Skip to main content
Erschienen in: Journal of Materials Science 2/2017

14.10.2016 | Original Paper

Synergistic catalytic effect of light rare earth element and other additives on the degree of graphitization and properties of graphite

verfasst von: Rongyan Wang, Guimin Lu, Haizheng Zhuang, Jianguo Yu

Erschienen in: Journal of Materials Science | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Metal additives usually have a catalytic effect on non-graphitic carbon materials. However, graphitic carbon materials are difficult to catalyze owing to carbon atoms whose neighbors are ordered regions and less cross-linked. Artificial graphite is generally prepared from coke and pitch, both of which are graphitic carbon. Therefore, efficient catalysts for graphitic carbon materials are important for industrial technology. The effect of light rare earth elements (La, Ce, and Pr) and other additives (Ti, Ni, and B) as co-catalysts in artificial graphite development was investigated. Compared with the single catalysts, the combinatorial catalysts more significantly improved the degree of graphitization in the carbon materials, indicating synergistic catalytic effects. Both dissolution–precipitation and formation–decomposition of carbide were involved in the synergistic catalytic mechanisms. In the combinatorial catalysts systems, the light rare earth element would accelerate the graphitization process of carbon materials by widening the range of the catalytic temperature, accelerating the speed of oversaturation of dissolution, or generating a new carbide phase with the other catalyst. This would promote formation of the more-ordered graphitic structure at relatively low temperature. For instance, to attain the same degree of graphitization and better crystalline sizes at the same residence time, the carbon materials with combinatorial catalysts can be heat treated at temperatures 400 °C lower than without catalysts, and the electrical and mechanical properties are enhanced.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ōya A, Marsh H (1982) Review: Phenomena of catalytic graphitization. J Mater Sci 17:309–322CrossRef Ōya A, Marsh H (1982) Review: Phenomena of catalytic graphitization. J Mater Sci 17:309–322CrossRef
2.
3.
Zurück zum Zitat Lin Q, Feng Z, Liu Z, Guo Q, Hu Z, He L et al (2015) Atomic scale investigations of catalyst and catalytic graphitization in a silicon and titanium doped graphite. Carbon 88:252–261CrossRef Lin Q, Feng Z, Liu Z, Guo Q, Hu Z, He L et al (2015) Atomic scale investigations of catalyst and catalytic graphitization in a silicon and titanium doped graphite. Carbon 88:252–261CrossRef
4.
Zurück zum Zitat Maldonado-Hodar FJ, Moreno-Castilla C, Rivera-Utrilla J, Hanzawa Y, Yamada Y (2000) Catalytic graphitization of carbon aerogels by transition metals. Langmuir 16:4367–4373CrossRef Maldonado-Hodar FJ, Moreno-Castilla C, Rivera-Utrilla J, Hanzawa Y, Yamada Y (2000) Catalytic graphitization of carbon aerogels by transition metals. Langmuir 16:4367–4373CrossRef
5.
Zurück zum Zitat Liu T, Luo R, Yoon SH, Mochida I (2010) Anode performance of boron-doped graphites prepared from shot and sponge cokes. J Power Sources 195:1714–1719CrossRef Liu T, Luo R, Yoon SH, Mochida I (2010) Anode performance of boron-doped graphites prepared from shot and sponge cokes. J Power Sources 195:1714–1719CrossRef
6.
Zurück zum Zitat Liu YC, Liu QL, Gu JJ, Kang DM, Zhou FY, Zhang W et al (2013) Highly porous graphitic materials prepared by catalytic graphitization. Carbon 64:132–140CrossRef Liu YC, Liu QL, Gu JJ, Kang DM, Zhou FY, Zhang W et al (2013) Highly porous graphitic materials prepared by catalytic graphitization. Carbon 64:132–140CrossRef
7.
Zurück zum Zitat Bacsa RR, Cameán I, Ramos A, Garcia AB, Tishkova V, Bacsa WS et al (2015) Few layer graphene synthesis on transition metal ferrite catalysts. Carbon 89:350–360CrossRef Bacsa RR, Cameán I, Ramos A, Garcia AB, Tishkova V, Bacsa WS et al (2015) Few layer graphene synthesis on transition metal ferrite catalysts. Carbon 89:350–360CrossRef
8.
Zurück zum Zitat Niu YA, Zhang X, Wu J, Zhao JP, Yan XQ, Li Y (2014) Catalytic and enhanced effects of silicon carbide nanoparticles on carbonization and graphitization of polyimide films. RSC Adv 4:42569–42576CrossRef Niu YA, Zhang X, Wu J, Zhao JP, Yan XQ, Li Y (2014) Catalytic and enhanced effects of silicon carbide nanoparticles on carbonization and graphitization of polyimide films. RSC Adv 4:42569–42576CrossRef
9.
Zurück zum Zitat Kim J, Lee J, Choi Y, Jo C (2014) Synthesis of hierarchical linearly assembled graphitic carbon nanoparticles via catalytic graphitization in SBA-15. Carbon 75:95–103CrossRef Kim J, Lee J, Choi Y, Jo C (2014) Synthesis of hierarchical linearly assembled graphitic carbon nanoparticles via catalytic graphitization in SBA-15. Carbon 75:95–103CrossRef
10.
Zurück zum Zitat Tang J, Wang T, Sun X, Guo YX, Xue HR, Guo H et al (2013) Effect of transition metal on catalytic graphitization of ordered mesoporous carbon and Pt/metal oxide synergistic electrocatalytic performance. Micropor Mesopor Mat 177:105–112CrossRef Tang J, Wang T, Sun X, Guo YX, Xue HR, Guo H et al (2013) Effect of transition metal on catalytic graphitization of ordered mesoporous carbon and Pt/metal oxide synergistic electrocatalytic performance. Micropor Mesopor Mat 177:105–112CrossRef
11.
Zurück zum Zitat Lebedeva IV, Knizhnik AA, Popov AM, Potapkin BV (2012) Ni-assisted transformation of graphene flakes to fullerenes. J Phys Chem C 116:6572–6584CrossRef Lebedeva IV, Knizhnik AA, Popov AM, Potapkin BV (2012) Ni-assisted transformation of graphene flakes to fullerenes. J Phys Chem C 116:6572–6584CrossRef
12.
Zurück zum Zitat Rodríguez-Manzo JA, Pham-Huu C, Banhart F (2011) Graphene growth by a metal-catalyzed solid-state transformation of amorphous carbon. ACS Nano 5:1529–1534CrossRef Rodríguez-Manzo JA, Pham-Huu C, Banhart F (2011) Graphene growth by a metal-catalyzed solid-state transformation of amorphous carbon. ACS Nano 5:1529–1534CrossRef
13.
Zurück zum Zitat Kumar R, Dhakate SR, Mathur RB (2013) The role of ferrocene on the enhancement of the mechanical and electrochemical properties of coal tar pitch-based carbon foams. J Mater Sci 48:7071–7080CrossRef Kumar R, Dhakate SR, Mathur RB (2013) The role of ferrocene on the enhancement of the mechanical and electrochemical properties of coal tar pitch-based carbon foams. J Mater Sci 48:7071–7080CrossRef
14.
Zurück zum Zitat Aykut Y, Pourdeyhimi B, Khan SA (2013) Catalytic graphitization and formation of macroporous-activated carbon nanofibers from salt-induced and H2S-treated polyacrylonitrile. J Mater Sci 48:7783–7790CrossRef Aykut Y, Pourdeyhimi B, Khan SA (2013) Catalytic graphitization and formation of macroporous-activated carbon nanofibers from salt-induced and H2S-treated polyacrylonitrile. J Mater Sci 48:7783–7790CrossRef
15.
Zurück zum Zitat Tzeng SS (2006) Catalytic graphitization of electroless Ni–P coated PAN-based carbon fibers. Carbon 44:1986–1993CrossRef Tzeng SS (2006) Catalytic graphitization of electroless Ni–P coated PAN-based carbon fibers. Carbon 44:1986–1993CrossRef
16.
Zurück zum Zitat Tzeng SS, Lin YH (2008) The role of electroless Ni–P coating in the catalytic graphitization of PAN-based carbon fibers. Carbon 46:555–558CrossRef Tzeng SS, Lin YH (2008) The role of electroless Ni–P coating in the catalytic graphitization of PAN-based carbon fibers. Carbon 46:555–558CrossRef
17.
Zurück zum Zitat Garcia AB, Camean I, Pinilla JL, Suelves I, Lazaro MJ, Moliner R (2010) The graphitization of carbon nanofibers produced by catalytic decomposition of methane: synergetic effect of the inherent Ni and Si. Fuel 89:2160–2162CrossRef Garcia AB, Camean I, Pinilla JL, Suelves I, Lazaro MJ, Moliner R (2010) The graphitization of carbon nanofibers produced by catalytic decomposition of methane: synergetic effect of the inherent Ni and Si. Fuel 89:2160–2162CrossRef
18.
Zurück zum Zitat He D, Zhang F, Xu S, Yu W, Cai Q, LaTempa TJ et al (2008) Synergistic catalytic effect of Ti–B on the graphitization of polyacrylonitrile-based carbon fibers. Carbon 46:1506–1508CrossRef He D, Zhang F, Xu S, Yu W, Cai Q, LaTempa TJ et al (2008) Synergistic catalytic effect of Ti–B on the graphitization of polyacrylonitrile-based carbon fibers. Carbon 46:1506–1508CrossRef
19.
Zurück zum Zitat Zhou H, Yu Q, Peng Q, Wang H, Chen J, Kuang Y (2008) Catalytic graphitization of carbon fibers with electrodeposited Ni–B alloy coating. Mater Chem Phys 110:434–439CrossRef Zhou H, Yu Q, Peng Q, Wang H, Chen J, Kuang Y (2008) Catalytic graphitization of carbon fibers with electrodeposited Ni–B alloy coating. Mater Chem Phys 110:434–439CrossRef
20.
Zurück zum Zitat Xu SH, Zhang FY, Liu SH, He DM, Cai QY (2010) Catalytic graphitization of Mo-B-doped polyacrylonitrile (PAN)-based carbon fibers. J Cent South Univ Technol 17:703–707CrossRef Xu SH, Zhang FY, Liu SH, He DM, Cai QY (2010) Catalytic graphitization of Mo-B-doped polyacrylonitrile (PAN)-based carbon fibers. J Cent South Univ Technol 17:703–707CrossRef
21.
Zurück zum Zitat Qiu H, Song Y, Liu L, Zhai G, Shi J (2003) Thermal conductivity and microstructure of Ti-doped graphite. Carbon 41:973–978CrossRef Qiu H, Song Y, Liu L, Zhai G, Shi J (2003) Thermal conductivity and microstructure of Ti-doped graphite. Carbon 41:973–978CrossRef
22.
Zurück zum Zitat Bokhonov B, Korchagin M (2002) The formation of graphite encapsulated metal nanoparticles during mechanical activation and annealing of soot with iron and nickel. J Alloy Compd 333:308–320CrossRef Bokhonov B, Korchagin M (2002) The formation of graphite encapsulated metal nanoparticles during mechanical activation and annealing of soot with iron and nickel. J Alloy Compd 333:308–320CrossRef
23.
Zurück zum Zitat Yang S, Chen X, Kikuchi N, Motojima S (2008) Catalytic effects of various metal carbides and Ti compounds for the growth of carbon nanocoils (CNCs). Mater Lett 62:1462–1465CrossRef Yang S, Chen X, Kikuchi N, Motojima S (2008) Catalytic effects of various metal carbides and Ti compounds for the growth of carbon nanocoils (CNCs). Mater Lett 62:1462–1465CrossRef
24.
Zurück zum Zitat Xu SH, Zhang FY, Kang Q, Liu SH, Cai QY (2009) The effect of magnetic field on the catalytic graphitization of phenolic resin in the presence of Fe-Ni. Carbon 47:3233–3237CrossRef Xu SH, Zhang FY, Kang Q, Liu SH, Cai QY (2009) The effect of magnetic field on the catalytic graphitization of phenolic resin in the presence of Fe-Ni. Carbon 47:3233–3237CrossRef
25.
Zurück zum Zitat Anton R (2009) In situ TEM investigations of reactions of Ni, Fe and Fe–Ni alloy particles and their oxides with amorphous carbon. Carbon 47:856–865CrossRef Anton R (2009) In situ TEM investigations of reactions of Ni, Fe and Fe–Ni alloy particles and their oxides with amorphous carbon. Carbon 47:856–865CrossRef
26.
Zurück zum Zitat Zhou HH, Peng QL, Huang ZH, Yu Q, Chen JH, Kuang YF (2011) Catalytic graphitization of PAN-based carbon fibers with electrodeposited Ni-Fe alloy. Trans Nonferrous Met Soc China 21:581–587CrossRef Zhou HH, Peng QL, Huang ZH, Yu Q, Chen JH, Kuang YF (2011) Catalytic graphitization of PAN-based carbon fibers with electrodeposited Ni-Fe alloy. Trans Nonferrous Met Soc China 21:581–587CrossRef
27.
Zurück zum Zitat Zhang C, Lu G, Sun Z, Yu J (2012) Catalytic graphitization of carbon/carbon composites by lanthanum oxide. J Rare Earths 30:128–132CrossRef Zhang C, Lu G, Sun Z, Yu J (2012) Catalytic graphitization of carbon/carbon composites by lanthanum oxide. J Rare Earths 30:128–132CrossRef
28.
Zurück zum Zitat Wang R, Lu G, Qiao W, Sun Z, Zhuang H, Yu J (2015) Catalytic effect of praseodymium oxide additive on the microstructure and electrical property of graphite anode. Carbon 95:940–948CrossRef Wang R, Lu G, Qiao W, Sun Z, Zhuang H, Yu J (2015) Catalytic effect of praseodymium oxide additive on the microstructure and electrical property of graphite anode. Carbon 95:940–948CrossRef
29.
Zurück zum Zitat Anton R (2008) On the reaction kinetics of Ni with amorphous carbon. Carbon 46:656–662CrossRef Anton R (2008) On the reaction kinetics of Ni with amorphous carbon. Carbon 46:656–662CrossRef
30.
Zurück zum Zitat Murty HN, Biederman DL, Heintz EA (1977) Apparent catalysis of graphitization. 3. Effect of boron, Fuel 56:305–312 Murty HN, Biederman DL, Heintz EA (1977) Apparent catalysis of graphitization. 3. Effect of boron, Fuel 56:305–312
31.
Zurück zum Zitat Iwashita N, Park CR, Fujimoto H, Shiraishi M, Inagaki M (2004) Specification for a standard procedure of X-ray diffraction measurements on carbon materials. Carbon 42:701–714CrossRef Iwashita N, Park CR, Fujimoto H, Shiraishi M, Inagaki M (2004) Specification for a standard procedure of X-ray diffraction measurements on carbon materials. Carbon 42:701–714CrossRef
32.
Zurück zum Zitat Badenhorst H (2014) Microstructure of natural graphite flakes revealed by oxidation: limitations of XRD and Raman techniques for crystallinity estimates. Carbon 66:674–690CrossRef Badenhorst H (2014) Microstructure of natural graphite flakes revealed by oxidation: limitations of XRD and Raman techniques for crystallinity estimates. Carbon 66:674–690CrossRef
33.
Zurück zum Zitat Tsukamoto T, Yamazaki K, Komurasaki H, Ogino T (2012) Effects of surface chemistry of substrates on Raman spectra in graphene. J Phys Chem C 116:4732–4737CrossRef Tsukamoto T, Yamazaki K, Komurasaki H, Ogino T (2012) Effects of surface chemistry of substrates on Raman spectra in graphene. J Phys Chem C 116:4732–4737CrossRef
34.
Zurück zum Zitat Torrisi F, Hasan T, Wu W, Sun Z, Lombardo A, Kulmala TS et al (2012) Inkjet-printed graphene electronics. ACS Nano 6:2992–3006CrossRef Torrisi F, Hasan T, Wu W, Sun Z, Lombardo A, Kulmala TS et al (2012) Inkjet-printed graphene electronics. ACS Nano 6:2992–3006CrossRef
35.
Zurück zum Zitat Cançado LG, Takai K, Enoki T, Endo M, Kim YA, Mizusaki H et al (2006) General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl Phys Lett 88:163106CrossRef Cançado LG, Takai K, Enoki T, Endo M, Kim YA, Mizusaki H et al (2006) General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl Phys Lett 88:163106CrossRef
36.
Zurück zum Zitat Franklin RE (1951) Crystallite growth in graphitizing and non-graphitizing carbons. P Roy Soc A-Math Phy 209:196–218CrossRef Franklin RE (1951) Crystallite growth in graphitizing and non-graphitizing carbons. P Roy Soc A-Math Phy 209:196–218CrossRef
37.
Zurück zum Zitat Vázquez-Santos MB, Geissler EK, Rouzaud JN, Martínez-Alonso A, Tascón JMD (2012) Comparative XRD, Raman, and TEM study on graphitization of PBO-derived carbon fibers. J Phys Chem C 116:257–268CrossRef Vázquez-Santos MB, Geissler EK, Rouzaud JN, Martínez-Alonso A, Tascón JMD (2012) Comparative XRD, Raman, and TEM study on graphitization of PBO-derived carbon fibers. J Phys Chem C 116:257–268CrossRef
38.
Zurück zum Zitat Howe JY, Jones LE (2013) Influence of boron on structure and oxidation behavior of graphite fiber, P120. Carbon 42:461–467CrossRef Howe JY, Jones LE (2013) Influence of boron on structure and oxidation behavior of graphite fiber, P120. Carbon 42:461–467CrossRef
39.
Zurück zum Zitat Zhai D, Li B, Kang F, Du H, Xu C (2010) Preparation of mesophase-pitch-based activated carbons for electric double layer capacitors with high energy density. Micropor Mesopor Mat 130:224–228CrossRef Zhai D, Li B, Kang F, Du H, Xu C (2010) Preparation of mesophase-pitch-based activated carbons for electric double layer capacitors with high energy density. Micropor Mesopor Mat 130:224–228CrossRef
40.
Zurück zum Zitat Dresselhaus MS, Jorio A, Saito R (2010) Characterizing graphene, graphite, and carbon nanotubes by Raman spectroscopy. Annu Rev Conden Matt Phys 1:89–108CrossRef Dresselhaus MS, Jorio A, Saito R (2010) Characterizing graphene, graphite, and carbon nanotubes by Raman spectroscopy. Annu Rev Conden Matt Phys 1:89–108CrossRef
Metadaten
Titel
Synergistic catalytic effect of light rare earth element and other additives on the degree of graphitization and properties of graphite
verfasst von
Rongyan Wang
Guimin Lu
Haizheng Zhuang
Jianguo Yu
Publikationsdatum
14.10.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 2/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0359-9

Weitere Artikel der Ausgabe 2/2017

Journal of Materials Science 2/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.