Skip to main content
Erschienen in: Journal of Materials Science 20/2016

07.07.2016 | Original Paper

Tailoring transport properties through nonstoichiometry in BaTiO3–BiScO3 and SrTiO3–Bi(Zn1/2Ti1/2)O3 for capacitor applications

verfasst von: Nitish Kumar, David P. Cann

Erschienen in: Journal of Materials Science | Ausgabe 20/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The ceramic perovskite solid solutions BaTiO3–BiScO3 (BT–BS) and SrTiO3–Bi(Zn1/2Ti1/2)O3 (ST–BZT) are promising candidates for high-temperature and high-energy density dielectric applications. A-site cation nonstoichiometry was introduced in these two ceramic systems to investigate their effects on the dielectric and transport properties using temperature- and oxygen partial pressure-dependent AC impedance spectroscopy. For p-type BT–BS ceramics, the addition of excess Bi led to effective donor doping along with a significant improvement in insulation properties. A similar effect was observed on introducing Ba vacancies onto the A-sublattice. However, Bi deficiency registered an opposite effect with effective acceptor doping and a deterioration in the bulk resistivity values. For n-type intrinsic ST–BZT ceramics, the addition of excess Sr onto the A-sublattice resulted in a decrease in resistivity values, as expected. Introduction of Sr vacancies or addition of excess Bi on A-site did not appear to affect the insulation properties in air. These results indicate that minor levels of nonstoichiometry can have an important impact on the material properties, and furthermore it demonstrates the difficulties encountered in trying to establish a general model for the defect chemistry of Bi-containing perovskite systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hennings D (1987) Barium titanate based ceramic materials for dielectric use. Int J High Technol Ceram 3(2):91–111CrossRef Hennings D (1987) Barium titanate based ceramic materials for dielectric use. Int J High Technol Ceram 3(2):91–111CrossRef
2.
Zurück zum Zitat Aksel E, Jones JL (2010) Advances in lead-free piezoelectric materials for sensors and actuators. Sensors 10(3):1935–1954CrossRef Aksel E, Jones JL (2010) Advances in lead-free piezoelectric materials for sensors and actuators. Sensors 10(3):1935–1954CrossRef
3.
Zurück zum Zitat Maeder MD, Damjanovic D, Setter N (2004) Lead free piezoelectric materials. J Electroceram 13(1–3):385–392CrossRef Maeder MD, Damjanovic D, Setter N (2004) Lead free piezoelectric materials. J Electroceram 13(1–3):385–392CrossRef
4.
Zurück zum Zitat Merkle R, Maier J (2008) How is oxygen incorporated into oxides? A comprehensive kinetic study of a simple solid-state reaction with SrTiO3 as a model material. Angew Chem Int Ed 47(21):3874–3894CrossRef Merkle R, Maier J (2008) How is oxygen incorporated into oxides? A comprehensive kinetic study of a simple solid-state reaction with SrTiO3 as a model material. Angew Chem Int Ed 47(21):3874–3894CrossRef
5.
Zurück zum Zitat Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics. Academic Press, London Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics. Academic Press, London
6.
Zurück zum Zitat Moulson AJ, Herbert JM (2003) Electroceramics: materials, properties, applications. Wiley, ChichesterCrossRef Moulson AJ, Herbert JM (2003) Electroceramics: materials, properties, applications. Wiley, ChichesterCrossRef
7.
Zurück zum Zitat Zeb A, Milne S (2015) High temperature dielectric ceramics: a review of temperature-stable high-permittivity perovskites. J Mater Sci: Mater Electron 26(12):9243–9255 Zeb A, Milne S (2015) High temperature dielectric ceramics: a review of temperature-stable high-permittivity perovskites. J Mater Sci: Mater Electron 26(12):9243–9255
8.
Zurück zum Zitat Wada S, Yamato K, Pulpan P, Kumada N, Lee B-Y, Iijima T, Moriyoshi C, Kuroiwa Y (2010) Piezoelectric properties of high Curie temperature barium titanate–bismuth perovskite-type oxide system ceramics. J Appl Phys 108(9):094114CrossRef Wada S, Yamato K, Pulpan P, Kumada N, Lee B-Y, Iijima T, Moriyoshi C, Kuroiwa Y (2010) Piezoelectric properties of high Curie temperature barium titanate–bismuth perovskite-type oxide system ceramics. J Appl Phys 108(9):094114CrossRef
9.
Zurück zum Zitat Zhang Q, Li Z, Li F, Xu Z (2011) Structural and dielectric properties of Bi (Mg1/2Ti1/2)O3–BaTiO3 lead-free ceramics. J Am Ceram Soc 94(12):4335–4339CrossRef Zhang Q, Li Z, Li F, Xu Z (2011) Structural and dielectric properties of Bi (Mg1/2Ti1/2)O3–BaTiO3 lead-free ceramics. J Am Ceram Soc 94(12):4335–4339CrossRef
10.
Zurück zum Zitat Hao H, Liu H, Zhang S, Xiong B, Shu X, Yao Z, Cao M (2012) Fabrication, structure and property of BaTiO3-based dielectric ceramics with a multilayer core–shell structure. Scr Mater 67(5):451–454CrossRef Hao H, Liu H, Zhang S, Xiong B, Shu X, Yao Z, Cao M (2012) Fabrication, structure and property of BaTiO3-based dielectric ceramics with a multilayer core–shell structure. Scr Mater 67(5):451–454CrossRef
11.
Zurück zum Zitat Kumar N, Cann DP (2015) Resistivity enhancement and transport mechanisms in (1 − x)BaTiO3–xBi(Zn1/2Ti1/2)O3 and (1 − x)SrTiO3–xBi(Zn1/2Ti1/2)O3. J Am Ceram Soc 98(8):2548–2555CrossRef Kumar N, Cann DP (2015) Resistivity enhancement and transport mechanisms in (1 − x)BaTiO3xBi(Zn1/2Ti1/2)O3 and (1 − x)SrTiO3xBi(Zn1/2Ti1/2)O3. J Am Ceram Soc 98(8):2548–2555CrossRef
12.
Zurück zum Zitat Dai S, Lu H, Chen F, Chen Z, Ren Z, Ng D (2002) In-doped SrTiO3 ceramic thin films. Appl Phys Lett 80:3545CrossRef Dai S, Lu H, Chen F, Chen Z, Ren Z, Ng D (2002) In-doped SrTiO3 ceramic thin films. Appl Phys Lett 80:3545CrossRef
13.
Zurück zum Zitat Denk I, Münch W, Maier J (1995) Partial conductivities in SrTiO3: bulk polarization experiments, oxygen concentration cell measurements, and defect-chemical modeling. J Am Ceram Soc 78(12):3265–3272CrossRef Denk I, Münch W, Maier J (1995) Partial conductivities in SrTiO3: bulk polarization experiments, oxygen concentration cell measurements, and defect-chemical modeling. J Am Ceram Soc 78(12):3265–3272CrossRef
14.
Zurück zum Zitat Gerblinger J, Meixner H (1991) Fast oxygen sensors based on sputtered strontium titanate. Sens Actuators B: Chem 4(1–2):99–102CrossRef Gerblinger J, Meixner H (1991) Fast oxygen sensors based on sputtered strontium titanate. Sens Actuators B: Chem 4(1–2):99–102CrossRef
15.
Zurück zum Zitat Choi SM, Stringer CJ, Shrout TR, Randall CA (2005) Structure and property investigation of a Bi-based perovskite solid solution:(1 − x)Bi(Ni1/2Ti1/2)O3–xPbTiO3. J Appl Phys 98(3):034108CrossRef Choi SM, Stringer CJ, Shrout TR, Randall CA (2005) Structure and property investigation of a Bi-based perovskite solid solution:(1 − x)Bi(Ni1/2Ti1/2)O3xPbTiO3. J Appl Phys 98(3):034108CrossRef
16.
Zurück zum Zitat Smolenskii G, Isupov V, Agranovskaya A, Popov S (1961) Ferroelectrics with diffuse phase transitions. Soviet Phys Solid State 2(11):2584–2594 Smolenskii G, Isupov V, Agranovskaya A, Popov S (1961) Ferroelectrics with diffuse phase transitions. Soviet Phys Solid State 2(11):2584–2594
17.
Zurück zum Zitat Raengthon N, Cann DP (2012) High temperature electronic properties of BaTiO3–Bi(Zn1/2Ti1/2)O3–BiInO3 for capacitor applications. J Electroceram 28(2–3):165–171CrossRef Raengthon N, Cann DP (2012) High temperature electronic properties of BaTiO3–Bi(Zn1/2Ti1/2)O3–BiInO3 for capacitor applications. J Electroceram 28(2–3):165–171CrossRef
18.
Zurück zum Zitat Dittmer R, Jo W, Damjanovic D, Rödel J (2011) Lead-free high-temperature dielectrics with wide operational range. J Appl Phys 109:034107CrossRef Dittmer R, Jo W, Damjanovic D, Rödel J (2011) Lead-free high-temperature dielectrics with wide operational range. J Appl Phys 109:034107CrossRef
19.
Zurück zum Zitat Huang C-C, Cann DP, Tan X, Vittayakorn N (2007) Phase transitions and ferroelectric properties in BiScO3–Bi(Zn1/2Ti1/2)O3–BaTiO3 solid solutions. J Appl Phys 102(4):044103CrossRef Huang C-C, Cann DP, Tan X, Vittayakorn N (2007) Phase transitions and ferroelectric properties in BiScO3–Bi(Zn1/2Ti1/2)O3–BaTiO3 solid solutions. J Appl Phys 102(4):044103CrossRef
20.
Zurück zum Zitat Ogihara H, Randall CA, Trolier-McKinstry S (2009) High-energy density capacitors utilizing 0.7BaTiO3–0.3BiScO3 ceramics. J Am Ceram Soc 92(8):1719–1724CrossRef Ogihara H, Randall CA, Trolier-McKinstry S (2009) High-energy density capacitors utilizing 0.7BaTiO3–0.3BiScO3 ceramics. J Am Ceram Soc 92(8):1719–1724CrossRef
21.
Zurück zum Zitat Fujii I, Nakashima K, Kumada N, Wada S (2012) Structural, dielectric, and piezoelectric properties of BaTiO3–Bi(Ni1/2Ti1/2)O3 ceramics. J Ceram Soc Jpn 120(1397):30–34CrossRef Fujii I, Nakashima K, Kumada N, Wada S (2012) Structural, dielectric, and piezoelectric properties of BaTiO3–Bi(Ni1/2Ti1/2)O3 ceramics. J Ceram Soc Jpn 120(1397):30–34CrossRef
22.
Zurück zum Zitat Wang Y, Chen X, Zhou H, Fang L, Liu L, Zhang H (2013) Evolution of phase transformation behavior and dielectric temperature stability of BaTiO3–Bi(Zn0.5Zr0.5)O3 ceramics system. J Alloy Compd 551:365–369CrossRef Wang Y, Chen X, Zhou H, Fang L, Liu L, Zhang H (2013) Evolution of phase transformation behavior and dielectric temperature stability of BaTiO3–Bi(Zn0.5Zr0.5)O3 ceramics system. J Alloy Compd 551:365–369CrossRef
23.
Zurück zum Zitat Huang C-C (2008) Structure and piezoelectric properties of lead-free bismuth-based perovskite solid solutions. ProQuest Huang C-C (2008) Structure and piezoelectric properties of lead-free bismuth-based perovskite solid solutions. ProQuest
24.
Zurück zum Zitat Choi DH, Baker A, Lanagan M, Trolier-McKinstry S, Randall C (2013) Structural and dielectric properties in (1 − x)BaTiO3–xBi(Mg1/2Ti1/2)O3 ceramics (0.1 ≤ x ≤ 0.5) and potential for high-voltage multilayer capacitors. j Am Ceram Soc 96(7):2197–2202CrossRef Choi DH, Baker A, Lanagan M, Trolier-McKinstry S, Randall C (2013) Structural and dielectric properties in (1 − x)BaTiO3xBi(Mg1/2Ti1/2)O3 ceramics (0.1 ≤ x ≤ 0.5) and potential for high-voltage multilayer capacitors. j Am Ceram Soc 96(7):2197–2202CrossRef
25.
Zurück zum Zitat Kumar N, Ionin A, Ansell T, Kwon S, Hackenberger W, Cann D (2015) Multilayer ceramic capacitors based on relaxor BaTiO3–Bi(Zn1/2Ti1/2)O3 for temperature stable and high energy density capacitor applications. Appl Phys Lett 106(25):252901CrossRef Kumar N, Ionin A, Ansell T, Kwon S, Hackenberger W, Cann D (2015) Multilayer ceramic capacitors based on relaxor BaTiO3–Bi(Zn1/2Ti1/2)O3 for temperature stable and high energy density capacitor applications. Appl Phys Lett 106(25):252901CrossRef
26.
Zurück zum Zitat Takenaka T, K-i Maruyama, Sakata K (1991) (Bi1/2Na1/2)TiO3–BaTiO3 system for lead-free piezoelectric ceramics. Jpn J Appl Phys 30(9S):2236–2239CrossRef Takenaka T, K-i Maruyama, Sakata K (1991) (Bi1/2Na1/2)TiO3–BaTiO3 system for lead-free piezoelectric ceramics. Jpn J Appl Phys 30(9S):2236–2239CrossRef
27.
Zurück zum Zitat Shrout TR, Zhang SJ (2007) Lead-free piezoelectric ceramics: alternatives for PZT? J Electroceram 19(1):113–126CrossRef Shrout TR, Zhang SJ (2007) Lead-free piezoelectric ceramics: alternatives for PZT? J Electroceram 19(1):113–126CrossRef
28.
Zurück zum Zitat Kumar N, Patterson EA, Frömling T, Cann DP (2016) Conduction mechanisms in BaTiO3–Bi(Zn1/2Ti1/2)O3 ceramics. J Am Ceram Soc. doi:10.1111/jace.14313 Kumar N, Patterson EA, Frömling T, Cann DP (2016) Conduction mechanisms in BaTiO3–Bi(Zn1/2Ti1/2)O3 ceramics. J Am Ceram Soc. doi:10.​1111/​jace.​14313
29.
Zurück zum Zitat Kumar N, Patterson EA, Frömling T, Cann DP (2016) DC-bias dependent impedance spectroscopy of BaTiO3–Bi(Zn1/2Ti1/2)O3 ceramics. J Mater Chem C 4(9):1782–1786CrossRef Kumar N, Patterson EA, Frömling T, Cann DP (2016) DC-bias dependent impedance spectroscopy of BaTiO3–Bi(Zn1/2Ti1/2)O3 ceramics. J Mater Chem C 4(9):1782–1786CrossRef
30.
31.
Zurück zum Zitat Raengthon N, Sebastian T, Cumming D, Reaney IM, Cann DP (2012) BaTiO3–Bi(Zn1/2Ti1/2)O3–BiScO3 ceramics for high-temperature capacitor applications. J Am Ceram Soc 95(11):3554–3561CrossRef Raengthon N, Sebastian T, Cumming D, Reaney IM, Cann DP (2012) BaTiO3–Bi(Zn1/2Ti1/2)O3–BiScO3 ceramics for high-temperature capacitor applications. J Am Ceram Soc 95(11):3554–3561CrossRef
32.
Zurück zum Zitat Hirose N, West AR (1996) Impedance spectroscopy of undoped BaTiO3 ceramics. J Am Ceram Soc 79(6):1633–1641CrossRef Hirose N, West AR (1996) Impedance spectroscopy of undoped BaTiO3 ceramics. J Am Ceram Soc 79(6):1633–1641CrossRef
33.
Zurück zum Zitat Irvine JT, Sinclair DC, West AR (1990) Electroceramics: characterization by impedance spectroscopy. Adv Mater 2(3):132–138CrossRef Irvine JT, Sinclair DC, West AR (1990) Electroceramics: characterization by impedance spectroscopy. Adv Mater 2(3):132–138CrossRef
34.
Zurück zum Zitat Smyth DM (2000) The defect chemistry of metal oxides. Oxford University Press, Oxford, p 304. ISBN-10: 0195110145; ISBN-13: 9780195110142 Smyth DM (2000) The defect chemistry of metal oxides. Oxford University Press, Oxford, p 304. ISBN-10: 0195110145; ISBN-13: 9780195110142
35.
Zurück zum Zitat Cross LE (1987) Relaxor ferroelectrics. Ferroelectrics 76(1):241–267CrossRef Cross LE (1987) Relaxor ferroelectrics. Ferroelectrics 76(1):241–267CrossRef
36.
Zurück zum Zitat Kleemann W (2006) The relaxor enigma—charge disorder and random fields in ferroelectrics. In: Lang SB, Chan HLW (eds) Frontiers of ferroelectricity. Springer, New York, pp 129–136 Kleemann W (2006) The relaxor enigma—charge disorder and random fields in ferroelectrics. In: Lang SB, Chan HLW (eds) Frontiers of ferroelectricity. Springer, New York, pp 129–136
37.
Zurück zum Zitat Samara GA (2003) The relaxational properties of compositionally disordered ABO3 perovskites. J Phys: Condens Matter 15(9):R367 Samara GA (2003) The relaxational properties of compositionally disordered ABO3 perovskites. J Phys: Condens Matter 15(9):R367
38.
Zurück zum Zitat Shvartsman VV, Lupascu DC (2012) Lead-free relaxor ferroelectrics. J Am Ceram Soc 95(1):1–26CrossRef Shvartsman VV, Lupascu DC (2012) Lead-free relaxor ferroelectrics. J Am Ceram Soc 95(1):1–26CrossRef
39.
Zurück zum Zitat Ogihara H, Randall CA, Trolier-McKinstry S (2009) Weakly coupled relaxor behavior of BaTiO3–BiScO3 ceramics. J Am Ceram Soc 92(1):110–118CrossRef Ogihara H, Randall CA, Trolier-McKinstry S (2009) Weakly coupled relaxor behavior of BaTiO3–BiScO3 ceramics. J Am Ceram Soc 92(1):110–118CrossRef
40.
Zurück zum Zitat Bharadwaja S, Kim J, Ogihara H, Cross L, Trolier-McKinstry S, Randall C (2011) Critical slowing down mechanism and reentrant dipole glass phenomena in (1 − x)BaTiO3–xBiScO3 (0.1 ≤ x ≤ 0.4): the high energy density dielectrics. Phys Rev B 83(2):024106CrossRef Bharadwaja S, Kim J, Ogihara H, Cross L, Trolier-McKinstry S, Randall C (2011) Critical slowing down mechanism and reentrant dipole glass phenomena in (1 − x)BaTiO3xBiScO3 (0.1 ≤ x ≤ 0.4): the high energy density dielectrics. Phys Rev B 83(2):024106CrossRef
41.
Zurück zum Zitat Bharadwaja S, Trolier-McKinstry S, Cross L, Randall C (2012) Reentrant dipole glass properties in (1 − x)BaTiO3–xBiScO3, 0.1 ≤ x ≤ 0.4. Appl Phys Lett 100(2):022906CrossRef Bharadwaja S, Trolier-McKinstry S, Cross L, Randall C (2012) Reentrant dipole glass properties in (1 − x)BaTiO3xBiScO3, 0.1 ≤ x ≤ 0.4. Appl Phys Lett 100(2):022906CrossRef
42.
Zurück zum Zitat Vance ER, Hanna JV, Hadley J (2012) Cation vacancies in perovskites doped with La and Gd. Adv Appl Ceram 111(1–2):94–98CrossRef Vance ER, Hanna JV, Hadley J (2012) Cation vacancies in perovskites doped with La and Gd. Adv Appl Ceram 111(1–2):94–98CrossRef
43.
Zurück zum Zitat Yoo H-I, Song C-R, Lee D-K (2002) BaTiO3−δ: defect structure, electrical conductivity, chemical diffusivity, thermoelectric power, and oxygen nonstoichiometry. J Electroceram 8(1):5–36CrossRef Yoo H-I, Song C-R, Lee D-K (2002) BaTiO3−δ: defect structure, electrical conductivity, chemical diffusivity, thermoelectric power, and oxygen nonstoichiometry. J Electroceram 8(1):5–36CrossRef
44.
Zurück zum Zitat Li M, Zhang H, Cook SN, Li L, Kilner JA, Reaney IM, Sinclair DC (2015) Dramatic influence of A-site nonstoichiometry on the electrical conductivity and conduction mechanisms in the perovskite oxide Na0.5Bi0.5TiO3. Chem Mater 27(2):629–634CrossRef Li M, Zhang H, Cook SN, Li L, Kilner JA, Reaney IM, Sinclair DC (2015) Dramatic influence of A-site nonstoichiometry on the electrical conductivity and conduction mechanisms in the perovskite oxide Na0.5Bi0.5TiO3. Chem Mater 27(2):629–634CrossRef
Metadaten
Titel
Tailoring transport properties through nonstoichiometry in BaTiO3–BiScO3 and SrTiO3–Bi(Zn1/2Ti1/2)O3 for capacitor applications
verfasst von
Nitish Kumar
David P. Cann
Publikationsdatum
07.07.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 20/2016
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0186-z

Weitere Artikel der Ausgabe 20/2016

Journal of Materials Science 20/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.