Skip to main content
Erschienen in: Journal of Materials Science 11/2016

18.02.2016 | Original Paper

Thermoelectric and mechanical properties of ZnSb/SiC nanocomposites

verfasst von: Funing Tseng, Siyang Li, Chaofeng Wu, Yu Pan, Liangliang Li

Erschienen in: Journal of Materials Science | Ausgabe 11/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Intermetallic compound ZnSb is a promising thermoelectric (TE) material with the advantages of low toxicity, abundance, and low cost; however, the relatively low figure of merit ZT and the brittleness of ZnSb limit its applications in TE devices. In this study, ZnSb/SiC nanocomposites were synthesized in order to improve both the TE and mechanical properties of ZnSb. ZnSb-based nanocomposites with x vol% SiC nanoparticles (x = 0, 0.3, 0.5, and 0.7) were prepared by mechanical alloying and spark plasma sintering. The power factor of ZnSb/SiC nanocomposite with 0.3 vol% SiC is increased. The thermal conductivity of all ZnSb/SiC nanocomposites is decreased due to the increase of interface scattering for phonons. More importantly, the fracture toughness of the nanocomposites is enhanced due to the addition of SiC. The largest ZT value and fracture toughness are found in the sample with 0.7 vol% SiC. The maximum ZT value of 0.68 is obtained at 400 °C, which is 35 % higher than that of the reference sample without SiC. The largest fracture toughness is 0.64 MPa m1/2, which is 31 % larger than that of the reference sample. The experimental data demonstrate that ZnSb/SiC nanocomposites with simultaneous enhancement of TE and mechanical properties are favorable for practical TE applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wang H, Hwang J, Snedaker ML, Kim IH, Kang C, Kim J, Stucky GD, Bowers J, Kim W (2015) High thermoelectric performance of a heterogeneous PbTe nanocomposite. Chem Mater 27:944–949. doi:10.1021/cm5042138 CrossRef Wang H, Hwang J, Snedaker ML, Kim IH, Kang C, Kim J, Stucky GD, Bowers J, Kim W (2015) High thermoelectric performance of a heterogeneous PbTe nanocomposite. Chem Mater 27:944–949. doi:10.​1021/​cm5042138 CrossRef
2.
Zurück zum Zitat Zhang Q, Ai X, Wang L, Chang Y, Luo W, Jiang W, Chen L (2015) Improved thermoelectric performance of silver nanoparticles-dispersed Bi2Te3 composites deriving from hierarchical two-phased heterostructure. Adv Funct Mater 25:966–976. doi:10.1002/adfm.201402663 CrossRef Zhang Q, Ai X, Wang L, Chang Y, Luo W, Jiang W, Chen L (2015) Improved thermoelectric performance of silver nanoparticles-dispersed Bi2Te3 composites deriving from hierarchical two-phased heterostructure. Adv Funct Mater 25:966–976. doi:10.​1002/​adfm.​201402663 CrossRef
3.
4.
Zurück zum Zitat Zhao LD, Lo SH, Zhang YS, Sun H, Tan GJ, Uher C, Wolverton C, Dravid VP, Kanatzidis MG (2014) Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508:373–377. doi:10.1038/nature13184 CrossRef Zhao LD, Lo SH, Zhang YS, Sun H, Tan GJ, Uher C, Wolverton C, Dravid VP, Kanatzidis MG (2014) Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508:373–377. doi:10.​1038/​nature13184 CrossRef
5.
Zurück zum Zitat Poudel B, Hao Q, Ma Y, Lan YC, Minnich A, Yu B, Yan XA, Wang DZ, Muto A, Vashaee D, Chen XY, Liu JM, Dresselhaus MS, Chen G, Ren ZF (2008) High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320:634–638. doi:10.1126/science.1156446 CrossRef Poudel B, Hao Q, Ma Y, Lan YC, Minnich A, Yu B, Yan XA, Wang DZ, Muto A, Vashaee D, Chen XY, Liu JM, Dresselhaus MS, Chen G, Ren ZF (2008) High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320:634–638. doi:10.​1126/​science.​1156446 CrossRef
8.
9.
Zurück zum Zitat Sottmann J, Valset K, Karlsen OB, Tafto J (2013) Synthesis and measurement of the thermoelectric properties of multiphase composites: ZnSb matrix with Zn4Sb3, Zn3P2, and Cu5Zn8. J Electron Mater 42:1820–1826. doi:10.1007/s11664-012-2441-7 CrossRef Sottmann J, Valset K, Karlsen OB, Tafto J (2013) Synthesis and measurement of the thermoelectric properties of multiphase composites: ZnSb matrix with Zn4Sb3, Zn3P2, and Cu5Zn8. J Electron Mater 42:1820–1826. doi:10.​1007/​s11664-012-2441-7 CrossRef
10.
Zurück zum Zitat Snyder GJ, Christensen M, Nishibori E, Caillat T, Iversen BB (2004) Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties. Nat Mater 3:458–463. doi:10.1038/nmat1154 CrossRef Snyder GJ, Christensen M, Nishibori E, Caillat T, Iversen BB (2004) Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties. Nat Mater 3:458–463. doi:10.​1038/​nmat1154 CrossRef
13.
Zurück zum Zitat Wang Q, Qin X, Li D, Zou T (2013) Enhancement of thermopower and thermoelectric performance through resonant distortion of electronic density of states of β-Zn4Sb3 doped with Sm. Appl Phys Lett 102:154101. doi:10.1063/1.4801851 CrossRef Wang Q, Qin X, Li D, Zou T (2013) Enhancement of thermopower and thermoelectric performance through resonant distortion of electronic density of states of β-Zn4Sb3 doped with Sm. Appl Phys Lett 102:154101. doi:10.​1063/​1.​4801851 CrossRef
16.
Zurück zum Zitat Mozharivskyj Y, Pecharsky AO, Bud’ko S, Miller GJ (2004) Promising thermoelectric material: Zn4Sb3 or Zn6−δSb5. Its composition, structure, stability, and polymorphs. Structure and stability of Zn1-δSb. Chem Mater 16:1580–1589. doi:10.1021/cm035274a CrossRef Mozharivskyj Y, Pecharsky AO, Bud’ko S, Miller GJ (2004) Promising thermoelectric material: Zn4Sb3 or Zn6−δSb5. Its composition, structure, stability, and polymorphs. Structure and stability of Zn1-δSb. Chem Mater 16:1580–1589. doi:10.​1021/​cm035274a CrossRef
18.
Zurück zum Zitat Yin H, Johnsen S, Borup KA, Kato K, Takata M, Iversen BB (2013) Highly enhanced thermal stability of Zn4Sb3 nanocomposites. Chem Commun 49:6540–6542. doi:10.1039/C3CC42340A CrossRef Yin H, Johnsen S, Borup KA, Kato K, Takata M, Iversen BB (2013) Highly enhanced thermal stability of Zn4Sb3 nanocomposites. Chem Commun 49:6540–6542. doi:10.​1039/​C3CC42340A CrossRef
19.
22.
Zurück zum Zitat Niedziolka K, Jund P (2015) Influence of the exchange-correlation functional on the electronic properties of ZnSb as a promising thermoelectric material. J Electron Mater 44:1540–1546. doi:10.1007/s11664-014-3459-9 CrossRef Niedziolka K, Jund P (2015) Influence of the exchange-correlation functional on the electronic properties of ZnSb as a promising thermoelectric material. J Electron Mater 44:1540–1546. doi:10.​1007/​s11664-014-3459-9 CrossRef
23.
Zurück zum Zitat Song X, Valset K, Graff JS, Thogersen A, Gunnaes AE, Luxsacumar S, Lovvik OM, Snyder GJ, Finstad TG (2015) Nanostructuring of undoped ZnSb by cryo-milling. J Electron Mater 44:2578–2584. doi:10.1007/s11664-015-3708-6 CrossRef Song X, Valset K, Graff JS, Thogersen A, Gunnaes AE, Luxsacumar S, Lovvik OM, Snyder GJ, Finstad TG (2015) Nanostructuring of undoped ZnSb by cryo-milling. J Electron Mater 44:2578–2584. doi:10.​1007/​s11664-015-3708-6 CrossRef
25.
27.
Zurück zum Zitat Zhao LD, Zhang BP, Li JF, Zhou M, Liu WS, Liu J (2008) Thermoelectric and mechanical properties of nano-SiC-dispersed Bi2Te3 fabricated by mechanical alloying and spark plasma sintering. J Alloys Compd 455:259–264. doi:10.1016/j.jallcom.2007.01.015 CrossRef Zhao LD, Zhang BP, Li JF, Zhou M, Liu WS, Liu J (2008) Thermoelectric and mechanical properties of nano-SiC-dispersed Bi2Te3 fabricated by mechanical alloying and spark plasma sintering. J Alloys Compd 455:259–264. doi:10.​1016/​j.​jallcom.​2007.​01.​015 CrossRef
28.
Zurück zum Zitat Schmidt RD, Fan XF, Case ED, Sarac PB (2015) Mechanical properties of Mg2Si thermoelectric materials with the addition of 0–4 vol% silicon carbide nanoparticles (SiCNP). J Mater Sci 50:4034–4046. doi:10.1007/s10853-015-8960-x CrossRef Schmidt RD, Fan XF, Case ED, Sarac PB (2015) Mechanical properties of Mg2Si thermoelectric materials with the addition of 0–4 vol% silicon carbide nanoparticles (SiCNP). J Mater Sci 50:4034–4046. doi:10.​1007/​s10853-015-8960-x CrossRef
29.
Zurück zum Zitat Schmidt RD, Case ED, Ni JE, Trejo RM, Lara-Curzio E, Korkosz RJ, Kanatzidis MG (2013) High-temperature elastic moduli of thermoelectric SnTe1±x –ySiC nanoparticulate composites. J Mater Sci 48:8244–8258. doi:10.1007/s10853-013-7637-6 CrossRef Schmidt RD, Case ED, Ni JE, Trejo RM, Lara-Curzio E, Korkosz RJ, Kanatzidis MG (2013) High-temperature elastic moduli of thermoelectric SnTex ySiC nanoparticulate composites. J Mater Sci 48:8244–8258. doi:10.​1007/​s10853-013-7637-6 CrossRef
31.
Zurück zum Zitat Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B (2001) Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413:597–602. doi:10.1038/35098012 CrossRef Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B (2001) Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413:597–602. doi:10.​1038/​35098012 CrossRef
32.
Zurück zum Zitat Hsu KF, Loo S, Guo F, Chen W, Dyck JS, Uher C, Hogan T, Polychroniadis EK, Kanatzidis MG (2004) Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science 303:818–821. doi:10.1126/science.1092963 CrossRef Hsu KF, Loo S, Guo F, Chen W, Dyck JS, Uher C, Hogan T, Polychroniadis EK, Kanatzidis MG (2004) Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science 303:818–821. doi:10.​1126/​science.​1092963 CrossRef
33.
Zurück zum Zitat Li JH, Tan Q, Li JF, Liu DW, Li F, Li ZY, Zou MM, Wang K (2013) BiSbTe-based nanocomposites with high ZT: the effect of SiC nanodispersion on thermoelectric properties. Adv Funct Mater 23:4317–4323. doi:10.1002/adfm.201300146 CrossRef Li JH, Tan Q, Li JF, Liu DW, Li F, Li ZY, Zou MM, Wang K (2013) BiSbTe-based nanocomposites with high ZT: the effect of SiC nanodispersion on thermoelectric properties. Adv Funct Mater 23:4317–4323. doi:10.​1002/​adfm.​201300146 CrossRef
34.
Zurück zum Zitat Li ZY, Li JF, Zhao WY, Tan Q, Wei TR, Wu CF, Xing ZB (2014) PbTe-based thermoelectric nanocomposites with reduced thermal conductivity by SiC nanodispersion. Appl Phys Lett 104:113905. doi:10.1063/1.4869220 CrossRef Li ZY, Li JF, Zhao WY, Tan Q, Wei TR, Wu CF, Xing ZB (2014) PbTe-based thermoelectric nanocomposites with reduced thermal conductivity by SiC nanodispersion. Appl Phys Lett 104:113905. doi:10.​1063/​1.​4869220 CrossRef
35.
Zurück zum Zitat Misra DK, Rajput A, Bhardwaj A, Chauhan NS, Singh S (2015) Enhanced power factor and reduced thermal conductivity of a half-Heusler derivative Ti9Ni7Sn8: a bulk nanocomposite thermoelectric material. Appl Phys Lett 106:103901. doi:10.1063/1.4914504 CrossRef Misra DK, Rajput A, Bhardwaj A, Chauhan NS, Singh S (2015) Enhanced power factor and reduced thermal conductivity of a half-Heusler derivative Ti9Ni7Sn8: a bulk nanocomposite thermoelectric material. Appl Phys Lett 106:103901. doi:10.​1063/​1.​4914504 CrossRef
36.
Zurück zum Zitat Dresselhaus MS, Gang Chen, Tang MY, Yang RG, Lee H, Wang DZ, Ren ZF, Fleurial JP, Gogna P (2007) New directions for low-dimensional thermoelectric materials. Adv Mater 19:1043–1053. doi:10.1002/adma.200600527 CrossRef Dresselhaus MS, Gang Chen, Tang MY, Yang RG, Lee H, Wang DZ, Ren ZF, Fleurial JP, Gogna P (2007) New directions for low-dimensional thermoelectric materials. Adv Mater 19:1043–1053. doi:10.​1002/​adma.​200600527 CrossRef
45.
Zurück zum Zitat Goldsmid HJ (2009) Introduction to thermoelectricity. Springer, Heidelberg Goldsmid HJ (2009) Introduction to thermoelectricity. Springer, Heidelberg
46.
Zurück zum Zitat Minnich A, Dresselhaus M, Ren Z, Chen G (2009) Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ Sci 2:466–479. doi:10.1039/b822664b CrossRef Minnich A, Dresselhaus M, Ren Z, Chen G (2009) Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ Sci 2:466–479. doi:10.​1039/​b822664b CrossRef
47.
Zurück zum Zitat Böttger P, Pomrehn GS, Snyder GJ, Finstad TG (2011) Doping of p-type ZnSb: single parabolic band model and impurity band conduction. Phys Status Solidi A 208:2753–2759. doi:10.1002/pssa.201127211 CrossRef Böttger P, Pomrehn GS, Snyder GJ, Finstad TG (2011) Doping of p-type ZnSb: single parabolic band model and impurity band conduction. Phys Status Solidi A 208:2753–2759. doi:10.​1002/​pssa.​201127211 CrossRef
48.
Zurück zum Zitat Pan Y, Wei T-R, Cao Q, Li J-F (2015) Mechanically enhanced p-and n-type Bi2Te3-based thermoelectric materials reprocessed from commercial ingots by ball milling and spark plasma sintering. Mater Sci Eng B 197:75–81. doi:10.1016/j.mseb.2015.03.011 CrossRef Pan Y, Wei T-R, Cao Q, Li J-F (2015) Mechanically enhanced p-and n-type Bi2Te3-based thermoelectric materials reprocessed from commercial ingots by ball milling and spark plasma sintering. Mater Sci Eng B 197:75–81. doi:10.​1016/​j.​mseb.​2015.​03.​011 CrossRef
Metadaten
Titel
Thermoelectric and mechanical properties of ZnSb/SiC nanocomposites
verfasst von
Funing Tseng
Siyang Li
Chaofeng Wu
Yu Pan
Liangliang Li
Publikationsdatum
18.02.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 11/2016
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-9830-x

Weitere Artikel der Ausgabe 11/2016

Journal of Materials Science 11/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.