110:577CrossRef
146.
Zurück zum Zitat Byl O, Kondratyuk P, Yates JT (2003) Adsorption and dimerization of NO inside single-walled carbon nanotubes an infrared spectroscopic study. J Phys Chem B 107:4277–4279CrossRef Byl O, Kondratyuk P, Yates JT (2003) Adsorption and dimerization of NO inside single-walled carbon nanotubes an infrared spectroscopic study. J Phys Chem B 107:4277–4279CrossRef
147.
Zurück zum Zitat Fujiwara A, Ishii K, Suematsu H et al (2001) Gas adsorption in the inside and outside of single-walled carbon nanotubes. Chem Phys Lett 336:205–211CrossRef Fujiwara A, Ishii K, Suematsu H et al (2001) Gas adsorption in the inside and outside of single-walled carbon nanotubes. Chem Phys Lett 336:205–211CrossRef
148.
Zurück zum Zitat Kuznetsova A, Yates JT, Liu J, Smalley RE (2000) Physical adsorption of xenon in open single walled carbon nanotubes: observation of a quasi-one-dimensional confined Xe phase. J Chem Phys 112:9590CrossRef Kuznetsova A, Yates JT, Liu J, Smalley RE (2000) Physical adsorption of xenon in open single walled carbon nanotubes: observation of a quasi-one-dimensional confined Xe phase. J Chem Phys 112:9590CrossRef
149.
Zurück zum Zitat Shiomi J, Maruyama S (2009) Water transport inside a single-walled carbon nanotube driven by a temperature gradient. Nanotechnology 20:055708CrossRef Shiomi J, Maruyama S (2009) Water transport inside a single-walled carbon nanotube driven by a temperature gradient. Nanotechnology 20:055708CrossRef
150.
Zurück zum Zitat Noy A, Park HG, Fornasiero F et al (2007) Nanofluidics in carbon nanotubes. Nano Today 2:22–29CrossRef Noy A, Park HG, Fornasiero F et al (2007) Nanofluidics in carbon nanotubes. Nano Today 2:22–29CrossRef
151.
Zurück zum Zitat Maniwa Y, Matsuda K, Kyakuno H et al (2007) Water-filled single-wall carbon nanotubes as molecular nanovalves. Nat Mater 6:135–141CrossRef Maniwa Y, Matsuda K, Kyakuno H et al (2007) Water-filled single-wall carbon nanotubes as molecular nanovalves. Nat Mater 6:135–141CrossRef
152.
Zurück zum Zitat Zhao Y, Song L, Deng K et al (2008) Individual water-filled single-walled carbon nanotubes as hydroelectric power converters. Adv Mater 20:1772–1776CrossRef Zhao Y, Song L, Deng K et al (2008) Individual water-filled single-walled carbon nanotubes as hydroelectric power converters. Adv Mater 20:1772–1776CrossRef
153.
Zurück zum Zitat Maniwa Y, Kataura H, Abe M et al (2005) Ordered water inside carbon nanotubes: formation of pentagonal to octagonal ice-nanotubes. Chem Phys Lett 401:534–538CrossRef Maniwa Y, Kataura H, Abe M et al (2005) Ordered water inside carbon nanotubes: formation of pentagonal to octagonal ice-nanotubes. Chem Phys Lett 401:534–538CrossRef
154.
Zurück zum Zitat Koga K, Gao GT, Tanaka H, Zeng XC (2001) Formation of ordered ice nanotubes inside carbon nanotubes. Nature 412:802–805CrossRef Koga K, Gao GT, Tanaka H, Zeng XC (2001) Formation of ordered ice nanotubes inside carbon nanotubes. Nature 412:802–805CrossRef
155.
Zurück zum Zitat Pan X, Fan Z, Chen W et al (2007) Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles. Nat Mater 6:507–511CrossRef Pan X, Fan Z, Chen W et al (2007) Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles. Nat Mater 6:507–511CrossRef
156.
Zurück zum Zitat Tessonnier J-P, Pesant L, Ehret G et al (2005) Pd nanoparticles introduced inside multi-walled carbon nanotubes for selective hydrogenation of cinnamaldehyde into hydrocinnamaldehyde. Appl Catal A Gen 288:203–210CrossRef Tessonnier J-P, Pesant L, Ehret G et al (2005) Pd nanoparticles introduced inside multi-walled carbon nanotubes for selective hydrogenation of cinnamaldehyde into hydrocinnamaldehyde. Appl Catal A Gen 288:203–210CrossRef
157.
Zurück zum Zitat Yoshitake T, Shimakawa Y, Kuroshima S et al (2002) Preparation of fine platinum catalyst supported on single-wall carbon nanohorns for fuel cell application. Phys B Condens Matter 323:124–126CrossRef Yoshitake T, Shimakawa Y, Kuroshima S et al (2002) Preparation of fine platinum catalyst supported on single-wall carbon nanohorns for fuel cell application. Phys B Condens Matter 323:124–126CrossRef
158.
Zurück zum Zitat Shiozawa H, Pichler T, Grüneis A et al (2008) A catalytic reaction inside a single-walled carbon nanotube. Adv Mater 20:1443–1449CrossRef Shiozawa H, Pichler T, Grüneis A et al (2008) A catalytic reaction inside a single-walled carbon nanotube. Adv Mater 20:1443–1449CrossRef
159.
Zurück zum Zitat Pan X, Bao X (2011) The effects of confinement inside carbon nanotubes on catalysis. Acc Chem Res 44:553–562CrossRef Pan X, Bao X (2011) The effects of confinement inside carbon nanotubes on catalysis. Acc Chem Res 44:553–562CrossRef
160.
Zurück zum Zitat Chen W, Fan Z, Gu L et al (2010) Enhanced capacitance of manganese oxide via confinement inside carbon nanotubes. Chem Commun 46:3905CrossRef Chen W, Fan Z, Gu L et al (2010) Enhanced capacitance of manganese oxide via confinement inside carbon nanotubes. Chem Commun 46:3905CrossRef
161.
Zurück zum Zitat Yang C-K, Zhao J, Lu JP (2003) Magnetism of transition-metal/carbon-nanotube hybrid structures. Phys Rev Lett 90:257203CrossRef Yang C-K, Zhao J, Lu JP (2003) Magnetism of transition-metal/carbon-nanotube hybrid structures. Phys Rev Lett 90:257203CrossRef
162.
Zurück zum Zitat Hirahara K, Suenaga K, Bandow S et al (2000) One-dimensional metallofullerene crystal generated inside single-walled carbon nanotubes. Phys Rev Lett 85:5384–5387CrossRef Hirahara K, Suenaga K, Bandow S et al (2000) One-dimensional metallofullerene crystal generated inside single-walled carbon nanotubes. Phys Rev Lett 85:5384–5387CrossRef
163.
Zurück zum Zitat Gao H, Kong Y, Cui D, Ozkan CS (2003) Spontaneous insertion of DNA oligonucleotides into carbon nanotubes. Nano Lett 3:471–473CrossRef Gao H, Kong Y, Cui D, Ozkan CS (2003) Spontaneous insertion of DNA oligonucleotides into carbon nanotubes. Nano Lett 3:471–473CrossRef
164.
Zurück zum Zitat Liu Z, Yanagi K, Suenaga K et al (2007) Imaging the dynamic behaviour of individual retinal chromophores confined inside carbon nanotubes. Nat Nanotechnol 2:422–425CrossRef Liu Z, Yanagi K, Suenaga K et al (2007) Imaging the dynamic behaviour of individual retinal chromophores confined inside carbon nanotubes. Nat Nanotechnol 2:422–425CrossRef
165.
Zurück zum Zitat Kong J, Chapline MG, Dai H (2001) Functionalized carbon nanotubes for molecular hydrogen sensors. Adv Mater 13:1384–1386CrossRef Kong J, Chapline MG, Dai H (2001) Functionalized carbon nanotubes for molecular hydrogen sensors. Adv Mater 13:1384–1386CrossRef
166.
Zurück zum Zitat Chen RJ, Zhang Y, Wang D, Dai H (2001) Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc 123:3838–3839CrossRef Chen RJ, Zhang Y, Wang D, Dai H (2001) Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc 123:3838–3839CrossRef
167.
Zurück zum Zitat Chen RJ, Bangsaruntip S, Drouvalakis KA et al (2003) Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc Natl Acad Sci 100:4984–4989CrossRef Chen RJ, Bangsaruntip S, Drouvalakis KA et al (2003) Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc Natl Acad Sci 100:4984–4989CrossRef
168.
Zurück zum Zitat Lieber CM, Wong SS, Joselevich E et al (1998) Covalently functionalized nanotubes as nanometre- sized probes in chemistry and biology. Nature 394:52–55CrossRef Lieber CM, Wong SS, Joselevich E et al (1998) Covalently functionalized nanotubes as nanometre- sized probes in chemistry and biology. Nature 394:52–55CrossRef
169.
Zurück zum Zitat Hain TC, Kröker K, Stich DG, Hertel T (2012) Influence of DNA conformation on the dispersion of SWNTs: single-strand DNA versus hairpin DNA. Soft Matter 8:2820CrossRef Hain TC, Kröker K, Stich DG, Hertel T (2012) Influence of DNA conformation on the dispersion of SWNTs: single-strand DNA versus hairpin DNA. Soft Matter 8:2820CrossRef
170.
Zurück zum Zitat Sun H, She P, Lu G et al (2014) Recent advances in the development of functionalized carbon nanotubes: a versatile vector for drug delivery. J Mater Sci 49:6845–6854CrossRef Sun H, She P, Lu G et al (2014) Recent advances in the development of functionalized carbon nanotubes: a versatile vector for drug delivery. J Mater Sci 49:6845–6854CrossRef
171.
Zurück zum Zitat Ayala P, Plank W, Grüneis A et al (2008) A one step approach to B-doped single-walled carbon nanotubes. J Mater Chem 18:5676–5681CrossRef Ayala P, Plank W, Grüneis A et al (2008) A one step approach to B-doped single-walled carbon nanotubes. J Mater Chem 18:5676–5681CrossRef
172.
Zurück zum Zitat Gong K, Du F, Xia Z et al (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323:760–764CrossRef Gong K, Du F, Xia Z et al (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323:760–764CrossRef
173.
Zurück zum Zitat Yu D, Zhang Q, Dai L (2010) Highly efficient metal-free growth of nitrogen-doped single-walled carbon nanotubes on plasma-etched substrates for oxygen reduction. J Am Chem Soc 132:15127–15129CrossRef Yu D, Zhang Q, Dai L (2010) Highly efficient metal-free growth of nitrogen-doped single-walled carbon nanotubes on plasma-etched substrates for oxygen reduction. J Am Chem Soc 132:15127–15129CrossRef
174.
Zurück zum Zitat Chopra NG, Luyken RJ, Cherrey K et al (1995) Boron nitride nanotubes. Science 269:966–967CrossRef Chopra NG, Luyken RJ, Cherrey K et al (1995) Boron nitride nanotubes. Science 269:966–967CrossRef
175.
Zurück zum Zitat Gonzalez-Martinez IG, Gorantla SM, Bachmatiuk A et al (2014) Room temperature in situ growth of B/BOx nanowires and BOx nanotubes. Nano Lett 14:799–805CrossRef Gonzalez-Martinez IG, Gorantla SM, Bachmatiuk A et al (2014) Room temperature in situ growth of B/BOx nanowires and BOx nanotubes. Nano Lett 14:799–805CrossRef
176.
Zurück zum Zitat Lourie OR, Jones CR, Bartlett BM et al (2000) CVD growth of boron nitride nanotubes. Chem Mater 12:1808–1810CrossRef Lourie OR, Jones CR, Bartlett BM et al (2000) CVD growth of boron nitride nanotubes. Chem Mater 12:1808–1810CrossRef
177.
Zurück zum Zitat Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef
178.
Zurück zum Zitat Makharza S, Cirillo G, Bachmatiuk A et al (2013) Graphene oxide-based drug delivery vehicles: functionalization, characterization, and cytotoxicity evaluation. J Nanoparticle Res 15:2099CrossRef Makharza S, Cirillo G, Bachmatiuk A et al (2013) Graphene oxide-based drug delivery vehicles: functionalization, characterization, and cytotoxicity evaluation. J Nanoparticle Res 15:2099CrossRef
179.
Zurück zum Zitat Stankovich S, Dikin AD, Piner DR et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRef Stankovich S, Dikin AD, Piner DR et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRef
180.
Zurück zum Zitat Tamboli SH, Kim BS, Choi G et al (2014) Post-heating effects on the physical and electrochemical capacitive properties of reduced graphene oxide paper. J Mater Chem A 2:5077CrossRef Tamboli SH, Kim BS, Choi G et al (2014) Post-heating effects on the physical and electrochemical capacitive properties of reduced graphene oxide paper. J Mater Chem A 2:5077CrossRef
181.
Zurück zum Zitat Liang YT, Hersam MC (2010) Highly concentrated graphene solutions via polymer enhanced solvent exfoliation and iterative solvent exchange. J Am Chem Soc 132:17661–17663CrossRef Liang YT, Hersam MC (2010) Highly concentrated graphene solutions via polymer enhanced solvent exfoliation and iterative solvent exchange. J Am Chem Soc 132:17661–17663CrossRef
182.
Zurück zum Zitat Wang J, Manga KK, Bao Q, Loh KP (2011) High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte. J Am Chem Soc 133:8888–8891CrossRef Wang J, Manga KK, Bao Q, Loh KP (2011) High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte. J Am Chem Soc 133:8888–8891CrossRef
183.
Zurück zum Zitat Jiao L, Zhang L, Ding L et al (2010) Aligned graphene nanoribbons and crossbars from unzipped carbon nanotubes. Nano Res 3:387–394CrossRef Jiao L, Zhang L, Ding L et al (2010) Aligned graphene nanoribbons and crossbars from unzipped carbon nanotubes. Nano Res 3:387–394CrossRef
184.
Zurück zum Zitat Li X, Wang X, Zhang L et al (2008) Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319:1229–1232CrossRef Li X, Wang X, Zhang L et al (2008) Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319:1229–1232CrossRef
185.
Zurück zum Zitat Cai J, Ruffieux P, Jaafar R et al (2010) Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466:470–473CrossRef Cai J, Ruffieux P, Jaafar R et al (2010) Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466:470–473CrossRef
186.
Zurück zum Zitat Emtsev KV, Speck F, Seyller T et al (2008) Interaction, growth, and ordering of epitaxial graphene on SiC{0001} surfaces: a comparative photoelectron spectroscopy study. Phys Rev B 77:155303CrossRef Emtsev KV, Speck F, Seyller T et al (2008) Interaction, growth, and ordering of epitaxial graphene on SiC{0001} surfaces: a comparative photoelectron spectroscopy study. Phys Rev B 77:155303CrossRef
187.
Zurück zum Zitat Emtsev KV, Bostwick A, Horn K et al (2009) Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat Mater 8:203–207CrossRef Emtsev KV, Bostwick A, Horn K et al (2009) Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat Mater 8:203–207CrossRef
188.
Zurück zum Zitat Dai B, Fu L, Zou Z et al (2011) Rational design of a binary metal alloy for chemical vapour deposition growth of uniform single-layer graphene. Nat Commun 2:522CrossRef Dai B, Fu L, Zou Z et al (2011) Rational design of a binary metal alloy for chemical vapour deposition growth of uniform single-layer graphene. Nat Commun 2:522CrossRef
189.
Zurück zum Zitat Liu X, Fu L, Liu N et al (2011) Segregation growth of graphene on Cu-Ni alloy for precise layer control. J Phys Chem C 115:11976–11982CrossRef Liu X, Fu L, Liu N et al (2011) Segregation growth of graphene on Cu-Ni alloy for precise layer control. J Phys Chem C 115:11976–11982CrossRef
190.
Zurück zum Zitat Rümmeli MH, Zeng M, Melkhanova S et al (2013) Insights into the early growth of homogeneous single-layer graphene over Ni-Mo binary substrates. Chem Mater 25:3880–3887CrossRef Rümmeli MH, Zeng M, Melkhanova S et al (2013) Insights into the early growth of homogeneous single-layer graphene over Ni-Mo binary substrates. Chem Mater 25:3880–3887CrossRef
191.
Zurück zum Zitat Zou Z, Fu L, Song X et al (2014) Carbide-forming groups IVB-VIB metals: a new territory in the periodic table for CVD growth of graphene. Nano Lett 14:3832–3839CrossRef Zou Z, Fu L, Song X et al (2014) Carbide-forming groups IVB-VIB metals: a new territory in the periodic table for CVD growth of graphene. Nano Lett 14:3832–3839CrossRef
192.
Zurück zum Zitat Pang J, Bachmatiuk A, Fu L et al (2015) Direct synthesis of graphene from adsorbed organic solvent molecules over copper. RSC Adv 5:60884–60891CrossRef Pang J, Bachmatiuk A, Fu L et al (2015) Direct synthesis of graphene from adsorbed organic solvent molecules over copper. RSC Adv 5:60884–60891CrossRef
193.
Zurück zum Zitat Mendes RG, Bachmatiuk A, El-Gendy AA et al (2012) A Facile route to coat iron oxide nanoparticles with few-layer graphene. J Phys Chem C 116:23749–23756CrossRef Mendes RG, Bachmatiuk A, El-Gendy AA et al (2012) A Facile route to coat iron oxide nanoparticles with few-layer graphene. J Phys Chem C 116:23749–23756CrossRef
194.
Zurück zum Zitat Li X, Cai W, An J et al (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312–1314CrossRef Li X, Cai W, An J et al (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312–1314CrossRef
195.
Zurück zum Zitat Pang J, Bachmatiuk A, Fu L et al (2015) Oxidation as a means to remove surface contaminants on Cu foil prior to graphene growth by chemical vapor deposition. J Phys Chem C 119:13363–13368CrossRef Pang J, Bachmatiuk A, Fu L et al (2015) Oxidation as a means to remove surface contaminants on Cu foil prior to graphene growth by chemical vapor deposition. J Phys Chem C 119:13363–13368CrossRef
196.
Zurück zum Zitat Rümmeli MH, Gorantla S, Bachmatiuk A et al (2013) On the role of vapor trapping for chemical vapor deposition (CVD) grown graphene over copper. Chem Mater 25:4861–4866CrossRef Rümmeli MH, Gorantla S, Bachmatiuk A et al (2013) On the role of vapor trapping for chemical vapor deposition (CVD) grown graphene over copper. Chem Mater 25:4861–4866CrossRef
197.
Zurück zum Zitat Riikonen J, Kim W, Li C et al (2013) Photo-thermal chemical vapor deposition of graphene on copper. Carbon 62:43–50CrossRef Riikonen J, Kim W, Li C et al (2013) Photo-thermal chemical vapor deposition of graphene on copper. Carbon 62:43–50CrossRef
198.
Zurück zum Zitat Kim SM, Hsu A, Lee Y et al (2013) The effect of copper pre-cleaning on graphene synthesis. Nanotechnology 24:365602CrossRef Kim SM, Hsu A, Lee Y et al (2013) The effect of copper pre-cleaning on graphene synthesis. Nanotechnology 24:365602CrossRef
199.
Zurück zum Zitat Hao Y, Bharathi MS, Wang L et al (2013) The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 342:720–723CrossRef Hao Y, Bharathi MS, Wang L et al (2013) The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 342:720–723CrossRef
200.
Zurück zum Zitat Luo Z, Lu Y, Singer DW et al (2011) Effect of substrate roughness and feedstock concentration on growth of wafer-scale graphene at atmospheric pressure. Chem Mater 23:1441–1447CrossRef Luo Z, Lu Y, Singer DW et al (2011) Effect of substrate roughness and feedstock concentration on growth of wafer-scale graphene at atmospheric pressure. Chem Mater 23:1441–1447CrossRef
201.
Zurück zum Zitat Procházka P, Mach J, Bischoff D et al (2014) Ultrasmooth metallic foils for growth of high quality graphene by chemical vapor deposition. Nanotechnology 25:185601CrossRef Procházka P, Mach J, Bischoff D et al (2014) Ultrasmooth metallic foils for growth of high quality graphene by chemical vapor deposition. Nanotechnology 25:185601CrossRef
202.
Zurück zum Zitat Eres G, Regmi M, Rouleau CM et al (2014) Cooperative island growth of large-area single-crystal graphene on copper using chemical vapor deposition. ACS Nano 8:5657–5669CrossRef Eres G, Regmi M, Rouleau CM et al (2014) Cooperative island growth of large-area single-crystal graphene on copper using chemical vapor deposition. ACS Nano 8:5657–5669CrossRef
203.
Zurück zum Zitat Tan L, Zeng M, Zhang T, Fu L (2015) Design of catalytic substrates for uniform graphene films: from solid-metal to liquid-metal. Nanoscale 7:9105–9121CrossRef Tan L, Zeng M, Zhang T, Fu L (2015) Design of catalytic substrates for uniform graphene films: from solid-metal to liquid-metal. Nanoscale 7:9105–9121CrossRef
204.
Zurück zum Zitat Zeng M, Tan L, Wang J et al (2014) Liquid metal: an innovative solution to uniform graphene films. Chem Mater 26:3637–3643CrossRef Zeng M, Tan L, Wang J et al (2014) Liquid metal: an innovative solution to uniform graphene films. Chem Mater 26:3637–3643CrossRef
205.
Zurück zum Zitat Magnuson CW, Kong X, Ji H et al (2014) Copper oxide as a “self-cleaning” substrate for graphene growth. J Mater Res 29:403–409CrossRef Magnuson CW, Kong X, Ji H et al (2014) Copper oxide as a “self-cleaning” substrate for graphene growth. J Mater Res 29:403–409CrossRef
206.
Zurück zum Zitat Vlassiouk I, Regmi M, Fulvio P et al (2011) Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS Nano 5:6069–6076CrossRef Vlassiouk I, Regmi M, Fulvio P et al (2011) Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS Nano 5:6069–6076CrossRef
207.
Zurück zum Zitat Han GH, Güneş F, Bae JJ et al (2011) Influence of copper morphology in forming nucleation seeds for graphene growth. Nano Lett 11:4144–4148CrossRef Han GH, Güneş F, Bae JJ et al (2011) Influence of copper morphology in forming nucleation seeds for graphene growth. Nano Lett 11:4144–4148CrossRef
208.
Zurück zum Zitat Kim KSKS, Zhao Y, Jang H et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710CrossRef Kim KSKS, Zhao Y, Jang H et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710CrossRef
209.
Zurück zum Zitat Tan L, Zeng M, Wu Q et al (2015) Direct growth of ultrafast transparent single-layer graphene defoggers. Small 11:1840–1846CrossRef Tan L, Zeng M, Wu Q et al (2015) Direct growth of ultrafast transparent single-layer graphene defoggers. Small 11:1840–1846CrossRef
210.
Zurück zum Zitat Chen J, Wen Y, Guo Y et al (2011) Oxygen-aided synthesis of polycrystalline graphene on silicon dioxide substrates. J Am Chem Soc 133:17548–17551CrossRef Chen J, Wen Y, Guo Y et al (2011) Oxygen-aided synthesis of polycrystalline graphene on silicon dioxide substrates. J Am Chem Soc 133:17548–17551CrossRef
211.
Zurück zum Zitat Sutter P, Hybertsen MS, Sadowski JT, Sutter E (2009) Electronic structure of few-layer epitaxial graphene on Ru(0001). Nano Lett 9:2654–2660CrossRef Sutter P, Hybertsen MS, Sadowski JT, Sutter E (2009) Electronic structure of few-layer epitaxial graphene on Ru(0001). Nano Lett 9:2654–2660CrossRef
212.
Zurück zum Zitat Ramón ME, Gupta A, Corbet C et al (2011) CMOS-compatible synthesis of large-area, high-mobility graphene by chemical vapor deposition of acetylene on cobalt thin films. ACS Nano 5:7198–7204CrossRef Ramón ME, Gupta A, Corbet C et al (2011) CMOS-compatible synthesis of large-area, high-mobility graphene by chemical vapor deposition of acetylene on cobalt thin films. ACS Nano 5:7198–7204CrossRef
213.
Zurück zum Zitat An H, Lee W-J, Jung J (2011) Graphene synthesis on Fe foil using thermal CVD. Curr Appl Phys 11:S81–S85CrossRef An H, Lee W-J, Jung J (2011) Graphene synthesis on Fe foil using thermal CVD. Curr Appl Phys 11:S81–S85CrossRef
214.
Zurück zum Zitat John R, Ashokreddy A, Vijayan C, Pradeep T (2011) Single- and few-layer graphene growth on stainless steel substrates by direct thermal chemical vapor deposition. Nanotechnology 22:165701CrossRef John R, Ashokreddy A, Vijayan C, Pradeep T (2011) Single- and few-layer graphene growth on stainless steel substrates by direct thermal chemical vapor deposition. Nanotechnology 22:165701CrossRef
215.
Zurück zum Zitat Kiraly B, Iski EV, Mannix AJ et al (2013) Solid-source growth and atomic-scale characterization of graphene on Ag(111). Nat Commun 4:2804CrossRef Kiraly B, Iski EV, Mannix AJ et al (2013) Solid-source growth and atomic-scale characterization of graphene on Ag(111). Nat Commun 4:2804CrossRef
216.
Zurück zum Zitat Reina A, Jia X, Ho J et al (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9:30–35CrossRef Reina A, Jia X, Ho J et al (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9:30–35CrossRef
217.
Zurück zum Zitat Reina A, Thiele S, Jia X et al (2009) Growth of large-area single- and Bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Res 2:509–516CrossRef Reina A, Thiele S, Jia X et al (2009) Growth of large-area single- and Bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Res 2:509–516CrossRef
218.
Zurück zum Zitat Li X, Cai W, Colombo L et al (2009) Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett 9:4268–4272CrossRef Li X, Cai W, Colombo L et al (2009) Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett 9:4268–4272CrossRef
219.
Zurück zum Zitat Bae S, Kim H, Lee Y et al (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5:574–578CrossRef Bae S, Kim H, Lee Y et al (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5:574–578CrossRef
220.
Zurück zum Zitat Tao L, Lee J, Chou H et al (2012) Synthesis of high quality monolayer graphene at reduced temperature on hydrogen-enriched evaporated copper (111) films. ACS Nano 6:2319–2325CrossRef Tao L, Lee J, Chou H et al (2012) Synthesis of high quality monolayer graphene at reduced temperature on hydrogen-enriched evaporated copper (111) films. ACS Nano 6:2319–2325CrossRef
221.
Zurück zum Zitat Ismach A, Druzgalski C, Penwell S et al (2010) Direct chemical vapor deposition of graphene on dielectric surfaces. Nano Lett 10:1542–1548CrossRef Ismach A, Druzgalski C, Penwell S et al (2010) Direct chemical vapor deposition of graphene on dielectric surfaces. Nano Lett 10:1542–1548CrossRef
222.
Zurück zum Zitat Chen J, Guo Y, Jiang L et al (2014) Near-equilibrium chemical vapor deposition of high-quality single-crystal graphene directly on various dielectric substrates. Adv Mater 26:1348–1353CrossRef Chen J, Guo Y, Jiang L et al (2014) Near-equilibrium chemical vapor deposition of high-quality single-crystal graphene directly on various dielectric substrates. Adv Mater 26:1348–1353CrossRef
223.
Zurück zum Zitat Hwang J, Kim M, Campbell D et al (2013) Van der waals epitaxial growth of graphene on sapphire by chemical vapor deposition without a metal catalyst. ACS Nano 7:385–395CrossRef Hwang J, Kim M, Campbell D et al (2013) Van der waals epitaxial growth of graphene on sapphire by chemical vapor deposition without a metal catalyst. ACS Nano 7:385–395CrossRef
224.
Zurück zum Zitat Chen J, Guo Y, Wen Y et al (2013) Two-stage metal-catalyst-free growth of high-quality polycrystalline graphene films on silicon nitride substrates. Adv Mater 25:992–997CrossRef Chen J, Guo Y, Wen Y et al (2013) Two-stage metal-catalyst-free growth of high-quality polycrystalline graphene films on silicon nitride substrates. Adv Mater 25:992–997CrossRef
225.
Zurück zum Zitat Rümmeli MH, Bachmatiuk A, Scott A et al (2010) Direct low-temperature nanographene cvd synthesis over a dielectric insulator. ACS Nano 4:4206–4210CrossRef Rümmeli MH, Bachmatiuk A, Scott A et al (2010) Direct low-temperature nanographene cvd synthesis over a dielectric insulator. ACS Nano 4:4206–4210CrossRef
226.
Zurück zum Zitat Ding X, Ding G, Xie X et al (2011) Direct growth of few layer graphene on hexagonal boron nitride by chemical vapor deposition. Carbon 49:2522–2525CrossRef Ding X, Ding G, Xie X et al (2011) Direct growth of few layer graphene on hexagonal boron nitride by chemical vapor deposition. Carbon 49:2522–2525CrossRef
227.
Zurück zum Zitat Garcia JM, Wurstbauer U, Levy A et al (2012) Graphene growth on h-BN by molecular beam epitaxy. Solid State Commun 152:975–978CrossRef Garcia JM, Wurstbauer U, Levy A et al (2012) Graphene growth on h-BN by molecular beam epitaxy. Solid State Commun 152:975–978CrossRef
228.
Zurück zum Zitat Tang S, Ding G, Xie X et al (2012) Nucleation and growth of single crystal graphene on hexagonal boron nitride. Carbon 50:329–331CrossRef Tang S, Ding G, Xie X et al (2012) Nucleation and growth of single crystal graphene on hexagonal boron nitride. Carbon 50:329–331CrossRef
229.
Zurück zum Zitat Chugh S, Mehta R, Lu N et al (2015) Comparison of graphene growth on arbitrary non-catalytic substrates using low-temperature PECVD. Carbon 93:393–399CrossRef Chugh S, Mehta R, Lu N et al (2015) Comparison of graphene growth on arbitrary non-catalytic substrates using low-temperature PECVD. Carbon 93:393–399CrossRef
230.
Zurück zum Zitat Kato T, Hatakeyama R (2012) Direct growth of doping-density-controlled hexagonal graphene on SiO2 substrate by rapid-heating plasma CVD. ACS Nano 6:8508–8515CrossRef Kato T, Hatakeyama R (2012) Direct growth of doping-density-controlled hexagonal graphene on SiO2 substrate by rapid-heating plasma CVD. ACS Nano 6:8508–8515CrossRef
231.
Zurück zum Zitat Li X, Magnuson CW, Venugopal A et al (2011) Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J Am Chem Soc 133:2816–2819CrossRef Li X, Magnuson CW, Venugopal A et al (2011) Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J Am Chem Soc 133:2816–2819CrossRef
232.
Zurück zum Zitat Li X, Magnuson CW, Venugopal A et al (2010) Graphene films with large domain size by a two-step chemical vapor deposition process. Nano Lett 10:4328–4334CrossRef Li X, Magnuson CW, Venugopal A et al (2010) Graphene films with large domain size by a two-step chemical vapor deposition process. Nano Lett 10:4328–4334CrossRef
233.
Zurück zum Zitat Mehdipour H, Ostrikov K (2012) Kinetics of low-pressure, low-temperature graphene growth: toward single-layer, single-crystalline structure. ACS Nano 6:10276–10286CrossRef Mehdipour H, Ostrikov K (2012) Kinetics of low-pressure, low-temperature graphene growth: toward single-layer, single-crystalline structure. ACS Nano 6:10276–10286CrossRef
234.
Zurück zum Zitat Radhakrishnan G, Adams PM, Stapleton AD et al (2011) Large single-crystal monolayer graphene by decomposition of methanol. Appl Phys A 105:31–37CrossRef Radhakrishnan G, Adams PM, Stapleton AD et al (2011) Large single-crystal monolayer graphene by decomposition of methanol. Appl Phys A 105:31–37CrossRef
235.
Zurück zum Zitat Gadipelli S, Calizo I, Ford J et al (2011) A highly practical route for large-area, single layer graphene from liquid carbon sources such as benzene and methanol. J Mater Chem 21:16057CrossRef Gadipelli S, Calizo I, Ford J et al (2011) A highly practical route for large-area, single layer graphene from liquid carbon sources such as benzene and methanol. J Mater Chem 21:16057CrossRef
236.
Zurück zum Zitat Paul RK, Badhulika S, Niyogi S et al (2011) The production of oxygenated polycrystalline graphene by one-step ethanol-chemical vapor deposition. Carbon 49:3789–3795CrossRef Paul RK, Badhulika S, Niyogi S et al (2011) The production of oxygenated polycrystalline graphene by one-step ethanol-chemical vapor deposition. Carbon 49:3789–3795CrossRef
237.
Zurück zum Zitat Zhao P, Hou B, Chen X et al (2013) Investigation of non-segregation graphene growth on Ni via isotope-labeled alcohol catalytic chemical vapor deposition. Nanoscale 5:6530CrossRef Zhao P, Hou B, Chen X et al (2013) Investigation of non-segregation graphene growth on Ni via isotope-labeled alcohol catalytic chemical vapor deposition. Nanoscale 5:6530CrossRef
238.
Zurück zum Zitat Guermoune A, Chari T, Popescu F et al (2011) Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors. Carbon 49:4204–4210CrossRef Guermoune A, Chari T, Popescu F et al (2011) Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors. Carbon 49:4204–4210CrossRef
239.
Zurück zum Zitat Myint M, Yan Y, Chen JG (2014) Reaction pathways of propanal and 1-propanol on Fe/Ni(111) and Cu/Ni(111) bimetallic surfaces. J Phys Chem C 118:11340–11349CrossRef Myint M, Yan Y, Chen JG (2014) Reaction pathways of propanal and 1-propanol on Fe/Ni(111) and Cu/Ni(111) bimetallic surfaces. J Phys Chem C 118:11340–11349CrossRef
240.
Zurück zum Zitat Lisi N, Buonocore F, Dikonimos T et al (2014) Rapid and highly efficient growth of graphene on copper by chemical vapor deposition of ethanol. Thin Solid Films 571:139–144CrossRef Lisi N, Buonocore F, Dikonimos T et al (2014) Rapid and highly efficient growth of graphene on copper by chemical vapor deposition of ethanol. Thin Solid Films 571:139–144CrossRef
241.
Zurück zum Zitat Dong X, Wang P, Fang W et al (2011) Growth of large-sized graphene thin-films by liquid precursor-based chemical vapor deposition under atmospheric pressure. Carbon 49:3672–3678CrossRef Dong X, Wang P, Fang W et al (2011) Growth of large-sized graphene thin-films by liquid precursor-based chemical vapor deposition under atmospheric pressure. Carbon 49:3672–3678CrossRef
242.
Zurück zum Zitat Gao H, Liu Z, Song L et al (2012) Synthesis of S-doped graphene by liquid precursor. Nanotechnology 23:275605CrossRef Gao H, Liu Z, Song L et al (2012) Synthesis of S-doped graphene by liquid precursor. Nanotechnology 23:275605CrossRef
243.
Zurück zum Zitat Gullapalli H, Mohana Reddy AL, Kilpatrick S et al (2011) Graphene growth via carburization of stainless steel and application in energy storage. Small 7:1697–1700CrossRef Gullapalli H, Mohana Reddy AL, Kilpatrick S et al (2011) Graphene growth via carburization of stainless steel and application in energy storage. Small 7:1697–1700CrossRef
244.
Zurück zum Zitat Gan X, Zhou H, Zhu B et al (2012) A simple method to synthesize graphene at 633 K by dechlorination of hexachlorobenzene on Cu foils. Carbon 50:306–310CrossRef Gan X, Zhou H, Zhu B et al (2012) A simple method to synthesize graphene at 633 K by dechlorination of hexachlorobenzene on Cu foils. Carbon 50:306–310CrossRef
245.
Zurück zum Zitat Dai G-P, Cooke PH, Deng S (2012) Direct growth of graphene films on TEM nickel grids using benzene as precursor. Chem Phys Lett 531:193–196CrossRef Dai G-P, Cooke PH, Deng S (2012) Direct growth of graphene films on TEM nickel grids using benzene as precursor. Chem Phys Lett 531:193–196CrossRef
246.
Zurück zum Zitat Wan X, Chen K, Liu D et al (2012) High-quality large-area graphene from dehydrogenated polycyclic aromatic hydrocarbons. Chem Mater 24:3906–3915CrossRef Wan X, Chen K, Liu D et al (2012) High-quality large-area graphene from dehydrogenated polycyclic aromatic hydrocarbons. Chem Mater 24:3906–3915CrossRef
247.
Zurück zum Zitat Kang D, Kim W-J, Lim JA, Song Y-W (2012) Direct growth and patterning of multilayer graphene onto a targeted substrate without an external carbon source. ACS Appl Mater Interfaces 4:3663–3666CrossRef Kang D, Kim W-J, Lim JA, Song Y-W (2012) Direct growth and patterning of multilayer graphene onto a targeted substrate without an external carbon source. ACS Appl Mater Interfaces 4:3663–3666CrossRef
248.
Zurück zum Zitat Lee JS, Jang CW, Kim JM et al (2014) Graphene synthesis by C implantation into Cu foils. Carbon 66:267–271CrossRef Lee JS, Jang CW, Kim JM et al (2014) Graphene synthesis by C implantation into Cu foils. Carbon 66:267–271CrossRef
249.
Zurück zum Zitat Hackley J, Ali D, DiPasquale J et al (2009) Graphitic carbon growth on Si(111) using solid source molecular beam epitaxy. Appl Phys Lett 95:133114CrossRef Hackley J, Ali D, DiPasquale J et al (2009) Graphitic carbon growth on Si(111) using solid source molecular beam epitaxy. Appl Phys Lett 95:133114CrossRef
250.
Zurück zum Zitat Ji H, Hao Y, Ren Y et al (2011) Graphene growth using a solid carbon feedstock and hydrogen. ACS Nano 5:7656–7661CrossRef Ji H, Hao Y, Ren Y et al (2011) Graphene growth using a solid carbon feedstock and hydrogen. ACS Nano 5:7656–7661CrossRef
251.
Zurück zum Zitat Weatherup RS, Baehtz C, Dlubak B et al (2013) Introducing carbon diffusion barriers for uniform, high-quality graphene growth from solid sources. Nano Lett 13:4624–4631CrossRef Weatherup RS, Baehtz C, Dlubak B et al (2013) Introducing carbon diffusion barriers for uniform, high-quality graphene growth from solid sources. Nano Lett 13:4624–4631CrossRef
252.
Zurück zum Zitat Shin H-J, Choi WM, Yoon S-M et al (2011) Transfer-free growth of few-layer graphene by self-assembled monolayers. Adv Mater 23:4392–4397CrossRef Shin H-J, Choi WM, Yoon S-M et al (2011) Transfer-free growth of few-layer graphene by self-assembled monolayers. Adv Mater 23:4392–4397CrossRef
253.
Zurück zum Zitat Kalita G, Sharma S, Wakita K et al (2012) Synthesis of graphene by surface wave plasma chemical vapor deposition from camphor. Phys Status Solidi 209:2510–2513CrossRef Kalita G, Sharma S, Wakita K et al (2012) Synthesis of graphene by surface wave plasma chemical vapor deposition from camphor. Phys Status Solidi 209:2510–2513CrossRef
254.
Zurück zum Zitat Kalita G, Wakita K, Umeno M (2011) Monolayer graphene from a green solid precursor. Phys E Low-dimensional Syst Nanostructures 43:1490–1493CrossRef Kalita G, Wakita K, Umeno M (2011) Monolayer graphene from a green solid precursor. Phys E Low-dimensional Syst Nanostructures 43:1490–1493CrossRef
255.
Zurück zum Zitat Sharma S, Kalita G, Ayhan ME et al (2013) Synthesis of hexagonal graphene on polycrystalline Cu foil from solid camphor by atmospheric pressure chemical vapor deposition. J Mater Sci 48:7036–7041CrossRef Sharma S, Kalita G, Ayhan ME et al (2013) Synthesis of hexagonal graphene on polycrystalline Cu foil from solid camphor by atmospheric pressure chemical vapor deposition. J Mater Sci 48:7036–7041CrossRef
256.
Zurück zum Zitat Sharma S, Kalita G, Hirano R et al (2013) Influence of gas composition on the formation of graphene domain synthesized from camphor. Mater Lett 93:258–262CrossRef Sharma S, Kalita G, Hirano R et al (2013) Influence of gas composition on the formation of graphene domain synthesized from camphor. Mater Lett 93:258–262CrossRef
257.
Zurück zum Zitat Sokolov AN, Yap FL, Liu N et al (2013) Direct growth of aligned graphitic nanoribbons from a DNA template by chemical vapour deposition. Nat Commun 4:2402CrossRef Sokolov AN, Yap FL, Liu N et al (2013) Direct growth of aligned graphitic nanoribbons from a DNA template by chemical vapour deposition. Nat Commun 4:2402CrossRef
258.
Zurück zum Zitat Ruan G, Sun Z, Peng Z, Tour JM (2011) Growth of graphene from food, insects, and waste. ACS Nano 5:7601–7607CrossRef Ruan G, Sun Z, Peng Z, Tour JM (2011) Growth of graphene from food, insects, and waste. ACS Nano 5:7601–7607CrossRef
259.
Zurück zum Zitat Ray AK, Sahu RK, Rajinikanth V et al (2012) Preparation and characterization of graphene and Ni-decorated graphene using flower petals as the precursor material. Carbon 50:4123–4129CrossRef Ray AK, Sahu RK, Rajinikanth V et al (2012) Preparation and characterization of graphene and Ni-decorated graphene using flower petals as the precursor material. Carbon 50:4123–4129CrossRef
260.
Zurück zum Zitat Hong N, Yang W, Bao C et al (2012) Facile synthesis of graphene by pyrolysis of poly(methyl methacrylate) on nickel particles in the confined microzones. Mater Res Bull 47:4082–4088CrossRef Hong N, Yang W, Bao C et al (2012) Facile synthesis of graphene by pyrolysis of poly(methyl methacrylate) on nickel particles in the confined microzones. Mater Res Bull 47:4082–4088CrossRef
261.
Zurück zum Zitat Kwak J, Kwon T-Y, Chu JH et al (2013) In situ observations of gas phase dynamics during graphene growth using solid-state carbon sources. Phys Chem Chem Phys 15:10446CrossRef Kwak J, Kwon T-Y, Chu JH et al (2013) In situ observations of gas phase dynamics during graphene growth using solid-state carbon sources. Phys Chem Chem Phys 15:10446CrossRef
262.
Zurück zum Zitat Lee S, Hong J, Koo JH et al (2013) Synthesis of few-layered graphene nanoballs with copper cores using solid carbon source. ACS Appl Mater Interfaces 5:2432–2437CrossRef Lee S, Hong J, Koo JH et al (2013) Synthesis of few-layered graphene nanoballs with copper cores using solid carbon source. ACS Appl Mater Interfaces 5:2432–2437CrossRef
263.
Zurück zum Zitat Li Z, Wu P, Wang C et al (2011) Low-temperature growth of graphene by chemical vapor deposition using solid and liquid carbon sources. ACS Nano 5:3385–3390CrossRef Li Z, Wu P, Wang C et al (2011) Low-temperature growth of graphene by chemical vapor deposition using solid and liquid carbon sources. ACS Nano 5:3385–3390CrossRef
264.
Zurück zum Zitat Lin T, Wang Y, Bi H et al (2012) Hydrogen flame synthesis of few-layer graphene from a solid carbon source on hexagonal boron nitride. J Mater Chem 22:2859CrossRef Lin T, Wang Y, Bi H et al (2012) Hydrogen flame synthesis of few-layer graphene from a solid carbon source on hexagonal boron nitride. J Mater Chem 22:2859CrossRef
265.
Zurück zum Zitat Sun Z, Yan Z, Yao J et al (2010) Growth of graphene from solid carbon sources. Nature 468:549–552CrossRef Sun Z, Yan Z, Yao J et al (2010) Growth of graphene from solid carbon sources. Nature 468:549–552CrossRef
266.
Zurück zum Zitat Tiwari RN, Ishihara M, Tiwari JN, Yoshimura M (2012) Transformation of polymer to graphene films at partially low temperature. Polym Chem 3:2712CrossRef Tiwari RN, Ishihara M, Tiwari JN, Yoshimura M (2012) Transformation of polymer to graphene films at partially low temperature. Polym Chem 3:2712CrossRef
267.
Zurück zum Zitat Suzuki S, Takei Y, Furukawa K, Hibino H (2011) Graphene growth from a spin-coated polymer without a reactive gas. Appl Phys Express 4:065102CrossRef Suzuki S, Takei Y, Furukawa K, Hibino H (2011) Graphene growth from a spin-coated polymer without a reactive gas. Appl Phys Express 4:065102CrossRef
268.
Zurück zum Zitat Sharma S, Kalita G, Hirano R et al (2014) Synthesis of graphene crystals from solid waste plastic by chemical vapor deposition. Carbon 72:66–73CrossRef Sharma S, Kalita G, Hirano R et al (2014) Synthesis of graphene crystals from solid waste plastic by chemical vapor deposition. Carbon 72:66–73CrossRef
269.
Zurück zum Zitat Huang L, Wind SJ, O’Brien SP (2003) Controlled growth of single-walled carbon nanotubes from an ordered mesoporous silica template. Nano Lett 3:299–303CrossRef Huang L, Wind SJ, O’Brien SP (2003) Controlled growth of single-walled carbon nanotubes from an ordered mesoporous silica template. Nano Lett 3:299–303CrossRef
270.
Zurück zum Zitat Homma Y, Kobayashi Y, Ogino T et al (2003) Role of transition metal catalysts in single-walled carbon nanotube growth in chemical vapor deposition. J Phys Chem B 107:12161–12164CrossRef Homma Y, Kobayashi Y, Ogino T et al (2003) Role of transition metal catalysts in single-walled carbon nanotube growth in chemical vapor deposition. J Phys Chem B 107:12161–12164CrossRef
271.
Zurück zum Zitat Lin JH, Chen CS, Rümmeli MH et al (2011) Growth of carbon nanotubes catalyzed by defect-rich graphite surfaces. Chem Mater 23:1637–1639CrossRef Lin JH, Chen CS, Rümmeli MH et al (2011) Growth of carbon nanotubes catalyzed by defect-rich graphite surfaces. Chem Mater 23:1637–1639CrossRef
272.
Zurück zum Zitat Lin J-H, Chen C-S, Ma H-L et al (2008) Self-assembling of multi-walled carbon nanotubes on a porous carbon surface by catalyst-free chemical vapor deposition. Carbon 46:1619–1623CrossRef Lin J-H, Chen C-S, Ma H-L et al (2008) Self-assembling of multi-walled carbon nanotubes on a porous carbon surface by catalyst-free chemical vapor deposition. Carbon 46:1619–1623CrossRef
273.
Zurück zum Zitat Qian W, Liu T, Wei F et al (2003) The evaluation of the gross defects of carbon nanotubes in a continuous CVD process. Carbon 41:2613–2617CrossRef Qian W, Liu T, Wei F et al (2003) The evaluation of the gross defects of carbon nanotubes in a continuous CVD process. Carbon 41:2613–2617CrossRef
274.
Zurück zum Zitat Zhang X, Zhang J, Wang R, Liu Z (2004) Cationic surfactant directed polyaniline/CNT nanocables: synthesis, characterization, and enhanced electrical properties. Carbon 42:1455–1461CrossRef Zhang X, Zhang J, Wang R, Liu Z (2004) Cationic surfactant directed polyaniline/CNT nanocables: synthesis, characterization, and enhanced electrical properties. Carbon 42:1455–1461CrossRef
275.
Zurück zum Zitat Zheng F, Liang Gao Y et al (2002) Carbon nanotube synthesis using mesoporous silica templates. Nano Lett 2:729–732CrossRef Zheng F, Liang Gao Y et al (2002) Carbon nanotube synthesis using mesoporous silica templates. Nano Lett 2:729–732CrossRef
276.
Zurück zum Zitat Couteau E, Hernadi K, Seo JW et al (2003) CVD synthesis of high-purity multiwalled carbon nanotubes using CaCO3 catalyst support for large-scale production. Chem Phys Lett 378:9–17CrossRef Couteau E, Hernadi K, Seo JW et al (2003) CVD synthesis of high-purity multiwalled carbon nanotubes using CaCO3 catalyst support for large-scale production. Chem Phys Lett 378:9–17CrossRef
277.
Zurück zum Zitat Eres G, Puretzky AA, Geohegan DB, Cui H (2004) In situ control of the catalyst efficiency in chemical vapor deposition of vertically aligned carbon nanotubes on predeposited metal catalyst films. Appl Phys Lett 84:1759CrossRef Eres G, Puretzky AA, Geohegan DB, Cui H (2004) In situ control of the catalyst efficiency in chemical vapor deposition of vertically aligned carbon nanotubes on predeposited metal catalyst films. Appl Phys Lett 84:1759CrossRef
278.
Zurück zum Zitat Sato S, Kawabata A, Nihei M, Awano Y (2003) Growth of diameter-controlled carbon nanotubes using monodisperse nickel nanoparticles obtained with a differential mobility analyzer. Chem Phys Lett 382:361–366CrossRef Sato S, Kawabata A, Nihei M, Awano Y (2003) Growth of diameter-controlled carbon nanotubes using monodisperse nickel nanoparticles obtained with a differential mobility analyzer. Chem Phys Lett 382:361–366CrossRef
279.
Zurück zum Zitat Ibrahim I, Kalbacova J, Engemaier V et al (2015) Confirming the dual role of etchants during the enrichment of semiconducting single wall carbon nanotubes by chemical vapor deposition. Chem Mater. doi:10.1021/acs.chemmater.5b02037 Ibrahim I, Kalbacova J, Engemaier V et al (2015) Confirming the dual role of etchants during the enrichment of semiconducting single wall carbon nanotubes by chemical vapor deposition. Chem Mater. doi:10.​1021/​acs.​chemmater.​5b02037
280.
Zurück zum Zitat Bachmatiuk A, Borowiak-Palen E, Rümmeli MH et al (2007) Facilitating the CVD synthesis of seamless double-walled carbon nanotubes. Nanotechnology 18:275610CrossRef Bachmatiuk A, Borowiak-Palen E, Rümmeli MH et al (2007) Facilitating the CVD synthesis of seamless double-walled carbon nanotubes. Nanotechnology 18:275610CrossRef
281.
Zurück zum Zitat Bachmatiuk A, Börrnert F, Grobosch M et al (2009) Investigating the graphitization mechanism of SiO2 nanoparticles in chemical vapor deposition. ACS Nano 3:4098–4104CrossRef Bachmatiuk A, Börrnert F, Grobosch M et al (2009) Investigating the graphitization mechanism of SiO2 nanoparticles in chemical vapor deposition. ACS Nano 3:4098–4104CrossRef
282.
Zurück zum Zitat Borowiak-Palen E, Bachmatiuk A, Rümmeli MH et al (2008) Modifying CVD synthesised carbon nanotubes via the carbon feed rate. Phys E Low-dimensional Syst Nanostructures 40:2227–2230CrossRef Borowiak-Palen E, Bachmatiuk A, Rümmeli MH et al (2008) Modifying CVD synthesised carbon nanotubes via the carbon feed rate. Phys E Low-dimensional Syst Nanostructures 40:2227–2230CrossRef
283.
Zurück zum Zitat Qi H, Qian C, Liu J (2006) Synthesis of high-purity few-walled carbon nanotubes from ethanol/methanol mixture. Chem Mater 18:5691–5695CrossRef Qi H, Qian C, Liu J (2006) Synthesis of high-purity few-walled carbon nanotubes from ethanol/methanol mixture. Chem Mater 18:5691–5695CrossRef
284.
Zurück zum Zitat Reina A, Hofmann M, Zhu D, Kong J (2007) Growth mechanism of long and horizontally aligned carbon nanotubes by chemical vapor deposition. J Phys Chem C 111:7292–7297CrossRef Reina A, Hofmann M, Zhu D, Kong J (2007) Growth mechanism of long and horizontally aligned carbon nanotubes by chemical vapor deposition. J Phys Chem C 111:7292–7297CrossRef
285.
Zurück zum Zitat Liu Y, Pan C, Wang J (2004) Raman spectra of carbon nanotubes and nanofibers prepared by ethanol flames. J Mater Sci 39:1091–1094CrossRef Liu Y, Pan C, Wang J (2004) Raman spectra of carbon nanotubes and nanofibers prepared by ethanol flames. J Mater Sci 39:1091–1094CrossRef
286.
Zurück zum Zitat Das N, Dalai A, Soltan Mohammadzadeh JS, Adjaye J (2006) The effect of feedstock and process conditions on the synthesis of high purity CNTs from aromatic hydrocarbons. Carbon 44:2236–2245CrossRef Das N, Dalai A, Soltan Mohammadzadeh JS, Adjaye J (2006) The effect of feedstock and process conditions on the synthesis of high purity CNTs from aromatic hydrocarbons. Carbon 44:2236–2245CrossRef
287.
Zurück zum Zitat Shukla B, Saito T, Yumura M, Iijima S (2009) An efficient carbon precursor for gas phase growth of SWCNTs. Chem Commun 23:3422–3424CrossRef Shukla B, Saito T, Yumura M, Iijima S (2009) An efficient carbon precursor for gas phase growth of SWCNTs. Chem Commun 23:3422–3424CrossRef
288.
Zurück zum Zitat Tian Y, Hu Z, Yang Y et al (2004) In situ TA-MS study of the six-membered-ring-based growth of carbon nanotubes with benzene precursor. J Am Chem Soc 126:1180–1183CrossRef Tian Y, Hu Z, Yang Y et al (2004) In situ TA-MS study of the six-membered-ring-based growth of carbon nanotubes with benzene precursor. J Am Chem Soc 126:1180–1183CrossRef
289.
Zurück zum Zitat Dai H, Rinzler AG, Nikolaev P et al (1996) Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chem Phys Lett 260:471–475CrossRef Dai H, Rinzler AG, Nikolaev P et al (1996) Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chem Phys Lett 260:471–475CrossRef
290.
Zurück zum Zitat Hsieh Y-P, Hofmann M, Kong J (2014) Promoter-assisted chemical vapor deposition of graphene. Carbon 67:417–423CrossRef Hsieh Y-P, Hofmann M, Kong J (2014) Promoter-assisted chemical vapor deposition of graphene. Carbon 67:417–423CrossRef
291.
Zurück zum Zitat Kim H, Mattevi C, Calvo MR et al (2012) Activation energy paths for graphene nucleation and growth on Cu. ACS Nano 6:3614–3623CrossRef Kim H, Mattevi C, Calvo MR et al (2012) Activation energy paths for graphene nucleation and growth on Cu. ACS Nano 6:3614–3623CrossRef
292.
Zurück zum Zitat Vlassiouk I, Smirnov S, Regmi M et al (2013) Graphene nucleation density on copper: fundamental role of background pressure. J Phys Chem C 117:18919–18926CrossRef Vlassiouk I, Smirnov S, Regmi M et al (2013) Graphene nucleation density on copper: fundamental role of background pressure. J Phys Chem C 117:18919–18926CrossRef
293.
Zurück zum Zitat Celebi K, Cole MT, Choi JW et al (2013) Evolutionary kinetics of graphene formation on copper. Nano Lett 13:967–974CrossRef Celebi K, Cole MT, Choi JW et al (2013) Evolutionary kinetics of graphene formation on copper. Nano Lett 13:967–974CrossRef
294.
Zurück zum Zitat Xu L, Jin Y, Wu Z et al (2013) Transformation of carbon monomers and dimers to graphene islands on Co(0001): thermodynamics and kinetics. J Phys Chem C 117:2952–2958CrossRef Xu L, Jin Y, Wu Z et al (2013) Transformation of carbon monomers and dimers to graphene islands on Co(0001): thermodynamics and kinetics. J Phys Chem C 117:2952–2958CrossRef
295.
Zurück zum Zitat Loginova E, Bartelt NC, Feibelman PJ, McCarty KF (2008) Evidence for graphene growth by C cluster attachment. New J Phys 10:093026CrossRef Loginova E, Bartelt NC, Feibelman PJ, McCarty KF (2008) Evidence for graphene growth by C cluster attachment. New J Phys 10:093026CrossRef
296.
Zurück zum Zitat Kim YS, Joo K, Jerng SK et al (2014) Direct integration of polycrystalline graphene into light emitting diodes by plasma-assisted metal-catalyst-free synthesis. ACS Nano 8:2230–2236CrossRef Kim YS, Joo K, Jerng SK et al (2014) Direct integration of polycrystalline graphene into light emitting diodes by plasma-assisted metal-catalyst-free synthesis. ACS Nano 8:2230–2236CrossRef
297.
Zurück zum Zitat Kim H, Saiz E, Chhowalla M, Mattevi C (2013) Modeling of the self-limited growth in catalytic chemical vapor deposition of graphene. New J Phys 15:053012CrossRef Kim H, Saiz E, Chhowalla M, Mattevi C (2013) Modeling of the self-limited growth in catalytic chemical vapor deposition of graphene. New J Phys 15:053012CrossRef
298.
Zurück zum Zitat Bhaviripudi S, Jia X, Dresselhaus MS, Kong J (2010) Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Lett 10:4128–4133CrossRef Bhaviripudi S, Jia X, Dresselhaus MS, Kong J (2010) Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Lett 10:4128–4133CrossRef
299.
Zurück zum Zitat Chen C-JCJ, Back MH, Back RA (1975) The thermal decomposition of methane. I. kinetics of the primary decomposition to C2H6 + H2; rate constant for the homogeneous unimolecular dissociation of methane and its pressure dependence. Can J Chem 53:3580–3590CrossRef Chen C-JCJ, Back MH, Back RA (1975) The thermal decomposition of methane. I. kinetics of the primary decomposition to C2H6 + H2; rate constant for the homogeneous unimolecular dissociation of methane and its pressure dependence. Can J Chem 53:3580–3590CrossRef
300.
Zurück zum Zitat Alstrup I, Chorkendorff I, Ullmann S (1992) The interaction of CH4 at high temperatures with clean and oxygen precovered Cu(100). Surf Sci 264:95–102CrossRef Alstrup I, Chorkendorff I, Ullmann S (1992) The interaction of CH4 at high temperatures with clean and oxygen precovered Cu(100). Surf Sci 264:95–102CrossRef
301.
Zurück zum Zitat Zhang Y, Zhang L, Kim P et al (2012) Vapor trapping growth of single-crystalline graphene flowers: synthesis, morphology, and electronic properties. Nano Lett 12:2810–2816CrossRef Zhang Y, Zhang L, Kim P et al (2012) Vapor trapping growth of single-crystalline graphene flowers: synthesis, morphology, and electronic properties. Nano Lett 12:2810–2816CrossRef
302.
Zurück zum Zitat Kidambi PR, Bayer BC, Blume R et al (2013) Observing graphene grow: catalyst-graphene interactions during scalable graphene growth on polycrystalline copper. Nano Lett 13:4769–4778CrossRef Kidambi PR, Bayer BC, Blume R et al (2013) Observing graphene grow: catalyst-graphene interactions during scalable graphene growth on polycrystalline copper. Nano Lett 13:4769–4778CrossRef
303.
Zurück zum Zitat Wang Z-J, Weinberg G, Zhang Q et al (2015) Direct observation of graphene growth and associated copper substrate dynamics by in situ scanning electron microscopy. ACS Nano 9:1506–1519CrossRef Wang Z-J, Weinberg G, Zhang Q et al (2015) Direct observation of graphene growth and associated copper substrate dynamics by in situ scanning electron microscopy. ACS Nano 9:1506–1519CrossRef
304.
Zurück zum Zitat N’Diaye AT, van Gastel R, Martínez-Galera AJ et al (2009) In situ observation of stress relaxation in epitaxial graphene. New J Phys 11:113056CrossRef N’Diaye AT, van Gastel R, Martínez-Galera AJ et al (2009) In situ observation of stress relaxation in epitaxial graphene. New J Phys 11:113056CrossRef
305.
Zurück zum Zitat Nie S, Walter AL, Bartelt NC et al (2011) Growth from below: graphene bilayers on Ir(111). ACS Nano 5:2298–2306CrossRef Nie S, Walter AL, Bartelt NC et al (2011) Growth from below: graphene bilayers on Ir(111). ACS Nano 5:2298–2306CrossRef
306.
Zurück zum Zitat Weatherup RS, Bayer BC, Blume R et al (2011) In situ characterization of alloy catalysts for low-temperature graphene growth. Nano Lett 11:4154–4160CrossRef Weatherup RS, Bayer BC, Blume R et al (2011) In situ characterization of alloy catalysts for low-temperature graphene growth. Nano Lett 11:4154–4160CrossRef
307.
Zurück zum Zitat Xing S, Wu W, Wang Y et al (2013) Kinetic study of graphene growth: temperature perspective on growth rate and film thickness by chemical vapor deposition. Chem Phys Lett 580:62–66CrossRef Xing S, Wu W, Wang Y et al (2013) Kinetic study of graphene growth: temperature perspective on growth rate and film thickness by chemical vapor deposition. Chem Phys Lett 580:62–66CrossRef
308.
Zurück zum Zitat Colombo L, Li X, Han B et al (2010) Growth kinetics and defects of CVD graphene on Cu. ECS Trans 28(5):109–114CrossRef Colombo L, Li X, Han B et al (2010) Growth kinetics and defects of CVD graphene on Cu. ECS Trans 28(5):109–114CrossRef
309.
Zurück zum Zitat Han Z, Kimouche A, Kalita D et al (2014) Homogeneous optical and electronic properties of graphene due to the suppression of multilayer patches during CVD on copper foils. Adv Funct Mater 24:964–970CrossRef Han Z, Kimouche A, Kalita D et al (2014) Homogeneous optical and electronic properties of graphene due to the suppression of multilayer patches during CVD on copper foils. Adv Funct Mater 24:964–970CrossRef
310.
Zurück zum Zitat Fang W, Hsu A, Shin YC et al (2015) Application of tungsten as a carbon sink for synthesis of large-domain uniform monolayer graphene free of bilayers/multilayers. Nanoscale 7:4929–4934CrossRef Fang W, Hsu A, Shin YC et al (2015) Application of tungsten as a carbon sink for synthesis of large-domain uniform monolayer graphene free of bilayers/multilayers. Nanoscale 7:4929–4934CrossRef
311.
Zurück zum Zitat Pan Z, Liu N, Fu L, Liu Z (2011) Wrinkle engineering: a new approach to massive graphene nanoribbon arrays. J Am Chem Soc 133:17578–17581CrossRef Pan Z, Liu N, Fu L, Liu Z (2011) Wrinkle engineering: a new approach to massive graphene nanoribbon arrays. J Am Chem Soc 133:17578–17581CrossRef
312.
Zurück zum Zitat Fang W, Hsu AL, Caudillo R et al (2013) Rapid identification of stacking orientation in isotopically labeled chemical-vapor grown bilayer graphene by raman spectroscopy. Nano Lett 13:1541–1548 Fang W, Hsu AL, Caudillo R et al (2013) Rapid identification of stacking orientation in isotopically labeled chemical-vapor grown bilayer graphene by raman spectroscopy. Nano Lett 13:1541–1548
313.
Zurück zum Zitat Li Q, Chou H, Zhong J-H et al (2013) Growth of adlayer graphene on Cu studied by carbon isotope labeling. Nano Lett 13:486–490CrossRef Li Q, Chou H, Zhong J-H et al (2013) Growth of adlayer graphene on Cu studied by carbon isotope labeling. Nano Lett 13:486–490CrossRef
314.
Zurück zum Zitat Nie S, Wu W, Xing S et al (2012) Growth from below: bilayer graphene on copper by chemical vapor deposition. New J Phys 14:093028CrossRef Nie S, Wu W, Xing S et al (2012) Growth from below: bilayer graphene on copper by chemical vapor deposition. New J Phys 14:093028CrossRef
315.
Zurück zum Zitat Kalbac M, Frank O, Kavan L (2012) The control of graphene double-layer formation in copper-catalyzed chemical vapor deposition. Carbon 50:3682–3687CrossRef Kalbac M, Frank O, Kavan L (2012) The control of graphene double-layer formation in copper-catalyzed chemical vapor deposition. Carbon 50:3682–3687CrossRef
316.
Zurück zum Zitat Robertson AW, Warner JH (2011) Hexagonal Single crystal domains of few-layer graphene on copper foils. Nano Lett 11:1182–1189CrossRef Robertson AW, Warner JH (2011) Hexagonal Single crystal domains of few-layer graphene on copper foils. Nano Lett 11:1182–1189CrossRef
317.
Zurück zum Zitat Geng D, Wu B, Guo Y et al (2012) Uniform hexagonal graphene flakes and films grown on liquid copper surface. Proc Natl Acad Sci 109:7992–7996CrossRef Geng D, Wu B, Guo Y et al (2012) Uniform hexagonal graphene flakes and films grown on liquid copper surface. Proc Natl Acad Sci 109:7992–7996CrossRef
318.
Zurück zum Zitat Wang J, Zeng M, Tan L et al (2013) High-mobility graphene on liquid p-block elements by ultra-low-loss CVD growth. Sci Rep 3:2670 Wang J, Zeng M, Tan L et al (2013) High-mobility graphene on liquid p-block elements by ultra-low-loss CVD growth. Sci Rep 3:2670
319.
Zurück zum Zitat Wu Y, Hao Y, Jeong HY et al (2013) Crystal structure evolution of individual graphene islands during CVD growth on copper foil. Adv Mater 25:6744–6751CrossRef Wu Y, Hao Y, Jeong HY et al (2013) Crystal structure evolution of individual graphene islands during CVD growth on copper foil. Adv Mater 25:6744–6751CrossRef
320.
Zurück zum Zitat Murdock AT, Koos A, Ben Britton T et al (2013) Controlling the orientation, edge geometry, and thickness of chemical vapor deposition graphene. ACS Nano 7:1351–1359CrossRef Murdock AT, Koos A, Ben Britton T et al (2013) Controlling the orientation, edge geometry, and thickness of chemical vapor deposition graphene. ACS Nano 7:1351–1359CrossRef
321.
Zurück zum Zitat Hayashi K, Sato S, Ikeda M et al (2012) Selective graphene formation on copper twin crystals. J Am Chem Soc 134:12492–12498CrossRef Hayashi K, Sato S, Ikeda M et al (2012) Selective graphene formation on copper twin crystals. J Am Chem Soc 134:12492–12498CrossRef
322.
Zurück zum Zitat Wood JD, Schmucker SW, Lyons AS et al (2011) Effects of polycrystalline Cu substrate on graphene growth by chemical vapor deposition. Nano Lett 11:4547–4554CrossRef Wood JD, Schmucker SW, Lyons AS et al (2011) Effects of polycrystalline Cu substrate on graphene growth by chemical vapor deposition. Nano Lett 11:4547–4554CrossRef
323.
Zurück zum Zitat Dai G-P, Wu MH, Taylor DK, Vinodgopal K (2013) Square-shaped, single-crystal, monolayer graphene domains by low-pressure chemical vapor deposition. Mater Res Lett 1:67–76CrossRef Dai G-P, Wu MH, Taylor DK, Vinodgopal K (2013) Square-shaped, single-crystal, monolayer graphene domains by low-pressure chemical vapor deposition. Mater Res Lett 1:67–76CrossRef
324.
Zurück zum Zitat Son IH, Song HJ, Kwon S et al (2014) CO2 enhanced chemical vapor deposition growth of few-layer graphene over NiOx. ACS Nano 8:9224–9232CrossRef Son IH, Song HJ, Kwon S et al (2014) CO2 enhanced chemical vapor deposition growth of few-layer graphene over NiOx. ACS Nano 8:9224–9232CrossRef
325.
Zurück zum Zitat Natesan K, Kassner TF (1973) Thermodynamics of carbon in nickel, iron-nickel and iron-chromium-nickel alloys. Metall Trans 4:2557–2566CrossRef Natesan K, Kassner TF (1973) Thermodynamics of carbon in nickel, iron-nickel and iron-chromium-nickel alloys. Metall Trans 4:2557–2566CrossRef
326.
Zurück zum Zitat Delamoreanu A, Rabot C, Vallee C, Zenasni A (2014) Wafer scale catalytic growth of graphene on nickel by solid carbon source. Carbon 66:48–56CrossRef Delamoreanu A, Rabot C, Vallee C, Zenasni A (2014) Wafer scale catalytic growth of graphene on nickel by solid carbon source. Carbon 66:48–56CrossRef
327.
Zurück zum Zitat Lahiri J, Miller T, Adamska L et al (2011) Graphene growth on Ni(111) by transformation of a surface carbide. Nano Lett 11:518–522CrossRef Lahiri J, Miller T, Adamska L et al (2011) Graphene growth on Ni(111) by transformation of a surface carbide. Nano Lett 11:518–522CrossRef
328.
Zurück zum Zitat Thiele S, Reina A, Healey P et al (2010) Engineering polycrystalline Ni films to improve thickness uniformity of the chemical-vapor-deposition-grown graphene films. Nanotechnology 21:015601CrossRef Thiele S, Reina A, Healey P et al (2010) Engineering polycrystalline Ni films to improve thickness uniformity of the chemical-vapor-deposition-grown graphene films. Nanotechnology 21:015601CrossRef
329.
Zurück zum Zitat Kim H, Song I, Park C et al (2013) Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate. ACS Nano 7:6575–6582CrossRef Kim H, Song I, Park C et al (2013) Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate. ACS Nano 7:6575–6582CrossRef
330.
Zurück zum Zitat Zhang L, Shi Z, Liu D et al (2012) Vapour-phase graphene epitaxy at low temperatures. Nano Res 5:258–264CrossRef Zhang L, Shi Z, Liu D et al (2012) Vapour-phase graphene epitaxy at low temperatures. Nano Res 5:258–264CrossRef
331.
Zurück zum Zitat Wei D, Lu Y, Han C et al (2013) Critical crystal growth of graphene on dielectric substrates at low temperature for electronic devices. Angew Chemie Int Ed 52:14121–14126CrossRef Wei D, Lu Y, Han C et al (2013) Critical crystal growth of graphene on dielectric substrates at low temperature for electronic devices. Angew Chemie Int Ed 52:14121–14126CrossRef
332.
Zurück zum Zitat Li X, Zhu Y, Cai W et al (2009) Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett 9:4359–4363CrossRef Li X, Zhu Y, Cai W et al (2009) Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett 9:4359–4363CrossRef
333.
Zurück zum Zitat Suk JW, Kitt A, Magnuson CW et al (2011) Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 5:6916–6924CrossRef Suk JW, Kitt A, Magnuson CW et al (2011) Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 5:6916–6924CrossRef
334.
Zurück zum Zitat O’Hern SC, Stewart CA, Boutilier MSH et al (2012) Selective molecular transport through intrinsic defects in a single layer of CVD graphene. ACS Nano 6:10130–10138CrossRef O’Hern SC, Stewart CA, Boutilier MSH et al (2012) Selective molecular transport through intrinsic defects in a single layer of CVD graphene. ACS Nano 6:10130–10138CrossRef
335.
Zurück zum Zitat Pirkle A, Chan J, Venugopal A et al (2011) The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2. Appl Phys Lett 99:122108CrossRef Pirkle A, Chan J, Venugopal A et al (2011) The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2. Appl Phys Lett 99:122108CrossRef
336.
Zurück zum Zitat Lin Y-C, Jin C, Lee J-C et al (2011) Clean transfer of graphene for isolation and suspension. ACS Nano 5:2362–2368CrossRef Lin Y-C, Jin C, Lee J-C et al (2011) Clean transfer of graphene for isolation and suspension. ACS Nano 5:2362–2368CrossRef
337.
Zurück zum Zitat Gorantla S, Bachmatiuk A, Hwang J et al (2014) A universal transfer route for graphene. Nanoscale 6:889–896CrossRef Gorantla S, Bachmatiuk A, Hwang J et al (2014) A universal transfer route for graphene. Nanoscale 6:889–896CrossRef
338.
Zurück zum Zitat Gao L, Ren W, Xu H et al (2012) Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat Commun 3:699CrossRef Gao L, Ren W, Xu H et al (2012) Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat Commun 3:699CrossRef
339.
Zurück zum Zitat Wang Y, Zheng Y, Xu X et al (2011) Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst. ACS Nano 5:9927–9933CrossRef Wang Y, Zheng Y, Xu X et al (2011) Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst. ACS Nano 5:9927–9933CrossRef
340.
Zurück zum Zitat Lin W-HH, Chen T-HH, Chang J-KK et al (2014) A direct and polymer-free method for transferring graphene grown by chemical vapor deposition to any substrate. ACS Nano 8:1784–1791CrossRef Lin W-HH, Chen T-HH, Chang J-KK et al (2014) A direct and polymer-free method for transferring graphene grown by chemical vapor deposition to any substrate. ACS Nano 8:1784–1791CrossRef
341.
Zurück zum Zitat Na SR, Suk JW, Tao L et al (2015) Selective mechanical transfer of graphene from seed copper foil using rate effects. ACS Nano 9:1325–1335CrossRef Na SR, Suk JW, Tao L et al (2015) Selective mechanical transfer of graphene from seed copper foil using rate effects. ACS Nano 9:1325–1335CrossRef
342.
Zurück zum Zitat Lee WH, Suk JW, Lee J et al (2012) Simultaneous transfer and doping of CVD-grown graphene by fluoropolymer for transparent conductive films on plastic. ACS Nano 6:1284–1290CrossRef Lee WH, Suk JW, Lee J et al (2012) Simultaneous transfer and doping of CVD-grown graphene by fluoropolymer for transparent conductive films on plastic. ACS Nano 6:1284–1290CrossRef
343.
Zurück zum Zitat Gao L, Ni G-X, Liu Y et al (2013) Face-to-face transfer of wafer-scale graphene films. Nature 505:190–194CrossRef Gao L, Ni G-X, Liu Y et al (2013) Face-to-face transfer of wafer-scale graphene films. Nature 505:190–194CrossRef
344.
Zurück zum Zitat Ding L, Tselev A, Wang J et al (2009) Selective growth of well-aligned semiconducting single-walled carbon nanotubes. Nano Lett 9:800–805CrossRef Ding L, Tselev A, Wang J et al (2009) Selective growth of well-aligned semiconducting single-walled carbon nanotubes. Nano Lett 9:800–805CrossRef
345.
Zurück zum Zitat Williams KR, Gupta K, Wasilik M (2003) Etch rates for micromachining processing-part II. J Microelectromechanical Syst 12(6):761–778CrossRef Williams KR, Gupta K, Wasilik M (2003) Etch rates for micromachining processing-part II. J Microelectromechanical Syst 12(6):761–778CrossRef
346.
Zurück zum Zitat Rümmeli M, Bachmatiuk A, Börrnert F et al (2011) Synthesis of carbon nanotubes with and without catalyst particles. Nanoscale Res Lett 6:303CrossRef Rümmeli M, Bachmatiuk A, Börrnert F et al (2011) Synthesis of carbon nanotubes with and without catalyst particles. Nanoscale Res Lett 6:303CrossRef
347.
Zurück zum Zitat Ding L, Zhou W, McNicholas TP et al (2009) Direct observation of the strong interaction between carbon nanotubes and quartz substrate. Nano Res 2:903–910CrossRef Ding L, Zhou W, McNicholas TP et al (2009) Direct observation of the strong interaction between carbon nanotubes and quartz substrate. Nano Res 2:903–910CrossRef
348.
Zurück zum Zitat Ibrahim I, Bachmatiuk A, Börrnert F et al (2011) Optimizing substrate surface and catalyst conditions for high yield chemical vapor deposition grown epitaxially aligned single-walled carbon nanotubes. Carbon 49:5029–5037CrossRef Ibrahim I, Bachmatiuk A, Börrnert F et al (2011) Optimizing substrate surface and catalyst conditions for high yield chemical vapor deposition grown epitaxially aligned single-walled carbon nanotubes. Carbon 49:5029–5037CrossRef
349.
Zurück zum Zitat Ci L, Rao Z, Zhou Z et al (2002) Double wall carbon nanotubes promoted by sulfur in a floating iron catalyst CVD system. Chem Phys Lett 359:63–67CrossRef Ci L, Rao Z, Zhou Z et al (2002) Double wall carbon nanotubes promoted by sulfur in a floating iron catalyst CVD system. Chem Phys Lett 359:63–67CrossRef
350.
Zurück zum Zitat Loffler M, Rummeli MH, Kramberger C et al (2008) On the formation of single-walled carbon nanotubes in pulsed-laser-assisted chemical vapor deposition. Chem Mater 20:128–134CrossRef Loffler M, Rummeli MH, Kramberger C et al (2008) On the formation of single-walled carbon nanotubes in pulsed-laser-assisted chemical vapor deposition. Chem Mater 20:128–134CrossRef
351.
Zurück zum Zitat Hata K, Futaba D, Mizuno K et al (2004) Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306:1362–1364CrossRef Hata K, Futaba D, Mizuno K et al (2004) Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306:1362–1364CrossRef
352.
Zurück zum Zitat Yamada T, Namai T, Hata K et al (2006) Size-selective growth of double-walled carbon nanotube forests from engineered iron catalysts. Nat Nanotechnol 1:131–136CrossRef Yamada T, Namai T, Hata K et al (2006) Size-selective growth of double-walled carbon nanotube forests from engineered iron catalysts. Nat Nanotechnol 1:131–136CrossRef
353.
Zurück zum Zitat Huang S, Cai X, Liu J (2003) Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates. J Am Chem Soc 125:5636–5637CrossRef Huang S, Cai X, Liu J (2003) Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates. J Am Chem Soc 125:5636–5637CrossRef
354.
Zurück zum Zitat Ibrahim I, Bachmatiuk A, Grimm D et al (2012) Understanding high-yield catalyst-free growth of horizontally aligned single-walled carbon nanotubes nucleated by activated C60 species. ACS Nano 6:10825–10834 Ibrahim I, Bachmatiuk A, Grimm D et al (2012) Understanding high-yield catalyst-free growth of horizontally aligned single-walled carbon nanotubes nucleated by activated C60 species. ACS Nano 6:10825–10834
355.
Zurück zum Zitat Ibrahim I, Bachmatiuk A, Warner JH et al (2012) CVD-grown horizontally aligned single-walled carbon nanotubes: synthesis routes and growth mechanisms. Small 8:1973–1992CrossRef Ibrahim I, Bachmatiuk A, Warner JH et al (2012) CVD-grown horizontally aligned single-walled carbon nanotubes: synthesis routes and growth mechanisms. Small 8:1973–1992CrossRef
356.
Zurück zum Zitat Joselevich E, Lieber CM (2002) Vectorial growth of metallic and semiconducting single-wall carbon nanotubes. Nano Lett 2:1137–1141CrossRef Joselevich E, Lieber CM (2002) Vectorial growth of metallic and semiconducting single-wall carbon nanotubes. Nano Lett 2:1137–1141CrossRef
357.
Zurück zum Zitat Liu B, Ren W, Gao L et al (2009) Metal-catalyst-free growth of single-walled carbon nanotubes. J Am Chem Soc 131:2082–2083CrossRef Liu B, Ren W, Gao L et al (2009) Metal-catalyst-free growth of single-walled carbon nanotubes. J Am Chem Soc 131:2082–2083CrossRef
358.
Zurück zum Zitat Maruyama S, Kojima R, Miyauchi Y et al (2002) Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol. Chem Phys Lett 360:229–234CrossRef Maruyama S, Kojima R, Miyauchi Y et al (2002) Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol. Chem Phys Lett 360:229–234CrossRef
359.
Zurück zum Zitat Takagi D, Kobayashi Y, Homma Y (2009) Carbon nanotube growth from diamond. J Am Chem Soc 131:6922–6923CrossRef Takagi D, Kobayashi Y, Homma Y (2009) Carbon nanotube growth from diamond. J Am Chem Soc 131:6922–6923CrossRef
360.
Zurück zum Zitat Liu J, Wang C, Tu X et al (2012) Chirality-controlled synthesis of single-wall carbon nanotubes using vapour-phase epitaxy. Nat Commun 3:1199CrossRef Liu J, Wang C, Tu X et al (2012) Chirality-controlled synthesis of single-wall carbon nanotubes using vapour-phase epitaxy. Nat Commun 3:1199CrossRef
361.
Zurück zum Zitat Yao Y, Feng C, Zhang J, Liu Z (2009) Cloning of single-walled carbon nanotubes via open-end growth mechanism. Nano Lett 9:1673–1677CrossRef Yao Y, Feng C, Zhang J, Liu Z (2009) Cloning of single-walled carbon nanotubes via open-end growth mechanism. Nano Lett 9:1673–1677CrossRef
362.
Zurück zum Zitat Cheng H-C, Lin K-C, Tai H-C et al (2007) Growth and field emission characteristics of carbon nanotubes using Co/Cr/Al multilayer catalyst. Jpn J Appl Phys 46:4359–4363CrossRef Cheng H-C, Lin K-C, Tai H-C et al (2007) Growth and field emission characteristics of carbon nanotubes using Co/Cr/Al multilayer catalyst. Jpn J Appl Phys 46:4359–4363CrossRef
363.
Zurück zum Zitat Chhowalla M, Teo KBK, Ducati C et al (2001) Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. J Appl Phys 90:5308CrossRef Chhowalla M, Teo KBK, Ducati C et al (2001) Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. J Appl Phys 90:5308CrossRef
364.
Zurück zum Zitat Ducati C, Alexandrou I, Chhowalla M et al (2002) Temperature selective growth of carbon nanotubes by chemical vapor deposition. J Appl Phys 92:3299–3303CrossRef Ducati C, Alexandrou I, Chhowalla M et al (2002) Temperature selective growth of carbon nanotubes by chemical vapor deposition. J Appl Phys 92:3299–3303CrossRef
365.
Zurück zum Zitat Kim K-EK-J, Kim K-EK-J, Jung WS et al (2005) Investigation on the temperature-dependent growth rate of carbon nanotubes using chemical vapor deposition of ferrocene and acetylene. Chem Phys Lett 401:459–464CrossRef Kim K-EK-J, Kim K-EK-J, Jung WS et al (2005) Investigation on the temperature-dependent growth rate of carbon nanotubes using chemical vapor deposition of ferrocene and acetylene. Chem Phys Lett 401:459–464CrossRef
366.
Zurück zum Zitat Picher M, Navas H, Arenal R et al (2012) Influence of the growth conditions on the defect density of single-walled carbon nanotubes. Carbon 50:2407–2416CrossRef Picher M, Navas H, Arenal R et al (2012) Influence of the growth conditions on the defect density of single-walled carbon nanotubes. Carbon 50:2407–2416CrossRef
367.
Zurück zum Zitat Hofmann S, Ducati C, Kleinsorge B, Robertson J (2003) Direct growth of aligned carbon nanotube field emitter arrays onto plastic substrates. Appl Phys Lett 83:4661–4663CrossRef Hofmann S, Ducati C, Kleinsorge B, Robertson J (2003) Direct growth of aligned carbon nanotube field emitter arrays onto plastic substrates. Appl Phys Lett 83:4661–4663CrossRef
368.
Zurück zum Zitat Ding F, Bolton K, Rosén A (2004) Nucleation and growth of single-walled carbon nanotubes: a molecular dynamics study. J Phys Chem B. 108(45):17369–17377CrossRef Ding F, Bolton K, Rosén A (2004) Nucleation and growth of single-walled carbon nanotubes: a molecular dynamics study. J Phys Chem B. 108(45):17369–17377CrossRef
369.
Zurück zum Zitat Kukovitsky EF, L’vov SG, Sainov NA (2000) VLS-growth of carbon nanotubes from the vapor. Chem Phys Lett 317:65–70CrossRef Kukovitsky EF, L’vov SG, Sainov NA (2000) VLS-growth of carbon nanotubes from the vapor. Chem Phys Lett 317:65–70CrossRef
370.
Zurück zum Zitat Kukovitsky EF, L’vov SG, Sainov NA et al (2002) Correlation between metal catalyst particle size and carbon nanotube growth. Chem Phys Lett 355:497–503CrossRef Kukovitsky EF, L’vov SG, Sainov NA et al (2002) Correlation between metal catalyst particle size and carbon nanotube growth. Chem Phys Lett 355:497–503CrossRef
371.
Zurück zum Zitat Shibuta Y, Suzuki T (2010) Melting and solidification point of fcc-metal nanoparticles with respect to particle size: a molecular dynamics study. Chem Phys Lett 498:323–327CrossRef Shibuta Y, Suzuki T (2010) Melting and solidification point of fcc-metal nanoparticles with respect to particle size: a molecular dynamics study. Chem Phys Lett 498:323–327CrossRef
372.
Zurück zum Zitat Harutyunyan AR, Tokune T, Mora E (2005) Liquid as a required catalyst phase for carbon single-walled nanotube growth. Appl Phys Lett 87:051919CrossRef Harutyunyan AR, Tokune T, Mora E (2005) Liquid as a required catalyst phase for carbon single-walled nanotube growth. Appl Phys Lett 87:051919CrossRef
373.
Zurück zum Zitat Hofmann S, Csányi G, Ferrari AC et al (2005) Surface diffusion: the low activation energy path for nanotube growth. Phys Rev Lett 95:036101CrossRef Hofmann S, Csányi G, Ferrari AC et al (2005) Surface diffusion: the low activation energy path for nanotube growth. Phys Rev Lett 95:036101CrossRef
374.
Zurück zum Zitat Klinke C, Bonard JM, Kern K (2005) Thermodynamic calculations on the catalytic growth of multiwall carbon nanotubes. Phys Rev B 71:035403CrossRef Klinke C, Bonard JM, Kern K (2005) Thermodynamic calculations on the catalytic growth of multiwall carbon nanotubes. Phys Rev B 71:035403CrossRef
375.
Zurück zum Zitat Barreiro A, Kramberger C, Rümmeli MH et al (2007) Control of the single-wall carbon nanotube mean diameter in sulphur promoted aerosol-assisted chemical vapour deposition. Carbon 45:55–61CrossRef Barreiro A, Kramberger C, Rümmeli MH et al (2007) Control of the single-wall carbon nanotube mean diameter in sulphur promoted aerosol-assisted chemical vapour deposition. Carbon 45:55–61CrossRef
376.
Zurück zum Zitat Cheung CL, Kurtz A, Park H, Lieber CM (2002) Diameter-controlled synthesis of carbon nanotubes. J Phys Chem B 106:2429–2433CrossRef Cheung CL, Kurtz A, Park H, Lieber CM (2002) Diameter-controlled synthesis of carbon nanotubes. J Phys Chem B 106:2429–2433CrossRef
377.
Zurück zum Zitat Schäffel F, Kramberger C, Rümmeli MH et al (2007) Nanoengineered catalyst particles as a key for tailor-made carbon nanotubes. Chem Mater 19:5006–5009CrossRef Schäffel F, Kramberger C, Rümmeli MH et al (2007) Nanoengineered catalyst particles as a key for tailor-made carbon nanotubes. Chem Mater 19:5006–5009CrossRef
378.
Zurück zum Zitat Thurakitseree T, Kramberger C, Zhao P et al (2012) Diameter-controlled and nitrogen-doped vertically aligned single-walled carbon nanotubes. Carbon 50:2635–2640CrossRef Thurakitseree T, Kramberger C, Zhao P et al (2012) Diameter-controlled and nitrogen-doped vertically aligned single-walled carbon nanotubes. Carbon 50:2635–2640CrossRef
379.
Zurück zum Zitat Marchand M, Journet C, Guillot D et al (2009) Growing a carbon nanotube atom by atom: “and yet it does turn”. Nano Lett 9:2961–2966CrossRef Marchand M, Journet C, Guillot D et al (2009) Growing a carbon nanotube atom by atom: “and yet it does turn”. Nano Lett 9:2961–2966CrossRef
380.
Zurück zum Zitat Neyts EC, Van Duin ACT, Bogaerts A (2011) Changing chirality during single-walled carbon nanotube growth: a reactive molecular dynamics/monte carlo study. J Am Chem Soc 133:17225–17231CrossRef Neyts EC, Van Duin ACT, Bogaerts A (2011) Changing chirality during single-walled carbon nanotube growth: a reactive molecular dynamics/monte carlo study. J Am Chem Soc 133:17225–17231CrossRef
381.
Zurück zum Zitat Wang Q, Ng MF, Yang SW et al (2010) The mechanism of single-walled carbon nanotube growth and chirality selection induced by carbon atom and dimer addition. ACS Nano 4:939–946CrossRef Wang Q, Ng MF, Yang SW et al (2010) The mechanism of single-walled carbon nanotube growth and chirality selection induced by carbon atom and dimer addition. ACS Nano 4:939–946CrossRef
382.
Zurück zum Zitat Hart AJ, Van Laake L, Slocum AH (2007) Desktop growth of carbon-nanotube monoliths with in situ optical imaging. Small 3:772–777CrossRef Hart AJ, Van Laake L, Slocum AH (2007) Desktop growth of carbon-nanotube monoliths with in situ optical imaging. Small 3:772–777CrossRef
383.
Zurück zum Zitat Geohegan DB, Puretzky AA, Ivanov IN et al (2003) In situ growth rate measurements and length control during chemical vapor deposition of vertically aligned multiwall carbon nanotubes. Appl Phys Lett 83:1851–1853CrossRef Geohegan DB, Puretzky AA, Ivanov IN et al (2003) In situ growth rate measurements and length control during chemical vapor deposition of vertically aligned multiwall carbon nanotubes. Appl Phys Lett 83:1851–1853CrossRef
384.
Zurück zum Zitat Puretzky AA, Geohegan DB, Jesse S et al (2005) In situ measurements and modeling of carbon nanotube array growth kinetics during chemical vapor deposition. Appl Phys A 81:223–240CrossRef Puretzky AA, Geohegan DB, Jesse S et al (2005) In situ measurements and modeling of carbon nanotube array growth kinetics during chemical vapor deposition. Appl Phys A 81:223–240CrossRef
385.
Zurück zum Zitat Einarsson E, Murakami Y, Kadowaki M, Maruyama S (2008) Growth dynamics of vertically aligned single-walled carbon nanotubes from in situ measurements. Carbon 46:923–930CrossRef Einarsson E, Murakami Y, Kadowaki M, Maruyama S (2008) Growth dynamics of vertically aligned single-walled carbon nanotubes from in situ measurements. Carbon 46:923–930CrossRef
386.
Zurück zum Zitat Chiashi S, Murakami Y, Miyauchi Y, Maruyama S (2004) Cold wall CVD generation of single-walled carbon nanotubes and in situ Raman scattering measurements of the growth stage. Chem Phys Lett 386:89–94CrossRef Chiashi S, Murakami Y, Miyauchi Y, Maruyama S (2004) Cold wall CVD generation of single-walled carbon nanotubes and in situ Raman scattering measurements of the growth stage. Chem Phys Lett 386:89–94CrossRef
387.
Zurück zum Zitat Picher M, Anglaret E, Arenal R, Jourdain V (2009) Self-deactivation of single-walled carbon nanotube growth studied by in situ Raman measurements. Nano Lett 9:542–547CrossRef Picher M, Anglaret E, Arenal R, Jourdain V (2009) Self-deactivation of single-walled carbon nanotube growth studied by in situ Raman measurements. Nano Lett 9:542–547CrossRef
388.
Zurück zum Zitat Rao R, Liptak D, Cherukuri T et al (2012) In situ evidence for chirality-dependent growth rates of individual carbon nanotubes. Nat Mater 11:213–216CrossRef Rao R, Liptak D, Cherukuri T et al (2012) In situ evidence for chirality-dependent growth rates of individual carbon nanotubes. Nat Mater 11:213–216CrossRef
389.
Zurück zum Zitat Reinhold-López K, Braeuer A, Romann B et al (2014) Simultaneous in situ Raman monitoring of the solid and gas phases during the formation and growth of carbon nanostructures inside a cold wall CCVD reactor. Carbon 78:164–180CrossRef Reinhold-López K, Braeuer A, Romann B et al (2014) Simultaneous in situ Raman monitoring of the solid and gas phases during the formation and growth of carbon nanostructures inside a cold wall CCVD reactor. Carbon 78:164–180CrossRef
390.
Zurück zum Zitat Nishimura K, Okazaki N, Pan L, Nakayama Y (2004) In situ study of iron catalysts for carbon nanotube growth using X-ray diffraction analysis. Jpn J Appl Phys 43:L471–L474CrossRef Nishimura K, Okazaki N, Pan L, Nakayama Y (2004) In situ study of iron catalysts for carbon nanotube growth using X-ray diffraction analysis. Jpn J Appl Phys 43:L471–L474CrossRef
391.
Zurück zum Zitat Mattevi C, Wirth CT, Hofmann S et al (2008) In-situ X-ray photoelectron spectroscopy study of catalyst-support interactions and growth of carbon nanotube forests. J Phys Chem C 112:12207–12213CrossRef Mattevi C, Wirth CT, Hofmann S et al (2008) In-situ X-ray photoelectron spectroscopy study of catalyst-support interactions and growth of carbon nanotube forests. J Phys Chem C 112:12207–12213CrossRef
392.
Zurück zum Zitat Lin M, Ying Tan JP, Boothroyd C et al (2006) Direct observation of single-walled carbon nanotube growth at the atomistic scale. Nano Lett 6:449–452CrossRef Lin M, Ying Tan JP, Boothroyd C et al (2006) Direct observation of single-walled carbon nanotube growth at the atomistic scale. Nano Lett 6:449–452CrossRef
393.
Zurück zum Zitat Yoshida H, Takeda S, Uchiyama T et al (2008) Atomic-scale in-situ observation of carbon nanotube growth from solid state iron carbide nanoparticles. Nano Lett 8:2082–2086CrossRef Yoshida H, Takeda S, Uchiyama T et al (2008) Atomic-scale in-situ observation of carbon nanotube growth from solid state iron carbide nanoparticles. Nano Lett 8:2082–2086CrossRef
394.
Zurück zum Zitat Zhang L, Hou PX, Li S et al (2014) In situ TEM observations on the sulfur-assisted catalytic growth of single-wall carbon nanotubes. J Phys Chem Lett 5:1427–1432CrossRef Zhang L, Hou PX, Li S et al (2014) In situ TEM observations on the sulfur-assisted catalytic growth of single-wall carbon nanotubes. J Phys Chem Lett 5:1427–1432CrossRef
395.
Zurück zum Zitat Futaba DN, Hata K, Yamada T et al (2005) Kinetics of water-assisted single-walled carbon nanotube synthesis revealed by a time-evolution analysis. Phys Rev Lett 95:056104CrossRef Futaba DN, Hata K, Yamada T et al (2005) Kinetics of water-assisted single-walled carbon nanotube synthesis revealed by a time-evolution analysis. Phys Rev Lett 95:056104CrossRef
396.
Zurück zum Zitat Helveg S, López-Cartes C, Sehested J et al (2004) Atomic-scale imaging of carbon nanofibre growth. Nature 427:426–429CrossRef Helveg S, López-Cartes C, Sehested J et al (2004) Atomic-scale imaging of carbon nanofibre growth. Nature 427:426–429CrossRef
397.
Zurück zum Zitat Stadermann M, Sherlock SP, In J-B et al (2009) Mechanism and kinetics of growth termination in controlled chemical vapor deposition growth of multiwall carbon nanotube arrays. Nano Lett 9:738–744CrossRef Stadermann M, Sherlock SP, In J-B et al (2009) Mechanism and kinetics of growth termination in controlled chemical vapor deposition growth of multiwall carbon nanotube arrays. Nano Lett 9:738–744CrossRef
398.
Zurück zum Zitat Yamada T, Maigne A, Yudasaka M et al (2008) Revealing the secret of water-assisted carbon nanotube synthesis by microscopic observation of the interaction of water on the catalysts. Nano Lett 8:4288–4292CrossRef Yamada T, Maigne A, Yudasaka M et al (2008) Revealing the secret of water-assisted carbon nanotube synthesis by microscopic observation of the interaction of water on the catalysts. Nano Lett 8:4288–4292CrossRef
399.
Zurück zum Zitat Nishino H, Yasuda S, Namai T et al (2007) Water-assisted highly efficient synthesis of single-walled carbon nanotubes forests from colloidal nanoparticle catalysts. J Phys Chem C 111:17961–17965CrossRef Nishino H, Yasuda S, Namai T et al (2007) Water-assisted highly efficient synthesis of single-walled carbon nanotubes forests from colloidal nanoparticle catalysts. J Phys Chem C 111:17961–17965CrossRef
400.
Zurück zum Zitat Pint CL, Pheasant ST, Parra-Vasquez ANG et al (2009) Investigation of optimal parameters for oxide-assisted growth of vertically aligned single-walled carbon nanotubes. J Phys Chem C 113:4125–4133CrossRef Pint CL, Pheasant ST, Parra-Vasquez ANG et al (2009) Investigation of optimal parameters for oxide-assisted growth of vertically aligned single-walled carbon nanotubes. J Phys Chem C 113:4125–4133CrossRef
401.
Zurück zum Zitat Reilly PTA, Whitten WB (2006) The role of free radical condensates in the production of carbon nanotubes during the hydrocarbon CVD process. Carbon 44:1653–1660CrossRef Reilly PTA, Whitten WB (2006) The role of free radical condensates in the production of carbon nanotubes during the hydrocarbon CVD process. Carbon 44:1653–1660CrossRef
402.
Zurück zum Zitat Schünemann C, Schäffel F, Bachmatiuk A et al (2011) Catalyst poisoning by amorphous carbon during carbon nanotube growth: fact or fiction? ACS Nano 5:8928–8934CrossRef Schünemann C, Schäffel F, Bachmatiuk A et al (2011) Catalyst poisoning by amorphous carbon during carbon nanotube growth: fact or fiction? ACS Nano 5:8928–8934CrossRef
403.
Zurück zum Zitat Xiang R, Yang Z, Zhang Q et al (2008) Growth deceleration of vertically aligned carbon nanotube arrays: catalyst deactivation or feedstock diffusion controlled? J Phys Chem C 112:4892–4896CrossRef Xiang R, Yang Z, Zhang Q et al (2008) Growth deceleration of vertically aligned carbon nanotube arrays: catalyst deactivation or feedstock diffusion controlled? J Phys Chem C 112:4892–4896CrossRef
404.
Zurück zum Zitat Bedewy M, Meshot ER, Guo H et al (2009) Collective mechanism for the evolution and self-termination of vertically aligned carbon nanotube growth. J Phys Chem C 113:20576–20582CrossRef Bedewy M, Meshot ER, Guo H et al (2009) Collective mechanism for the evolution and self-termination of vertically aligned carbon nanotube growth. J Phys Chem C 113:20576–20582CrossRef
405.
Zurück zum Zitat Bower C, Zhou O, Zhu W et al (2000) Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition. Appl Phys Lett 77:2767–2769CrossRef Bower C, Zhou O, Zhu W et al (2000) Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition. Appl Phys Lett 77:2767–2769CrossRef
406.
Zurück zum Zitat Li J, Papadopoulos C, Xu JM, Moskovits M (1999) Highly-ordered carbon nanotube arrays for electronics applications. Appl Phys Lett 75:367–369CrossRef Li J, Papadopoulos C, Xu JM, Moskovits M (1999) Highly-ordered carbon nanotube arrays for electronics applications. Appl Phys Lett 75:367–369CrossRef
407.
Zurück zum Zitat Kumar M, Ando Y (2010) Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J Nanosci Nanotechnol 10:3739–3758CrossRef Kumar M, Ando Y (2010) Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J Nanosci Nanotechnol 10:3739–3758CrossRef
408.
Zurück zum Zitat Rodriguez NM (1993) A review of catalytically grown carbon nanofibers. J Mater Res 8:3233–3250CrossRef Rodriguez NM (1993) A review of catalytically grown carbon nanofibers. J Mater Res 8:3233–3250CrossRef
409.
Zurück zum Zitat Tibbetts GG (1984) Why are carbon filaments tubular? J Cryst Growth 66:632–638CrossRef Tibbetts GG (1984) Why are carbon filaments tubular? J Cryst Growth 66:632–638CrossRef
410.
Zurück zum Zitat Ding F, Bolton K, Rosén A (2006) Molecular dynamics study of SWNT growth on catalyst particles without temperature gradients. Comput Mater Sci 35:243–246CrossRef Ding F, Bolton K, Rosén A (2006) Molecular dynamics study of SWNT growth on catalyst particles without temperature gradients. Comput Mater Sci 35:243–246CrossRef
411.
Zurück zum Zitat Bolton K, Ding F, Rosén A (2006) Atomistic simulations of catalyzed carbon nanotube growth. J Nanosci Nanotechnol 6:1211–1224CrossRef Bolton K, Ding F, Rosén A (2006) Atomistic simulations of catalyzed carbon nanotube growth. J Nanosci Nanotechnol 6:1211–1224CrossRef
412.
Zurück zum Zitat Kitiyanan B, Alvarez WE, Harwell JH, Resasco DE (2000) Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co–Mo catalysts. Chem Phys Lett 317:497–503CrossRef Kitiyanan B, Alvarez WE, Harwell JH, Resasco DE (2000) Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co–Mo catalysts. Chem Phys Lett 317:497–503CrossRef
413.
Zurück zum Zitat Li Y, Liu J, Wang Y, Wang ZL (2001) Preparation of monodispersed Fe–Mo nanoparticles as the catalyst for CVD synthesis of carbon nanotubes. Chem Mater 13:1008–1014CrossRef Li Y, Liu J, Wang Y, Wang ZL (2001) Preparation of monodispersed Fe–Mo nanoparticles as the catalyst for CVD synthesis of carbon nanotubes. Chem Mater 13:1008–1014CrossRef
414.
Zurück zum Zitat Thurakitseree T, Einarsson E, Xiang R et al (2012) Diameter controlled chemical vapor deposition synthesis of single-walled carbon nanotubes. J Nanosci Nanotechnol 12:370–376CrossRef Thurakitseree T, Einarsson E, Xiang R et al (2012) Diameter controlled chemical vapor deposition synthesis of single-walled carbon nanotubes. J Nanosci Nanotechnol 12:370–376CrossRef
415.
Zurück zum Zitat Ayala P, Grüneis A, Gemming T et al (2007) Tailoring N-doped single and double wall carbon nanotubes from a nondiluted carbon/nitrogen feedstock. J Phys Chem C 111:2879–2884CrossRef Ayala P, Grüneis A, Gemming T et al (2007) Tailoring N-doped single and double wall carbon nanotubes from a nondiluted carbon/nitrogen feedstock. J Phys Chem C 111:2879–2884CrossRef
416.
Zurück zum Zitat Cassell MA, Raymakers AJ, Kong J et al (1999) Large scale CVD synthesis of single-walled carbon nanotubes. J Phys Chem B 103:6484–6492CrossRef Cassell MA, Raymakers AJ, Kong J et al (1999) Large scale CVD synthesis of single-walled carbon nanotubes. J Phys Chem B 103:6484–6492CrossRef
417.
Zurück zum Zitat Liu B, Ren W, Li S et al (2012) High temperature selective growth of single-walled carbon nanotubes with a narrow chirality distribution from a CoPt bimetallic catalyst. Chem Commun 48:2409CrossRef Liu B, Ren W, Li S et al (2012) High temperature selective growth of single-walled carbon nanotubes with a narrow chirality distribution from a CoPt bimetallic catalyst. Chem Commun 48:2409CrossRef
418.
Zurück zum Zitat Yang F, Wang X, Zhang D et al (2014) Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 510:522–524CrossRef Yang F, Wang X, Zhang D et al (2014) Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 510:522–524CrossRef
419.
Zurück zum Zitat Wang H, Wei L, Ren F et al (2013) Chiral-selective CoSo4/SiO2 catalyst for (9,8) single-walled carbon nanotube growth. ACS Nano 7:614–626CrossRef Wang H, Wei L, Ren F et al (2013) Chiral-selective CoSo4/SiO2 catalyst for (9,8) single-walled carbon nanotube growth. ACS Nano 7:614–626CrossRef
420.
Zurück zum Zitat Wang H, Wang B, Quek XY et al (2010) Selective synthesis of (9,8) single walled carbon nanotubes on cobalt incorporated TUD-1 catalysts. J Am Chem Soc 132:16747–16749CrossRef Wang H, Wang B, Quek XY et al (2010) Selective synthesis of (9,8) single walled carbon nanotubes on cobalt incorporated TUD-1 catalysts. J Am Chem Soc 132:16747–16749CrossRef
421.
Zurück zum Zitat He M, Jiang H, Liu B et al (2013) Chiral-selective growth of single-walled carbon nanotubes on lattice-mismatched epitaxial cobalt nanoparticles. Sci Rep 3:1460 He M, Jiang H, Liu B et al (2013) Chiral-selective growth of single-walled carbon nanotubes on lattice-mismatched epitaxial cobalt nanoparticles. Sci Rep 3:1460
422.
Zurück zum Zitat Ding F, Harutyunyan AR, Yakobson BI (2009) Dislocation theory of chirality-controlled nanotube growth. Proc Natl Acad Sci USA 106:2506–2509CrossRef Ding F, Harutyunyan AR, Yakobson BI (2009) Dislocation theory of chirality-controlled nanotube growth. Proc Natl Acad Sci USA 106:2506–2509CrossRef
423.
Zurück zum Zitat Ibrahim I, Zhang Y, Popov A et al (2013) Growth of all-carbon horizontally aligned single-walled carbon nanotubes nucleated from fullerene-based structures. Nanoscale Res Lett 8:265CrossRef Ibrahim I, Zhang Y, Popov A et al (2013) Growth of all-carbon horizontally aligned single-walled carbon nanotubes nucleated from fullerene-based structures. Nanoscale Res Lett 8:265CrossRef
424.
Zurück zum Zitat Yu X, Zhang J, Choi W et al (2010) Cap formation engineering: from opened C60 to single-walled carbon nanotubes. Nano Lett 10:3343–3349CrossRef Yu X, Zhang J, Choi W et al (2010) Cap formation engineering: from opened C60 to single-walled carbon nanotubes. Nano Lett 10:3343–3349CrossRef
425.
Zurück zum Zitat Liu Y, Xu M, Zhu X et al (2014) Synthesis of carbon nanotubes on graphene quantum dot surface by catalyst free chemical vapor deposition. Carbon 68:399–405CrossRef Liu Y, Xu M, Zhu X et al (2014) Synthesis of carbon nanotubes on graphene quantum dot surface by catalyst free chemical vapor deposition. Carbon 68:399–405CrossRef
426.
Zurück zum Zitat Takagi D, Hibino H, Suzuki S et al (2007) Carbon nanotube growth from semiconductor nanoparticles. Nano Lett 7:2272–2275CrossRef Takagi D, Hibino H, Suzuki S et al (2007) Carbon nanotube growth from semiconductor nanoparticles. Nano Lett 7:2272–2275CrossRef
427.
Zurück zum Zitat Scott A, Dianat A, Börrnert F et al (2011) The catalytic potential of high-κ dielectrics for graphene formation. Appl Phys Lett 98:073110CrossRef Scott A, Dianat A, Börrnert F et al (2011) The catalytic potential of high-κ dielectrics for graphene formation. Appl Phys Lett 98:073110CrossRef
428.
Zurück zum Zitat Huang S, Cai Q, Chen J et al (2009) Metal-catalyst-free growth of single-walled carbon nanotubes on substrates. J Am Chem Soc 131:2094–2095CrossRef Huang S, Cai Q, Chen J et al (2009) Metal-catalyst-free growth of single-walled carbon nanotubes on substrates. J Am Chem Soc 131:2094–2095CrossRef
429.
Zurück zum Zitat Liu B, Tang DM, Sun C et al (2011) Importance of oxygen in the metal-free catalytic growth of single-walled carbon nanotubes from SiOx by a vapor-solid-solid mechanism. J Am Chem Soc 133:197–199CrossRef Liu B, Tang DM, Sun C et al (2011) Importance of oxygen in the metal-free catalytic growth of single-walled carbon nanotubes from SiOx by a vapor-solid-solid mechanism. J Am Chem Soc 133:197–199CrossRef
430.
Zurück zum Zitat Kang L, Hu Y, Liu L et al (2015) Growth of close-packed semiconducting single-walled carbon nanotube arrays using oxygen-deficient TiO2 nanoparticles as catalysts. Nano Lett 15:403–409CrossRef Kang L, Hu Y, Liu L et al (2015) Growth of close-packed semiconducting single-walled carbon nanotube arrays using oxygen-deficient TiO2 nanoparticles as catalysts. Nano Lett 15:403–409CrossRef
431.
Zurück zum Zitat Steiner SA, Baumann TF, Bayer BC et al (2009) Nanoscale zirconia as a nonmetallic catalyst for graphitization of carbon and growth of single- and multiwall carbon nanotubes. J Am Chem Soc 131:12144–12154CrossRef Steiner SA, Baumann TF, Bayer BC et al (2009) Nanoscale zirconia as a nonmetallic catalyst for graphitization of carbon and growth of single- and multiwall carbon nanotubes. J Am Chem Soc 131:12144–12154CrossRef
432.
Zurück zum Zitat Kudo A, Steiner SA, Bayer BC et al (2014) CVD growth of carbon nanostructures from zirconia: mechanisms and a method for enhancing yield. J Am Chem Soc 136:17808–17817CrossRef Kudo A, Steiner SA, Bayer BC et al (2014) CVD growth of carbon nanostructures from zirconia: mechanisms and a method for enhancing yield. J Am Chem Soc 136:17808–17817CrossRef
433.
Zurück zum Zitat Ning G, Xu C, Zhu X et al (2013) MgO-catalyzed growth of N-doped wrinkled carbon nanotubes. Carbon 56:38–44CrossRef Ning G, Xu C, Zhu X et al (2013) MgO-catalyzed growth of N-doped wrinkled carbon nanotubes. Carbon 56:38–44CrossRef
434.
Zurück zum Zitat Gao F, Zhang L, Huang S (2010) Zinc oxide catalyzed growth of single-walled carbon nanotubes. Appl Surf Sci 256:2323–2326CrossRef Gao F, Zhang L, Huang S (2010) Zinc oxide catalyzed growth of single-walled carbon nanotubes. Appl Surf Sci 256:2323–2326CrossRef
435.
Zurück zum Zitat Lin J-H, Chen C-S, Rümmeli MH, Zeng Z-Y (2010) Self-assembly formation of multi-walled carbon nanotubes on gold surfaces. Nanoscale 2:2835–2840CrossRef Lin J-H, Chen C-S, Rümmeli MH, Zeng Z-Y (2010) Self-assembly formation of multi-walled carbon nanotubes on gold surfaces. Nanoscale 2:2835–2840CrossRef
436.
Zurück zum Zitat Liu BL, Ren WC, Gao LB et al (2008) Manganese-catalyzed surface growth of single-walled carbon nanotubes with high efficiency. J Phys Chem C 112:19231–19235CrossRef Liu BL, Ren WC, Gao LB et al (2008) Manganese-catalyzed surface growth of single-walled carbon nanotubes with high efficiency. J Phys Chem C 112:19231–19235CrossRef
437.
Zurück zum Zitat Yuan D, Ding L, Chu H et al (2008) Horizontally aligned single-walled carbon nanotube on quartz from a large variety of metal catalysts. Nano Lett 8:2576–2579CrossRef Yuan D, Ding L, Chu H et al (2008) Horizontally aligned single-walled carbon nanotube on quartz from a large variety of metal catalysts. Nano Lett 8:2576–2579CrossRef
438.
Zurück zum Zitat Takagi D, Homma Y, Hibino H et al (2006) Single-walled carbon nanotube growth from highly activated metal nanoparticles. Nano Lett 6:2642–2645CrossRef Takagi D, Homma Y, Hibino H et al (2006) Single-walled carbon nanotube growth from highly activated metal nanoparticles. Nano Lett 6:2642–2645CrossRef
439.
Zurück zum Zitat Zhou W, Han Z, Wang J et al (2006) Copper catalyzing growth of single-walled carbon nanotubes on substrates. Nano Lett 6:2987–2990CrossRef Zhou W, Han Z, Wang J et al (2006) Copper catalyzing growth of single-walled carbon nanotubes on substrates. Nano Lett 6:2987–2990CrossRef
440.
Zurück zum Zitat Mizutani Y, Fukuoka N, Naritsuka S et al (2012) Single-walled carbon nanotube synthesis on SiO2/Si substrates at very low pressures by the alcohol gas source method using a Pt catalyst. Diam Relat Mater 26:78–82CrossRef Mizutani Y, Fukuoka N, Naritsuka S et al (2012) Single-walled carbon nanotube synthesis on SiO2/Si substrates at very low pressures by the alcohol gas source method using a Pt catalyst. Diam Relat Mater 26:78–82CrossRef
441.
Zurück zum Zitat Ritschel M, Leonhardt A, Elefant D et al (2007) Rhenium-catalyzed growth carbon nanotubes. J Phys Chem C 111:8414–8417CrossRef Ritschel M, Leonhardt A, Elefant D et al (2007) Rhenium-catalyzed growth carbon nanotubes. J Phys Chem C 111:8414–8417CrossRef
442.
Zurück zum Zitat Xu X, Yang C, Yang Z et al (2014) Carbon nanotube growth from alkali metal salt nanoparticles. Carbon 80:490–495CrossRef Xu X, Yang C, Yang Z et al (2014) Carbon nanotube growth from alkali metal salt nanoparticles. Carbon 80:490–495CrossRef
Metadaten
Titel
CVD growth of 1D and 2D sp2 carbon nanomaterials
verfasst von
Jinbo Pang
Alicja Bachmatiuk
Imad Ibrahim
Lei Fu
Daniela Placha
Grazyna Simha Martynkova
Barbara Trzebicka
Thomas Gemming
Juergen Eckert
Mark H. Rümmeli
Publikationsdatum
21.09.2015
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 2/2016
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-015-9440-z

Weitere Artikel der Ausgabe 2/2016

Journal of Materials Science 2/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.