Skip to main content
Erschienen in: Journal of Materials Science 8/2018

04.10.2017 | Interface Behavior

Mesoscale models of interface mechanics in crystalline solids: a review

verfasst von: J. D. Clayton

Erschienen in: Journal of Materials Science | Ausgabe 8/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Theoretical and computational methods for representing mechanical behaviors of crystalline materials in the vicinity of planar interfaces are examined and compared. Emphasis is on continuum-type resolutions of microstructures at the nanometer and micrometer levels, i.e., mesoscale models. Grain boundary interfaces are considered first, with classes of models encompassing sharp interface, continuum defect (i.e., dislocation and disclination), and diffuse interface types. Twin boundaries are reviewed next, considering sharp interface and diffuse interface (e.g., phase field) models as well as pseudo-slip crystal plasticity approaches to deformation twinning. Several classes of models for evolving failure interfaces, i.e., fracture surfaces, in single crystals and polycrystals are then critically summarized, including cohesive zone approaches, continuum damage theories, and diffuse interface models. Important characteristics of compared classes of models for a given physical behavior include complexity, generality/flexibility, and predictive capability versus number of free or calibrated parameters.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Phillips R (2001) Crystals, defects and microstructures: modeling across scales. Cambridge University Press, CambridgeCrossRef Phillips R (2001) Crystals, defects and microstructures: modeling across scales. Cambridge University Press, CambridgeCrossRef
2.
Zurück zum Zitat Rohrer GS (2001) Structure and bonding in crystalline materials. Cambridge University Press, CambridgeCrossRef Rohrer GS (2001) Structure and bonding in crystalline materials. Cambridge University Press, CambridgeCrossRef
3.
Zurück zum Zitat Clayton JD (2011a) Nonlinear mechanics of crystals. Springer, DordrechtCrossRef Clayton JD (2011a) Nonlinear mechanics of crystals. Springer, DordrechtCrossRef
4.
Zurück zum Zitat Yadav S, Ravichandran G (2003) Penetration resistance of laminated ceramic/polymer structures. Int J Impact Eng 28:557–574CrossRef Yadav S, Ravichandran G (2003) Penetration resistance of laminated ceramic/polymer structures. Int J Impact Eng 28:557–574CrossRef
5.
Zurück zum Zitat Clayton JD (2015) Modeling and simulation of ballistic penetration of ceramic-polymer-metal layered systems. Math Probl Eng 2015:709498CrossRef Clayton JD (2015) Modeling and simulation of ballistic penetration of ceramic-polymer-metal layered systems. Math Probl Eng 2015:709498CrossRef
6.
Zurück zum Zitat Brandon DG (1966) The structure of high-angle grain boundaries. Acta Metall 14:1479–1484CrossRef Brandon DG (1966) The structure of high-angle grain boundaries. Acta Metall 14:1479–1484CrossRef
7.
Zurück zum Zitat Rice JR (1968) Mathematical analysis in the mechanics of fracture. In: Liebowitz H (ed) Fracture: an advanced treatise. Academic Press, New York, pp 191–311 Rice JR (1968) Mathematical analysis in the mechanics of fracture. In: Liebowitz H (ed) Fracture: an advanced treatise. Academic Press, New York, pp 191–311
8.
Zurück zum Zitat Wright TW (2002) The physics and mathematics of adiabatic shear bands. Cambridge University Press, Cambridge Wright TW (2002) The physics and mathematics of adiabatic shear bands. Cambridge University Press, Cambridge
9.
Zurück zum Zitat Hughes DA, Hansen N, Bammann DJ (2003) Geometrically necessary boundaries, incidental dislocation boundaries and geometrically necessary dislocations. Scr Mater 48:147–153CrossRef Hughes DA, Hansen N, Bammann DJ (2003) Geometrically necessary boundaries, incidental dislocation boundaries and geometrically necessary dislocations. Scr Mater 48:147–153CrossRef
10.
Zurück zum Zitat Boiko VS, Garber RI, Kosevich AM (1994) Reversible crystal plasticity. AIP Press, New York Boiko VS, Garber RI, Kosevich AM (1994) Reversible crystal plasticity. AIP Press, New York
11.
Zurück zum Zitat Christian JW, Mahajan S (1995) Deformation twinning. Prog Mater Sci 39:1–157CrossRef Christian JW, Mahajan S (1995) Deformation twinning. Prog Mater Sci 39:1–157CrossRef
12.
Zurück zum Zitat Dongare AM, LaMattina B, Irving DL, Rajendran AM, Zikry MA, Brenner DW (2012) An angular-dependent embedded atom method (A-EAM) interatomic potential to model thermodynamic and mechanical behavior of Al/Si composite materials. Modelling Simul Mater Sci Eng 20:035007CrossRef Dongare AM, LaMattina B, Irving DL, Rajendran AM, Zikry MA, Brenner DW (2012) An angular-dependent embedded atom method (A-EAM) interatomic potential to model thermodynamic and mechanical behavior of Al/Si composite materials. Modelling Simul Mater Sci Eng 20:035007CrossRef
13.
Zurück zum Zitat Zhigilei LV, Volkov AN, Dongare AM (2012) Computational study of nanomaterials: from large-scale atomistic simulations to mesoscopic modeling. In: Bhushan B (ed) Encyclopedia of nanotechnology. Springer, Berlin, pp 470–480 Zhigilei LV, Volkov AN, Dongare AM (2012) Computational study of nanomaterials: from large-scale atomistic simulations to mesoscopic modeling. In: Bhushan B (ed) Encyclopedia of nanotechnology. Springer, Berlin, pp 470–480
14.
Zurück zum Zitat Abraham FF, Broughton JQ, Bernstein N, Kaxiras E (1998) Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture. Europhys Lett 44:783–787CrossRef Abraham FF, Broughton JQ, Bernstein N, Kaxiras E (1998) Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture. Europhys Lett 44:783–787CrossRef
15.
Zurück zum Zitat Knap J, Ortiz M (2001) An analysis of the quasicontinuum method. J Mech Phys Solids 49:1899–1923CrossRef Knap J, Ortiz M (2001) An analysis of the quasicontinuum method. J Mech Phys Solids 49:1899–1923CrossRef
16.
Zurück zum Zitat Clayton JD, Chung PW (2006) An atomistic-to-continuum framework for nonlinear crystal mechanics based on asymptotic homogenization. J Mech Phys Solids 54:1604–1639CrossRef Clayton JD, Chung PW (2006) An atomistic-to-continuum framework for nonlinear crystal mechanics based on asymptotic homogenization. J Mech Phys Solids 54:1604–1639CrossRef
17.
Zurück zum Zitat Chung PW, Clayton JD (2007) Multiscale modeling of point and line defects in cubic crystals. Int J Multiscale Comput Eng 5:203–226CrossRef Chung PW, Clayton JD (2007) Multiscale modeling of point and line defects in cubic crystals. Int J Multiscale Comput Eng 5:203–226CrossRef
18.
Zurück zum Zitat Emmerich H (2003) The diffuse interface approach in materials science: thermodynamic concepts and applications of phase-field models. Springer, Berlin Emmerich H (2003) The diffuse interface approach in materials science: thermodynamic concepts and applications of phase-field models. Springer, Berlin
19.
Zurück zum Zitat Schoenfeld SE, Wright TW (2003) A failure criterion based on material instability. Int J Solids Struct 40:3021–3037CrossRef Schoenfeld SE, Wright TW (2003) A failure criterion based on material instability. Int J Solids Struct 40:3021–3037CrossRef
20.
Zurück zum Zitat Wallace DC (2003) Statistical physics of crystals and liquids: a guide to highly accurate equations of state. World Scientific, SingaporeCrossRef Wallace DC (2003) Statistical physics of crystals and liquids: a guide to highly accurate equations of state. World Scientific, SingaporeCrossRef
21.
Zurück zum Zitat Clayton JD, Tonge A (2015) A nonlinear anisotropic elastic–inelastic constitutive model for polycrystalline ceramics and minerals with application to boron carbide. Int J Solids Struct 64–65:191–207CrossRef Clayton JD, Tonge A (2015) A nonlinear anisotropic elastic–inelastic constitutive model for polycrystalline ceramics and minerals with application to boron carbide. Int J Solids Struct 64–65:191–207CrossRef
22.
Zurück zum Zitat Bunge H-J (1982) Texture analysis in materials science: mathematical methods. Butterworths, London Bunge H-J (1982) Texture analysis in materials science: mathematical methods. Butterworths, London
23.
Zurück zum Zitat Randle V, Engler O (2000) Introduction to texture analysis: macrotexture, microtexture, and orientation mapping. Gordon and Breach, Amsterdam Randle V, Engler O (2000) Introduction to texture analysis: macrotexture, microtexture, and orientation mapping. Gordon and Breach, Amsterdam
24.
Zurück zum Zitat Grimmer H, Bollmann W, Warrington DH (1974) Coincident-site lattices and complete pattern-shift lattices in cubic crystals. Acta Crystallogr A 30:197–207CrossRef Grimmer H, Bollmann W, Warrington DH (1974) Coincident-site lattices and complete pattern-shift lattices in cubic crystals. Acta Crystallogr A 30:197–207CrossRef
25.
Zurück zum Zitat Watanabe T (1984) An approach to grain boundary design for strong and ductile polycrystals. Res Mech 11:47–84 Watanabe T (1984) An approach to grain boundary design for strong and ductile polycrystals. Res Mech 11:47–84
26.
Zurück zum Zitat Roters F, Eisenlohr P, Hantcherli L, Tjahjanto DD, Bieler TR, Raabe D (2010) Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater 58:1152–1211CrossRef Roters F, Eisenlohr P, Hantcherli L, Tjahjanto DD, Bieler TR, Raabe D (2010) Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater 58:1152–1211CrossRef
27.
Zurück zum Zitat Clayton JD, Kraft RH, Leavy RB (2012) Mesoscale modeling of nonlinear elasticity and fracture in ceramic polycrystals under dynamic shear and compression. Int J Solids Struct 49:2686–2702CrossRef Clayton JD, Kraft RH, Leavy RB (2012) Mesoscale modeling of nonlinear elasticity and fracture in ceramic polycrystals under dynamic shear and compression. Int J Solids Struct 49:2686–2702CrossRef
28.
Zurück zum Zitat Clayton JD (2013a) Mesoscale modeling of dynamic compression of boron carbide polycrystals. Mech Res Commun 49:57–64CrossRef Clayton JD (2013a) Mesoscale modeling of dynamic compression of boron carbide polycrystals. Mech Res Commun 49:57–64CrossRef
29.
Zurück zum Zitat Clayton JD, McDowell DL (2003a) A multiscale multiplicative decomposition for elastoplasticity of polycrystals. Int J Plast 19:1401–1444CrossRef Clayton JD, McDowell DL (2003a) A multiscale multiplicative decomposition for elastoplasticity of polycrystals. Int J Plast 19:1401–1444CrossRef
30.
Zurück zum Zitat Clayton JD, Knap J (2015a) Phase field modeling of directional fracture in anisotropic polycrystals. Comput Mater Sci 98:158–169CrossRef Clayton JD, Knap J (2015a) Phase field modeling of directional fracture in anisotropic polycrystals. Comput Mater Sci 98:158–169CrossRef
31.
Zurück zum Zitat Clayton JD (2013b) Nonlinear Eulerian thermoelasticity for anisotropic crystals. J Mech Phys Solids 61:1983–2014CrossRef Clayton JD (2013b) Nonlinear Eulerian thermoelasticity for anisotropic crystals. J Mech Phys Solids 61:1983–2014CrossRef
32.
Zurück zum Zitat Clayton JD (2014a) Analysis of shock compression of strong single crystals with logarithmic thermoelastic–plastic theory. Int J Eng Sci 79:1–20CrossRef Clayton JD (2014a) Analysis of shock compression of strong single crystals with logarithmic thermoelastic–plastic theory. Int J Eng Sci 79:1–20CrossRef
33.
Zurück zum Zitat Thurston RN (1974) Waves in solids. In: Truesdell C (ed) Handbuch der Physik, vol 4. Springer, Berlin, pp 109–308 Thurston RN (1974) Waves in solids. In: Truesdell C (ed) Handbuch der Physik, vol 4. Springer, Berlin, pp 109–308
34.
Zurück zum Zitat Teodosiu C (1982) Elastic models of crystal defects. Springer, BerlinCrossRef Teodosiu C (1982) Elastic models of crystal defects. Springer, BerlinCrossRef
35.
Zurück zum Zitat Clayton JD (2014b) Shock compression of metal crystals: a comparison of Eulerian and Lagrangian elastic–plastic theories. Int J Appl Mech 6:1450048CrossRef Clayton JD (2014b) Shock compression of metal crystals: a comparison of Eulerian and Lagrangian elastic–plastic theories. Int J Appl Mech 6:1450048CrossRef
36.
Zurück zum Zitat Clayton JD (2015b) Crystal thermoelasticity at extreme loading rates and pressures: analysis of higher-order energy potentials. Mech Lett 3:113–122CrossRef Clayton JD (2015b) Crystal thermoelasticity at extreme loading rates and pressures: analysis of higher-order energy potentials. Mech Lett 3:113–122CrossRef
37.
Zurück zum Zitat Meyers MA, Ashworth E (1982) A model for the effect of grain size on the yield stress of metals. Philos Mag A 46:737–759CrossRef Meyers MA, Ashworth E (1982) A model for the effect of grain size on the yield stress of metals. Philos Mag A 46:737–759CrossRef
38.
Zurück zum Zitat Clayton JD, Schroeter BM, Graham S, McDowell DL (2002) Distributions of stretch and rotation in OFHC Cu. J Eng Mater Technol 124:302–313CrossRef Clayton JD, Schroeter BM, Graham S, McDowell DL (2002) Distributions of stretch and rotation in OFHC Cu. J Eng Mater Technol 124:302–313CrossRef
39.
Zurück zum Zitat Harren SV, Deve HE, Asaro RJ (1988) Shear band formation in plane strain compression. Acta Metall 36:2435–2480CrossRef Harren SV, Deve HE, Asaro RJ (1988) Shear band formation in plane strain compression. Acta Metall 36:2435–2480CrossRef
40.
Zurück zum Zitat Harren SV, Asaro RJ (1989) Nonuniform deformations in polycrystals and aspects of the validity of the Taylor model. J Mech Phys Solids 37(2):191–232CrossRef Harren SV, Asaro RJ (1989) Nonuniform deformations in polycrystals and aspects of the validity of the Taylor model. J Mech Phys Solids 37(2):191–232CrossRef
41.
Zurück zum Zitat Clayton JD (2009a) Modeling effects of crystalline microstructure, energy storage mechanisms, and residual volume changes on penetration resistance of precipitate-hardened aluminum alloys. Compos B Eng 40:443–450CrossRef Clayton JD (2009a) Modeling effects of crystalline microstructure, energy storage mechanisms, and residual volume changes on penetration resistance of precipitate-hardened aluminum alloys. Compos B Eng 40:443–450CrossRef
42.
Zurück zum Zitat Needleman A, Asaro RJ, Lemonds J, Peirce D (1985) Finite element analysis of crystalline solids. Comput Methods Appl Mech Eng 52:689–708CrossRef Needleman A, Asaro RJ, Lemonds J, Peirce D (1985) Finite element analysis of crystalline solids. Comput Methods Appl Mech Eng 52:689–708CrossRef
43.
Zurück zum Zitat Zikry MA, Kao M (1996) Inelastic microstructural failure mechanisms in crystalline materials with high angle grain boundaries. J Mech Phys Solids 44:1765–1798CrossRef Zikry MA, Kao M (1996) Inelastic microstructural failure mechanisms in crystalline materials with high angle grain boundaries. J Mech Phys Solids 44:1765–1798CrossRef
44.
Zurück zum Zitat Ortiz M, Suresh S (1993) Statistical properties of residual stresses and intergranular fracture in ceramic materials. J Appl Mech 60:77–84CrossRef Ortiz M, Suresh S (1993) Statistical properties of residual stresses and intergranular fracture in ceramic materials. J Appl Mech 60:77–84CrossRef
45.
Zurück zum Zitat Espinos HD, Zavattieri PD (2003a) A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part I theory and numerical implementation. Mech Mater 35:333–364CrossRef Espinos HD, Zavattieri PD (2003a) A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part I theory and numerical implementation. Mech Mater 35:333–364CrossRef
46.
Zurück zum Zitat Pathak S, Michler J, Wasmer K, Kalidindi SR (2012) Studying grain boundary regions in polycrystalline materials using spherical nano-indentation and orientation imaging microscopy. J Mater Sci 47:815–823. doi:10.1007/s10853-011-5859-z CrossRef Pathak S, Michler J, Wasmer K, Kalidindi SR (2012) Studying grain boundary regions in polycrystalline materials using spherical nano-indentation and orientation imaging microscopy. J Mater Sci 47:815–823. doi:10.​1007/​s10853-011-5859-z CrossRef
47.
Zurück zum Zitat Grinfeld M (1991) Thermodynamic methods in the theory of heterogeneous systems. Longman Scientific and Technical, Sussex Grinfeld M (1991) Thermodynamic methods in the theory of heterogeneous systems. Longman Scientific and Technical, Sussex
48.
Zurück zum Zitat Abeyaratne R, Knowles JK (1990) On the driving traction acting on a surface of strain discontinuity in a continuum. J Mech Phys Solids 38:345–360CrossRef Abeyaratne R, Knowles JK (1990) On the driving traction acting on a surface of strain discontinuity in a continuum. J Mech Phys Solids 38:345–360CrossRef
49.
Zurück zum Zitat Abeyaratne R, Knowles JK (1991) Kinetic relations and the propagation of phase boundaries in solids. Arch Ration Mech Anal 114:119–154CrossRef Abeyaratne R, Knowles JK (1991) Kinetic relations and the propagation of phase boundaries in solids. Arch Ration Mech Anal 114:119–154CrossRef
50.
Zurück zum Zitat Read WT, Shockley W (1950) Dislocation models of crystal grain boundaries. Phys Rev 78:275–289CrossRef Read WT, Shockley W (1950) Dislocation models of crystal grain boundaries. Phys Rev 78:275–289CrossRef
51.
Zurück zum Zitat Mughrabi H (1983) Dislocation wall and cell structures and long-range internal stresses in deformed metal crystals. Acta Metall 31:1367–1379CrossRef Mughrabi H (1983) Dislocation wall and cell structures and long-range internal stresses in deformed metal crystals. Acta Metall 31:1367–1379CrossRef
52.
Zurück zum Zitat Rezvanian O, Zikry MA, Rajendran AM (2007) Statistically stored, geometrically necessary and grain boundary dislocation densities: microstructural representation and modelling. Proc R Soc Lond A 463:2833–2853CrossRef Rezvanian O, Zikry MA, Rajendran AM (2007) Statistically stored, geometrically necessary and grain boundary dislocation densities: microstructural representation and modelling. Proc R Soc Lond A 463:2833–2853CrossRef
53.
Zurück zum Zitat Clayton JD, McDowell DL, Bammann DJ (2006) Modeling dislocations and disclinations with finite micropolar elastoplasticity. Int J Plast 22:210–256CrossRef Clayton JD, McDowell DL, Bammann DJ (2006) Modeling dislocations and disclinations with finite micropolar elastoplasticity. Int J Plast 22:210–256CrossRef
54.
Zurück zum Zitat Clayton JD, Bammann DJ, McDowell DL (2004a) Anholonomic configuration spaces and metric tensors in finite strain elastoplasticity. Int J Non Linear Mech 39:1039–1049CrossRef Clayton JD, Bammann DJ, McDowell DL (2004a) Anholonomic configuration spaces and metric tensors in finite strain elastoplasticity. Int J Non Linear Mech 39:1039–1049CrossRef
55.
Zurück zum Zitat Clayton JD (2012a) On anholonomic deformation, geometry, and differentiation. Math Mech Solids 17:702–735CrossRef Clayton JD (2012a) On anholonomic deformation, geometry, and differentiation. Math Mech Solids 17:702–735CrossRef
56.
Zurück zum Zitat Clayton JD (2014c) Differential geometry and kinematics of continua. World Scientific, SingaporeCrossRef Clayton JD (2014c) Differential geometry and kinematics of continua. World Scientific, SingaporeCrossRef
57.
Zurück zum Zitat Steinmann P (2015) Geometrical foundations of continuum mechanics. Springer, BerlinCrossRef Steinmann P (2015) Geometrical foundations of continuum mechanics. Springer, BerlinCrossRef
58.
Zurück zum Zitat Regueiro RA, Bammann DJ, Marin EB, Garikipati K (2002) A nonlocal phenomenological anisotropic finite deformation plasticity model accounting for dislocation defects. J Eng Mater Technol 124:380–387CrossRef Regueiro RA, Bammann DJ, Marin EB, Garikipati K (2002) A nonlocal phenomenological anisotropic finite deformation plasticity model accounting for dislocation defects. J Eng Mater Technol 124:380–387CrossRef
59.
Zurück zum Zitat Clayton JD, McDowell DL, Bammann DJ (2004b) A multiscale gradient theory for elastoviscoplasticity of single crystals. Int J Eng Sci 42:427–457CrossRef Clayton JD, McDowell DL, Bammann DJ (2004b) A multiscale gradient theory for elastoviscoplasticity of single crystals. Int J Eng Sci 42:427–457CrossRef
60.
Zurück zum Zitat Admal NC, Po G, Marian J (2017) Diffuse-interface polycrystal plasticity: expressing grain boundaries as geometrically necessary dislocations. Mater Theory 1:1–16CrossRef Admal NC, Po G, Marian J (2017) Diffuse-interface polycrystal plasticity: expressing grain boundaries as geometrically necessary dislocations. Mater Theory 1:1–16CrossRef
61.
Zurück zum Zitat Li JCM (1972) Disclination model of high angle grain boundaries. Surf Sci 31:12–26CrossRef Li JCM (1972) Disclination model of high angle grain boundaries. Surf Sci 31:12–26CrossRef
62.
Zurück zum Zitat Clayton JD, Bammann DJ, McDowell DL (2005) A geometric framework for the kinematics of crystals with defects. Philos Mag 85:3983–4010CrossRef Clayton JD, Bammann DJ, McDowell DL (2005) A geometric framework for the kinematics of crystals with defects. Philos Mag 85:3983–4010CrossRef
63.
Zurück zum Zitat Steinmann P (2013) On the roots of continuum mechanics in differential geometry. In: Altenbach H, Eremeyev VA (eds) Generalized continua-from the theory to engineering applications. Springer, Udine, pp 1–64 Steinmann P (2013) On the roots of continuum mechanics in differential geometry. In: Altenbach H, Eremeyev VA (eds) Generalized continua-from the theory to engineering applications. Springer, Udine, pp 1–64
64.
Zurück zum Zitat Clayton JD (2015c) Defects in nonlinear elastic crystals: differential geometry, finite kinematics, and second-order analytical solutions. Z Angew Math Mech ZAMM) 95:476–510CrossRef Clayton JD (2015c) Defects in nonlinear elastic crystals: differential geometry, finite kinematics, and second-order analytical solutions. Z Angew Math Mech ZAMM) 95:476–510CrossRef
65.
Zurück zum Zitat Upadhyay M, Capolungo L, Taupin V, Fressengeas C (2011) Grain boundary and triple junction energies in crystalline media: a disclination based approach. Int J Solids Struct 48:3176–3193CrossRef Upadhyay M, Capolungo L, Taupin V, Fressengeas C (2011) Grain boundary and triple junction energies in crystalline media: a disclination based approach. Int J Solids Struct 48:3176–3193CrossRef
66.
Zurück zum Zitat Sun XY, Cordier P, Taupin V, Fressengeas C, Jahn S (2016) Continuous description of a grain boundary in forsterite from atomic scale simulations: the role of disclinations. Philo Mag 96:1757–1772CrossRef Sun XY, Cordier P, Taupin V, Fressengeas C, Jahn S (2016) Continuous description of a grain boundary in forsterite from atomic scale simulations: the role of disclinations. Philo Mag 96:1757–1772CrossRef
67.
Zurück zum Zitat Gerken JM, Dawson PR (2008) A crystal plasticity model that incorporates stresses and strains due to slip gradients. J Mech Phys Solids 56:1651–1672CrossRef Gerken JM, Dawson PR (2008) A crystal plasticity model that incorporates stresses and strains due to slip gradients. J Mech Phys Solids 56:1651–1672CrossRef
68.
Zurück zum Zitat Luscher DJ, Mayeur JR, Mourad HM, Hunter A, Kenamond MA (2016) Coupling continuum dislocation transport with crystal plasticity for application to shock loading conditions. Int J Plast 76:111–129CrossRef Luscher DJ, Mayeur JR, Mourad HM, Hunter A, Kenamond MA (2016) Coupling continuum dislocation transport with crystal plasticity for application to shock loading conditions. Int J Plast 76:111–129CrossRef
69.
Zurück zum Zitat Clayton JD, Hartley CS, McDowell DL (2014) The missing term in the decomposition of finite deformation. Int J Plast 52:51–76CrossRef Clayton JD, Hartley CS, McDowell DL (2014) The missing term in the decomposition of finite deformation. Int J Plast 52:51–76CrossRef
70.
Zurück zum Zitat Clayton JD (2014d) An alternative three-term decomposition for single crystal deformation motivated by non-linear elastic dislocation solutions. Q J Mech Appl Math 67:127–158CrossRef Clayton JD (2014d) An alternative three-term decomposition for single crystal deformation motivated by non-linear elastic dislocation solutions. Q J Mech Appl Math 67:127–158CrossRef
71.
Zurück zum Zitat Clayton JD, Bammann DJ (2009) Finite deformations and internal forces in elastic–plastic crystals: interpretations from nonlinear elasticity and anharmonic lattice statics. J Eng Mater Technol 131:041201CrossRef Clayton JD, Bammann DJ (2009) Finite deformations and internal forces in elastic–plastic crystals: interpretations from nonlinear elasticity and anharmonic lattice statics. J Eng Mater Technol 131:041201CrossRef
72.
Zurück zum Zitat Toupin RA, Rivlin RS (1960) Dimensional changes in crystals caused by dislocations. J Math Phys 1:8–15CrossRef Toupin RA, Rivlin RS (1960) Dimensional changes in crystals caused by dislocations. J Math Phys 1:8–15CrossRef
73.
Zurück zum Zitat Clayton JD (2009b) A continuum description of nonlinear elasticity, slip and twinning, with application to sapphire. Proc R Soc Lond A 465:307–334CrossRef Clayton JD (2009b) A continuum description of nonlinear elasticity, slip and twinning, with application to sapphire. Proc R Soc Lond A 465:307–334CrossRef
74.
Zurück zum Zitat Clayton JD (2009c) A non-linear model for elastic dielectric crystals with mobile vacancies. Int J Non Linear Mech 44:675–688CrossRef Clayton JD (2009c) A non-linear model for elastic dielectric crystals with mobile vacancies. Int J Non Linear Mech 44:675–688CrossRef
75.
Zurück zum Zitat Abdollahi A, Arias I (2012) Numerical simulation of intergranular and transgranular crack propagation in ferroelectric polycrystals. Int J Fract 174:3–15CrossRef Abdollahi A, Arias I (2012) Numerical simulation of intergranular and transgranular crack propagation in ferroelectric polycrystals. Int J Fract 174:3–15CrossRef
76.
Zurück zum Zitat Fan D, Chen L-Q (1997) Computer simulation of grain growth using a continuum field model. Acta Mater 45:611–622CrossRef Fan D, Chen L-Q (1997) Computer simulation of grain growth using a continuum field model. Acta Mater 45:611–622CrossRef
77.
Zurück zum Zitat Allen SM, Cahn JW (1979) A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall 27:1085–1095CrossRef Allen SM, Cahn JW (1979) A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall 27:1085–1095CrossRef
78.
Zurück zum Zitat Abrivard G, Busso EP, Forest S, Appolaire B (2012a) Phase field modelling of grain boundary motion driven by curvature and stored energy gradients. Part I: theory and numerical implementation. Philos Mag 92:3618–3642CrossRef Abrivard G, Busso EP, Forest S, Appolaire B (2012a) Phase field modelling of grain boundary motion driven by curvature and stored energy gradients. Part I: theory and numerical implementation. Philos Mag 92:3618–3642CrossRef
79.
Zurück zum Zitat Abrivard G, Busso EP, Forest B, Appolaire S (2012b) Phase field modelling of grain boundary motion driven by curvature and stored energy gradients. Part II: application to recrystallisation. Philos Mag 92:3643–3664CrossRef Abrivard G, Busso EP, Forest B, Appolaire S (2012b) Phase field modelling of grain boundary motion driven by curvature and stored energy gradients. Part II: application to recrystallisation. Philos Mag 92:3643–3664CrossRef
80.
Zurück zum Zitat James RD (1981) Finite deformation by mechanical twinning. Arch Ration Mech Anal 77:143–176CrossRef James RD (1981) Finite deformation by mechanical twinning. Arch Ration Mech Anal 77:143–176CrossRef
81.
Zurück zum Zitat Zanzotto G (1996) The Cauchy–Born hypothesis, nonlinear elasticity and mechanical twinning in crystals. Acta Crystallogr A 52:839–849CrossRef Zanzotto G (1996) The Cauchy–Born hypothesis, nonlinear elasticity and mechanical twinning in crystals. Acta Crystallogr A 52:839–849CrossRef
82.
Zurück zum Zitat Bilby BA, Crocker AG (1965) The theory of the crystallography of deformation twinning. Proc R Soc Lond A 288:240–255CrossRef Bilby BA, Crocker AG (1965) The theory of the crystallography of deformation twinning. Proc R Soc Lond A 288:240–255CrossRef
83.
Zurück zum Zitat Barton NR, Winter NW, Reaugh JE (2009) Defect evolution and pore collapse in crystalline energetic materials. Modelling Simul Mater Sci Eng 17:035003CrossRef Barton NR, Winter NW, Reaugh JE (2009) Defect evolution and pore collapse in crystalline energetic materials. Modelling Simul Mater Sci Eng 17:035003CrossRef
84.
Zurück zum Zitat Clayton JD, Becker R (2012) Elastic–plastic behavior of cyclotrimethylene trinitramine single crystals under spherical indentation: modeling and simulation. J Appl Phys 111:063512CrossRef Clayton JD, Becker R (2012) Elastic–plastic behavior of cyclotrimethylene trinitramine single crystals under spherical indentation: modeling and simulation. J Appl Phys 111:063512CrossRef
85.
Zurück zum Zitat Bhattacharya K (2003) Microstructure of martensite: why it forms and how it gives rise to the shape-memory effect. Oxford University Press, New York Bhattacharya K (2003) Microstructure of martensite: why it forms and how it gives rise to the shape-memory effect. Oxford University Press, New York
86.
Zurück zum Zitat Hou TY, Rosakis P, LeFloch P (1999) A level-set approach to the computation of twinning and phase-transition dynamics. J Comput Phys 150:302–331CrossRef Hou TY, Rosakis P, LeFloch P (1999) A level-set approach to the computation of twinning and phase-transition dynamics. J Comput Phys 150:302–331CrossRef
87.
Zurück zum Zitat Chin GY, Hosford WF, Mendorf DR (1969) Accommodation of constrained deformation in FCC metals by slip and twinning. Proc R Soc Lond A 309:433–456CrossRef Chin GY, Hosford WF, Mendorf DR (1969) Accommodation of constrained deformation in FCC metals by slip and twinning. Proc R Soc Lond A 309:433–456CrossRef
88.
Zurück zum Zitat Van Houtte P (1978) Simulation of the rolling and shear texture of brass by the Taylor theory adapted for mechanical twinning. Acta Metall 26:591–604CrossRef Van Houtte P (1978) Simulation of the rolling and shear texture of brass by the Taylor theory adapted for mechanical twinning. Acta Metall 26:591–604CrossRef
89.
Zurück zum Zitat Kalidindi SR (1998) Incorporation of deformation twinning in crystal plasticity models. J Mech Phys Solids 46:267–290CrossRef Kalidindi SR (1998) Incorporation of deformation twinning in crystal plasticity models. J Mech Phys Solids 46:267–290CrossRef
90.
Zurück zum Zitat Staroselsky A, Anand L (1998) Inelastic deformation of polycrystalline face centered cubic materials by slip and twinning. J Mech Phys Solids 46:671–696CrossRef Staroselsky A, Anand L (1998) Inelastic deformation of polycrystalline face centered cubic materials by slip and twinning. J Mech Phys Solids 46:671–696CrossRef
91.
Zurück zum Zitat Clayton JD (2010a) Modeling finite deformations in trigonal ceramic crystals with lattice defects. Int J Plast 26:1357–1386CrossRef Clayton JD (2010a) Modeling finite deformations in trigonal ceramic crystals with lattice defects. Int J Plast 26:1357–1386CrossRef
92.
Zurück zum Zitat Mirkhani H, Joshi SP (2014) Mechanism-based crystal plasticity modeling of twin boundary migration in nanotwinned face-centered-cubic metals. J Mech Phys Solids 68:107–133CrossRef Mirkhani H, Joshi SP (2014) Mechanism-based crystal plasticity modeling of twin boundary migration in nanotwinned face-centered-cubic metals. J Mech Phys Solids 68:107–133CrossRef
93.
Zurück zum Zitat Clayton JD, Knap J (2011a) A phase field model of deformation twinning: nonlinear theory and numerical simulations. Physica D 240:841–858CrossRef Clayton JD, Knap J (2011a) A phase field model of deformation twinning: nonlinear theory and numerical simulations. Physica D 240:841–858CrossRef
94.
Zurück zum Zitat Hu SY, Henager CH, Chen L-Q (2010) Simulations of stress-induced twinning and de-twinning: a phase field model. Acta Mater 58:6554–6564CrossRef Hu SY, Henager CH, Chen L-Q (2010) Simulations of stress-induced twinning and de-twinning: a phase field model. Acta Mater 58:6554–6564CrossRef
95.
Zurück zum Zitat Heo TW, Wang Y, Bhattacharya S, Sun X, Hu S, Chen L-Q (2011) A phase-field model for deformation twinning. Philos Mag Lett 91:110–121CrossRef Heo TW, Wang Y, Bhattacharya S, Sun X, Hu S, Chen L-Q (2011) A phase-field model for deformation twinning. Philos Mag Lett 91:110–121CrossRef
96.
Zurück zum Zitat Bhattacharya K (1993) Comparison of the geometrically nonlinear and linear theories of martensitic transformation. Contin Mech Thermodyn 5:205–242CrossRef Bhattacharya K (1993) Comparison of the geometrically nonlinear and linear theories of martensitic transformation. Contin Mech Thermodyn 5:205–242CrossRef
97.
Zurück zum Zitat Clayton JD, Knap J (2011b) Phase field modeling of twinning in indentation of transparent single crystals. Modelling Simul Mater Sci Eng 19:085005CrossRef Clayton JD, Knap J (2011b) Phase field modeling of twinning in indentation of transparent single crystals. Modelling Simul Mater Sci Eng 19:085005CrossRef
98.
Zurück zum Zitat Clayton JD, Knap J (2013) Phase field analysis of fracture induced twinning in single crystals. Acta Mater 61:5341–5353CrossRef Clayton JD, Knap J (2013) Phase field analysis of fracture induced twinning in single crystals. Acta Mater 61:5341–5353CrossRef
99.
Zurück zum Zitat Hildebrand FE, Miehe C (2012) A phase field model for the formation and evolution of martensitic laminate microstructure at finite strains. Philos Mag 92:4250–4290CrossRef Hildebrand FE, Miehe C (2012) A phase field model for the formation and evolution of martensitic laminate microstructure at finite strains. Philos Mag 92:4250–4290CrossRef
100.
Zurück zum Zitat Clayton JD, Knap J (2015b) Nonlinear phase field theory for fracture and twinning with analysis of simple shear. Philos Mag 95:2661–2696CrossRef Clayton JD, Knap J (2015b) Nonlinear phase field theory for fracture and twinning with analysis of simple shear. Philos Mag 95:2661–2696CrossRef
101.
Zurück zum Zitat Kondo R, Tadano Y, Shizawa K (2014) A phase-field model of twinning and detwinning coupled with dislocation-based crystal plasticity for HCP metals. Comput Mater Sci 95:672–683CrossRef Kondo R, Tadano Y, Shizawa K (2014) A phase-field model of twinning and detwinning coupled with dislocation-based crystal plasticity for HCP metals. Comput Mater Sci 95:672–683CrossRef
102.
Zurück zum Zitat Li X, Wei Y, Lu L, Lu K, Gao H (2010) Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Nature 464:877–880CrossRef Li X, Wei Y, Lu L, Lu K, Gao H (2010) Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Nature 464:877–880CrossRef
103.
Zurück zum Zitat Yang L, Dayal K (2010) Formulation of phase-field energies for microstructure in complex crystal structures. Appl Phys Lett 96:081916CrossRef Yang L, Dayal K (2010) Formulation of phase-field energies for microstructure in complex crystal structures. Appl Phys Lett 96:081916CrossRef
104.
Zurück zum Zitat Agrawal V, Dayal K (2015a) A dynamic phase-field model for structural transformations and twinning: regularized interfaces with transparent prescription of complex kinetics and nucleation. part I: formulation and one-dimensional characterization. J Mech Phys Solids 85:270–290CrossRef Agrawal V, Dayal K (2015a) A dynamic phase-field model for structural transformations and twinning: regularized interfaces with transparent prescription of complex kinetics and nucleation. part I: formulation and one-dimensional characterization. J Mech Phys Solids 85:270–290CrossRef
105.
Zurück zum Zitat Agrawal V, Dayal K (2015b) A dynamic phase-field model for structural transformations and twinning: regularized interfaces with transparent prescription of complex kinetics and nucleation. part II: two-dimensional characterization and boundary kinetics. J Mech Phys Solids 85:291–307CrossRef Agrawal V, Dayal K (2015b) A dynamic phase-field model for structural transformations and twinning: regularized interfaces with transparent prescription of complex kinetics and nucleation. part II: two-dimensional characterization and boundary kinetics. J Mech Phys Solids 85:291–307CrossRef
106.
Zurück zum Zitat Schultz MC, Jensen RA, Bradt RC (1994) Single crystal cleavage of brittle materials. Int J Fract 65:291–312CrossRef Schultz MC, Jensen RA, Bradt RC (1994) Single crystal cleavage of brittle materials. Int J Fract 65:291–312CrossRef
107.
Zurück zum Zitat Clayton JD (2008) A model for deformation and fragmentation in crushable brittle solids. Int J Impact Eng 35:269–289CrossRef Clayton JD (2008) A model for deformation and fragmentation in crushable brittle solids. Int J Impact Eng 35:269–289CrossRef
108.
Zurück zum Zitat Antoun T (2003) Spall fracture. Springer, New York Antoun T (2003) Spall fracture. Springer, New York
109.
Zurück zum Zitat Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8:100–104CrossRef Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8:100–104CrossRef
110.
Zurück zum Zitat Barenblatt GI (1962) The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7:55–129CrossRef Barenblatt GI (1962) The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7:55–129CrossRef
111.
Zurück zum Zitat Needleman A (1987) A continuum model for void nucleation by inclusion debonding. J Appl Mech 54:525–531CrossRef Needleman A (1987) A continuum model for void nucleation by inclusion debonding. J Appl Mech 54:525–531CrossRef
112.
Zurück zum Zitat Xu X-P, Needleman A (1993) Void nucleation by inclusion debonding in a crystal matrix. Modelling Simul Mater Sci Eng 1:111–132CrossRef Xu X-P, Needleman A (1993) Void nucleation by inclusion debonding in a crystal matrix. Modelling Simul Mater Sci Eng 1:111–132CrossRef
113.
Zurück zum Zitat Clayton JD, McDowell DL (2004) Homogenized finite elastoplasticity and damage: theory and computations. Mech Mater 36:799–824CrossRef Clayton JD, McDowell DL (2004) Homogenized finite elastoplasticity and damage: theory and computations. Mech Mater 36:799–824CrossRef
114.
Zurück zum Zitat Xu X-P, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42:1397–1434CrossRef Xu X-P, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42:1397–1434CrossRef
115.
Zurück zum Zitat Clayton JD (2005a) Dynamic plasticity and fracture in high density polycrystals: constitutive modeling and numerical simulation. J Mech Phys Solids 53:261–301CrossRef Clayton JD (2005a) Dynamic plasticity and fracture in high density polycrystals: constitutive modeling and numerical simulation. J Mech Phys Solids 53:261–301CrossRef
116.
Zurück zum Zitat Clayton JD (2005b) Modeling dynamic plasticity and spall fracture in high density polycrystalline alloys. Int J Solids Struct 42:4613–4640CrossRef Clayton JD (2005b) Modeling dynamic plasticity and spall fracture in high density polycrystalline alloys. Int J Solids Struct 42:4613–4640CrossRef
117.
Zurück zum Zitat Vogler TJ, Clayton JD (2008) Heterogeneous deformation and spall of an extruded tungsten alloy: plate impact experiments and crystal plasticity modeling. J Mech Phys Solids 56:297–335CrossRef Vogler TJ, Clayton JD (2008) Heterogeneous deformation and spall of an extruded tungsten alloy: plate impact experiments and crystal plasticity modeling. J Mech Phys Solids 56:297–335CrossRef
118.
Zurück zum Zitat Espinosa HD, Zavattieri PD (2003b) A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part II: numerical examples. Mech Mater 35:365–394CrossRef Espinosa HD, Zavattieri PD (2003b) A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part II: numerical examples. Mech Mater 35:365–394CrossRef
119.
Zurück zum Zitat Kraft RH, Molinari JF (2008) A statistical investigation of the effects of grain boundary properties on transgranular fracture. Acta Mater 56:4739–4749CrossRef Kraft RH, Molinari JF (2008) A statistical investigation of the effects of grain boundary properties on transgranular fracture. Acta Mater 56:4739–4749CrossRef
120.
Zurück zum Zitat Foulk JW, Vogler TJ (2010) A grain-scale study of spall in brittle materials. Int J Fract 163:225–242CrossRef Foulk JW, Vogler TJ (2010) A grain-scale study of spall in brittle materials. Int J Fract 163:225–242CrossRef
121.
Zurück zum Zitat Krajcinovic D (1996) Damage mechanics. Elsevier, Amsterdam Krajcinovic D (1996) Damage mechanics. Elsevier, Amsterdam
122.
Zurück zum Zitat Voyiadjis GZ, Kattan PI (2005) Damage mechanics. CRC Press, Boca RatonCrossRef Voyiadjis GZ, Kattan PI (2005) Damage mechanics. CRC Press, Boca RatonCrossRef
123.
Zurück zum Zitat Kachanov LM (1958) Time of the rupture process under creep conditions. Isv Akad Nauk SSR Otd Tekh Nauk 8:26–31 Kachanov LM (1958) Time of the rupture process under creep conditions. Isv Akad Nauk SSR Otd Tekh Nauk 8:26–31
124.
Zurück zum Zitat Bammann DJ, Solanki KN (2010) On kinematic, thermodynamic, and kinetic coupling of a damage theory for polycrystalline material. Int J Plast 26:775–793CrossRef Bammann DJ, Solanki KN (2010) On kinematic, thermodynamic, and kinetic coupling of a damage theory for polycrystalline material. Int J Plast 26:775–793CrossRef
125.
Zurück zum Zitat Del Piero G, Owen DR (1993) Structured deformations of continua. Arch Ration Mech Anal 124:99–155CrossRef Del Piero G, Owen DR (1993) Structured deformations of continua. Arch Ration Mech Anal 124:99–155CrossRef
126.
Zurück zum Zitat Clayton JD (2006) Continuum multiscale modeling of finite deformation plasticity and anisotropic damage in polycrystals. Theor Appl Fract Mech 45:163–185CrossRef Clayton JD (2006) Continuum multiscale modeling of finite deformation plasticity and anisotropic damage in polycrystals. Theor Appl Fract Mech 45:163–185CrossRef
127.
Zurück zum Zitat Clayton JD, McDowell DL (2003b) Finite polycrystalline elastoplasticity and damage: multiscale kinematics. Int Solids Struct 40:5669–5688CrossRef Clayton JD, McDowell DL (2003b) Finite polycrystalline elastoplasticity and damage: multiscale kinematics. Int Solids Struct 40:5669–5688CrossRef
128.
Zurück zum Zitat Clayton JD (2010b) Deformation, fracture, and fragmentation in brittle geologic solids. Int J Fract 163:151–172CrossRef Clayton JD (2010b) Deformation, fracture, and fragmentation in brittle geologic solids. Int J Fract 163:151–172CrossRef
129.
Zurück zum Zitat Bammann DJ, Aifantis EC (1989) A damage model for ductile metals. Nucl Eng Des 116:355–362CrossRef Bammann DJ, Aifantis EC (1989) A damage model for ductile metals. Nucl Eng Des 116:355–362CrossRef
130.
Zurück zum Zitat Aslan O, Cordero NM, Gaubert A, Forest S (2011) Micromorphic approach to single crystal plasticity and damage. Int J Eng Sci 49:1311–1325CrossRef Aslan O, Cordero NM, Gaubert A, Forest S (2011) Micromorphic approach to single crystal plasticity and damage. Int J Eng Sci 49:1311–1325CrossRef
131.
Zurück zum Zitat Jin YM, Wang YU, Khachaturyan AG (2001) Three-dimensional phase field microelasticity theory and modeling of multiple cracks and voids. Appl Phys Lett 79:3071–3073CrossRef Jin YM, Wang YU, Khachaturyan AG (2001) Three-dimensional phase field microelasticity theory and modeling of multiple cracks and voids. Appl Phys Lett 79:3071–3073CrossRef
132.
Zurück zum Zitat Karma A, Kessler DA, Levine H (2001) Phase-field model of mode III dynamic fracture. Phys Rev Lett 87:045501CrossRef Karma A, Kessler DA, Levine H (2001) Phase-field model of mode III dynamic fracture. Phys Rev Lett 87:045501CrossRef
133.
Zurück zum Zitat Del Piero G, Lancioni G, March R (2007) A variational model for fracture mechanics: numerical experiments. J Mech Phys Solids 55:2513–2537CrossRef Del Piero G, Lancioni G, March R (2007) A variational model for fracture mechanics: numerical experiments. J Mech Phys Solids 55:2513–2537CrossRef
134.
Zurück zum Zitat Clayton JD, Knap J (2014) A geometrically nonlinear phase field theory of brittle fracture. Int J Fract 189:139–148CrossRef Clayton JD, Knap J (2014) A geometrically nonlinear phase field theory of brittle fracture. Int J Fract 189:139–148CrossRef
135.
Zurück zum Zitat Clayton JD, Knap J (2016) Phase field modeling of coupled fracture and twinning in single crystals and polycrystals. Comput Methods Appl Mech Eng 312:447–467CrossRef Clayton JD, Knap J (2016) Phase field modeling of coupled fracture and twinning in single crystals and polycrystals. Comput Methods Appl Mech Eng 312:447–467CrossRef
136.
Zurück zum Zitat Spatschek R, Brener E, Karma A (2011) Phase field modeling of crack propagation. Philos Mag 91:75–95CrossRef Spatschek R, Brener E, Karma A (2011) Phase field modeling of crack propagation. Philos Mag 91:75–95CrossRef
137.
Zurück zum Zitat Borden MJ, Verhoosel CV, Scott MA, Hughes TJR, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217:77–95CrossRef Borden MJ, Verhoosel CV, Scott MA, Hughes TJR, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217:77–95CrossRef
138.
Zurück zum Zitat Agrawal V, Dayal K (2017) Dependence of equilibrium Griffith surface energy on crack speed in phase-field models for fracture coupled to elastodynamics. Int J Fract 207:243–249CrossRef Agrawal V, Dayal K (2017) Dependence of equilibrium Griffith surface energy on crack speed in phase-field models for fracture coupled to elastodynamics. Int J Fract 207:243–249CrossRef
139.
Zurück zum Zitat McAuliffe C, Waisman H (2015) A unified model for metal failure capturing shear banding and fracture. Int J Plast 65:131–151CrossRef McAuliffe C, Waisman H (2015) A unified model for metal failure capturing shear banding and fracture. Int J Plast 65:131–151CrossRef
140.
Zurück zum Zitat Wright TW, Ockendon H (1992) A model for fully formed shear bands. J Mech Phys Solids 40:1217–1226CrossRef Wright TW, Ockendon H (1992) A model for fully formed shear bands. J Mech Phys Solids 40:1217–1226CrossRef
141.
Zurück zum Zitat Wright TW, Walter JW (1996) The asymptotic structure of an adiabatic shear band in antiplane motion. J Mech Phys Solids 44:77–97CrossRef Wright TW, Walter JW (1996) The asymptotic structure of an adiabatic shear band in antiplane motion. J Mech Phys Solids 44:77–97CrossRef
142.
Zurück zum Zitat Clayton JD (2017a) Finsler geometry of nonlinear elastic solids with internal structure. J Geom Phys 112:118–146CrossRef Clayton JD (2017a) Finsler geometry of nonlinear elastic solids with internal structure. J Geom Phys 112:118–146CrossRef
143.
Zurück zum Zitat Clayton JD (2014e) Phase field theory and analysis of pressure-shear induced amorphization and failure in boron carbide ceramic. AIMS Mater Sci 1:143–158CrossRef Clayton JD (2014e) Phase field theory and analysis of pressure-shear induced amorphization and failure in boron carbide ceramic. AIMS Mater Sci 1:143–158CrossRef
144.
Zurück zum Zitat Clayton JD (2017b) Generalized finsler geometric continuum physics with applications in fracture and phase transformations. Z Angew Math Phys (ZAMP) 68:9CrossRef Clayton JD (2017b) Generalized finsler geometric continuum physics with applications in fracture and phase transformations. Z Angew Math Phys (ZAMP) 68:9CrossRef
145.
Zurück zum Zitat Clayton JD (2012b) Towards a nonlinear elastic representation of finite compression and instability of boron carbide ceramic. Philos Mag 92:2860–2893CrossRef Clayton JD (2012b) Towards a nonlinear elastic representation of finite compression and instability of boron carbide ceramic. Philos Mag 92:2860–2893CrossRef
146.
Zurück zum Zitat Clayton JD (2016a) Finsler-geometric continuum mechanics. Technical Report ARL-TR-7694, US Army Research Laboratory, Aberdeen Proving Ground MD Clayton JD (2016a) Finsler-geometric continuum mechanics. Technical Report ARL-TR-7694, US Army Research Laboratory, Aberdeen Proving Ground MD
147.
Zurück zum Zitat Kenway PR (1993) Calculated stacking-fault energies in \(\alpha \)-Al\(_2\)O\(_3\). Philos Mag B 68:171–183CrossRef Kenway PR (1993) Calculated stacking-fault energies in \(\alpha \)-Al\(_2\)O\(_3\). Philos Mag B 68:171–183CrossRef
148.
Zurück zum Zitat Clayton JD (2010c) Modeling nonlinear electromechanical behavior of shocked silicon carbide. J Appl Phys 107:013520CrossRef Clayton JD (2010c) Modeling nonlinear electromechanical behavior of shocked silicon carbide. J Appl Phys 107:013520CrossRef
149.
Zurück zum Zitat Clayton JD (2011b) A nonlinear thermomechanical model of spinel ceramics applied to aluminum oxynitride (AlON). J Appl Mech 78:011013CrossRef Clayton JD (2011b) A nonlinear thermomechanical model of spinel ceramics applied to aluminum oxynitride (AlON). J Appl Mech 78:011013CrossRef
150.
Zurück zum Zitat Clayton JD (2016b) Finsler-geometric continuum mechanics and the micromechanics of fracture in crystals. J Micromech Mol Phys 1:164003CrossRef Clayton JD (2016b) Finsler-geometric continuum mechanics and the micromechanics of fracture in crystals. J Micromech Mol Phys 1:164003CrossRef
152.
Zurück zum Zitat Saczuk J (1996) Finslerian foundations of solid mechanics. Polskiej Akademii Nauk, Gdansk Saczuk J (1996) Finslerian foundations of solid mechanics. Polskiej Akademii Nauk, Gdansk
153.
Zurück zum Zitat Stumpf H, Saczuk J (2000) A generalized model of oriented continuum with defects. Z Angew Math Mech (ZAMM) 80:147–169CrossRef Stumpf H, Saczuk J (2000) A generalized model of oriented continuum with defects. Z Angew Math Mech (ZAMM) 80:147–169CrossRef
154.
Zurück zum Zitat Sethian JA (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge University Press, Cambridge Sethian JA (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge University Press, Cambridge
155.
Zurück zum Zitat Steinbach I (2009) Phase-field models in materials science. Modelling Simul Mater Sci Eng 17:073001CrossRef Steinbach I (2009) Phase-field models in materials science. Modelling Simul Mater Sci Eng 17:073001CrossRef
156.
Zurück zum Zitat Chen L-Q (2002) Phase-field models for microstructure evolution. Ann Rev Mater Res 32:113–140CrossRef Chen L-Q (2002) Phase-field models for microstructure evolution. Ann Rev Mater Res 32:113–140CrossRef
Metadaten
Titel
Mesoscale models of interface mechanics in crystalline solids: a review
verfasst von
J. D. Clayton
Publikationsdatum
04.10.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 8/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1596-2

Weitere Artikel der Ausgabe 8/2018

Journal of Materials Science 8/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.