Skip to main content
Erschienen in: Journal of Materials Science 18/2019

10.06.2019 | Metals & corrosion

Low-cost and high-strength powder metallurgy Ti–Al–Mo–Fe alloy and its application

verfasst von: Rongjun Xu, Bin Liu, Zhiqiao Yan, Feng Chen, Wenmin Guo, Yong Liu

Erschienen in: Journal of Materials Science | Ausgabe 18/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Low-cost and high-performance are main research directions of structural titanium alloys. In this study, a two-phase structural Ti–5Al–3Mo–2Fe alloy was designed and prepared through elemental powder metallurgy (P/M) process, including cold isostatic processing, vacuum sintering, hot rolling and heat treatment. Results indicate that the P/M Ti–5Al–3Mo–2Fe alloy has a multi-phase microstructure with equiaxial primary α phase, needlelike secondary α phase and retained β phase. The room-temperature yield and ultimate strength reach to 1303 MPa and 1422 MPa, respectively, with a balanced elongation of 8.5%. At 400 °C, the alloy still has a high yield strength, ultimate strength and elongation of 850 MPa, 935 MPa and 17%, respectively. The Ti–5Al–3Mo–2Fe alloy was successfully processed into intake valves of automobile engine, which passed the engine test and meet the serving requirement.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Boyer RR (1996) An overview on the use of titanium in the aerospace industry. Mater Sci Eng A 213:103–114CrossRef Boyer RR (1996) An overview on the use of titanium in the aerospace industry. Mater Sci Eng A 213:103–114CrossRef
2.
Zurück zum Zitat Boyer RR (2010) Attributes, characteristics, and applications of titanium and its alloys. JOM 62:21–24CrossRef Boyer RR (2010) Attributes, characteristics, and applications of titanium and its alloys. JOM 62:21–24CrossRef
3.
Zurück zum Zitat Bolzoni L, Ruiz-Navas EM, Gordo E (2016) Understanding the properties of low-cost iron-containing powder metallurgy titanium alloys. Mater Des 110:317–323CrossRef Bolzoni L, Ruiz-Navas EM, Gordo E (2016) Understanding the properties of low-cost iron-containing powder metallurgy titanium alloys. Mater Des 110:317–323CrossRef
4.
Zurück zum Zitat Fang ZZ, Paramore JD, Sun P, Ravi Chandran KS, Zhang Y (2017) Powder metallurgy of titanium-past, present, and future. Int Mater Rev 63:407–459CrossRef Fang ZZ, Paramore JD, Sun P, Ravi Chandran KS, Zhang Y (2017) Powder metallurgy of titanium-past, present, and future. Int Mater Rev 63:407–459CrossRef
5.
Zurück zum Zitat Yan M (2014) Microstructural characterization of as-sintered titanium and titanium alloys. In: Ma Q, Froes FH (eds.) Titanium powder metallurgy, vol 32, Elsevier, Netherlands, pp 555–574, ISBN: 978-0-12-800054-0 Yan M (2014) Microstructural characterization of as-sintered titanium and titanium alloys. In: Ma Q, Froes FH (eds.) Titanium powder metallurgy, vol 32, Elsevier, Netherlands, pp 555–574, ISBN: 978-0-12-800054-0
6.
Zurück zum Zitat Liu Y, Chen LF, Tang HP, Liu CT, Liu B, Huang BY (2006) Design of powder metallurgy titanium alloys and composites. Mater Sci Eng A 418:25–35CrossRef Liu Y, Chen LF, Tang HP, Liu CT, Liu B, Huang BY (2006) Design of powder metallurgy titanium alloys and composites. Mater Sci Eng A 418:25–35CrossRef
7.
Zurück zum Zitat Bolzoni L, Ruiz-Navas EM, Gordo E (2017) Quantifying the properties of low-cost powder metallurgy titanium alloys. Mater Sci Eng A 687:47–53CrossRef Bolzoni L, Ruiz-Navas EM, Gordo E (2017) Quantifying the properties of low-cost powder metallurgy titanium alloys. Mater Sci Eng A 687:47–53CrossRef
8.
Zurück zum Zitat Bolzoni L, Herraiz E, Ruiz-Navas EM, Gordo E (2014) Study of the properties of low-cost powder metallurgy titanium alloys by 430 stainless steel addition. Mater Des 60:628–636CrossRef Bolzoni L, Herraiz E, Ruiz-Navas EM, Gordo E (2014) Study of the properties of low-cost powder metallurgy titanium alloys by 430 stainless steel addition. Mater Des 60:628–636CrossRef
9.
Zurück zum Zitat Lu J, Peng G, Zhao Y (2014) Recent development of effect mechanism of alloying elements in titanium alloy design. Rare Metal Mater Eng 43:775–779CrossRef Lu J, Peng G, Zhao Y (2014) Recent development of effect mechanism of alloying elements in titanium alloy design. Rare Metal Mater Eng 43:775–779CrossRef
10.
Zurück zum Zitat Liang Z, Miao J, Brown T, Sachdev AK, Williams JC, Luo AA (2018) A low-cost and high-strength Ti–Al–Fe-based cast titanium alloy for structural applications. Scr Mater 157:124–128CrossRef Liang Z, Miao J, Brown T, Sachdev AK, Williams JC, Luo AA (2018) A low-cost and high-strength Ti–Al–Fe-based cast titanium alloy for structural applications. Scr Mater 157:124–128CrossRef
12.
Zurück zum Zitat Esteban PG, Ruiz-Navas EM, Gordo E (2010) Influence of Fe content and particle size the on the processing and mechanical properties of low-cost Ti–xFe alloys. Mater Sci Eng A 527:5664–5669CrossRef Esteban PG, Ruiz-Navas EM, Gordo E (2010) Influence of Fe content and particle size the on the processing and mechanical properties of low-cost Ti–xFe alloys. Mater Sci Eng A 527:5664–5669CrossRef
13.
Zurück zum Zitat Zhang WD, Liu Y, Wu H, Song M, Zhang TY (2015) Elastic modulus of phases in Ti–Mo alloys. Mater Charact 106:302–307CrossRef Zhang WD, Liu Y, Wu H, Song M, Zhang TY (2015) Elastic modulus of phases in Ti–Mo alloys. Mater Charact 106:302–307CrossRef
14.
Zurück zum Zitat Liu B, Li YP, Matsumoto H, Liu YB, Yong Y, Chiba A (2011) Thermomechanical characterization of P/M Ti–Fe–Mo–Y alloy with a fine lamellar microstructure. Mater Sci Eng A 528:2345–2352CrossRef Liu B, Li YP, Matsumoto H, Liu YB, Yong Y, Chiba A (2011) Thermomechanical characterization of P/M Ti–Fe–Mo–Y alloy with a fine lamellar microstructure. Mater Sci Eng A 528:2345–2352CrossRef
15.
Zurück zum Zitat Li AB, Huang LJ, Meng QY, Geng L, Cui XP (2009) Hot working of Ti–6Al–3Mo–2Zr–0.3Si alloy with lamellar α + β starting structure using processing map. Mater Des 30:1625–1631CrossRef Li AB, Huang LJ, Meng QY, Geng L, Cui XP (2009) Hot working of Ti–6Al–3Mo–2Zr–0.3Si alloy with lamellar α + β starting structure using processing map. Mater Des 30:1625–1631CrossRef
17.
Zurück zum Zitat Xu R, Liu B, Liu Y, Cao Y, Guo W, Nie Y, Liu S (2018) High temperature deformation behavior of in situ synthesized titanium-based composite reinforced with ultra-fine TiB whiskers. Materials 11:1863–1876CrossRef Xu R, Liu B, Liu Y, Cao Y, Guo W, Nie Y, Liu S (2018) High temperature deformation behavior of in situ synthesized titanium-based composite reinforced with ultra-fine TiB whiskers. Materials 11:1863–1876CrossRef
18.
Zurück zum Zitat Weiss I, Eylon D, Toaz MW, Froes FH (1986) Effect of isothermal forging on microstructure and fatigue behavior of blended elemental Ti–6Al–4V powder compacts. Metall Trans A 17:549–559CrossRef Weiss I, Eylon D, Toaz MW, Froes FH (1986) Effect of isothermal forging on microstructure and fatigue behavior of blended elemental Ti–6Al–4V powder compacts. Metall Trans A 17:549–559CrossRef
19.
Zurück zum Zitat Collings EW (1994) Materials properties handbook: titanium alloys. ASM, Materials Park, pp 10–15 Collings EW (1994) Materials properties handbook: titanium alloys. ASM, Materials Park, pp 10–15
20.
Zurück zum Zitat Chen S, Tian Y, Chang L, Miao Z, Xia J (2009) A comparative study of differential thermal analysis method and metallographic observation method for the α + β/β transformation temperature of titanium alloys. Rare Metal Mater Eng 38:1916–1919CrossRef Chen S, Tian Y, Chang L, Miao Z, Xia J (2009) A comparative study of differential thermal analysis method and metallographic observation method for the α + β/β transformation temperature of titanium alloys. Rare Metal Mater Eng 38:1916–1919CrossRef
21.
Zurück zum Zitat Yan Y, Nash GL, Nash P (2013) Effect of density and pore morphology on fatigue properties of sintered Ti–6Al–4V. Int J Fatigue 55:81–91CrossRef Yan Y, Nash GL, Nash P (2013) Effect of density and pore morphology on fatigue properties of sintered Ti–6Al–4V. Int J Fatigue 55:81–91CrossRef
22.
Zurück zum Zitat Vrancken B, Thijs L, Kruth JP, Humbeeck JV (2012) Heat treatment of Ti6Al4V produced by selective laser melting: microstructure and mechanical properties. J Alloys Compd 541:177–185CrossRef Vrancken B, Thijs L, Kruth JP, Humbeeck JV (2012) Heat treatment of Ti6Al4V produced by selective laser melting: microstructure and mechanical properties. J Alloys Compd 541:177–185CrossRef
23.
Zurück zum Zitat Elmay W, Berveiller S, Patoor E, Gloriant T, Prima F (2017) Texture evolution of orthorhombic α’’ titanium alloy investigated by in situ X-ray diffraction. Mater Sci Eng A 679:504–510CrossRef Elmay W, Berveiller S, Patoor E, Gloriant T, Prima F (2017) Texture evolution of orthorhombic α’’ titanium alloy investigated by in situ X-ray diffraction. Mater Sci Eng A 679:504–510CrossRef
24.
Zurück zum Zitat Ivasishin OM, Markovsky PE, Matviychuk YV, Semiatin SL, Ward CH, Fox S (2008) A comparative study of the mechanical properties of high-strength β-titanium alloys. J Alloys Compd 457:296–309CrossRef Ivasishin OM, Markovsky PE, Matviychuk YV, Semiatin SL, Ward CH, Fox S (2008) A comparative study of the mechanical properties of high-strength β-titanium alloys. J Alloys Compd 457:296–309CrossRef
25.
Zurück zum Zitat Markovsky PE, Matviychuk YV, Bondarchuk VI (2013) Influence of grain size and crystallographic texture on mechanical behavior of TIMETAL-LCB in metastable β-condition. Mater Sci Eng A 559:782–789CrossRef Markovsky PE, Matviychuk YV, Bondarchuk VI (2013) Influence of grain size and crystallographic texture on mechanical behavior of TIMETAL-LCB in metastable β-condition. Mater Sci Eng A 559:782–789CrossRef
26.
Zurück zum Zitat Kumar P, Chandran KSR (2017) Strength-ductility property maps of powder metallurgy (PM) Ti–6Al–4V alloy: a critical review of processing–structure–property relationships. Metall Mater Trans A 48:2301–2319CrossRef Kumar P, Chandran KSR (2017) Strength-ductility property maps of powder metallurgy (PM) Ti–6Al–4V alloy: a critical review of processing–structure–property relationships. Metall Mater Trans A 48:2301–2319CrossRef
27.
Zurück zum Zitat Lee YT, Peters M, Wirth G (1988) Effects of thermomechanical treatment on microstructure and mechanical properties of blended elemental Ti–6Al–4V compacts. Mater Sci Eng A 102:105–114CrossRef Lee YT, Peters M, Wirth G (1988) Effects of thermomechanical treatment on microstructure and mechanical properties of blended elemental Ti–6Al–4V compacts. Mater Sci Eng A 102:105–114CrossRef
28.
Zurück zum Zitat Shekhar S, Sarkar R, Kar SK, Bhattacharjee A (2015) Effect of solution treatment and aging on microstructure and tensile properties of high strength β titanium alloy. Ti–5Al–5V–5Mo–3Cr. Mater Des 66:596–610CrossRef Shekhar S, Sarkar R, Kar SK, Bhattacharjee A (2015) Effect of solution treatment and aging on microstructure and tensile properties of high strength β titanium alloy. Ti–5Al–5V–5Mo–3Cr. Mater Des 66:596–610CrossRef
29.
Zurück zum Zitat Fanning JC (2005) Properties of TIMETAL-555 (Ti–5Al–5Mo–5V–3Cr–0.6Fe). J Mater Eng Perform 14:788–791CrossRef Fanning JC (2005) Properties of TIMETAL-555 (Ti–5Al–5Mo–5V–3Cr–0.6Fe). J Mater Eng Perform 14:788–791CrossRef
30.
Zurück zum Zitat Srinivasu G, Natraj Y, Bhattacharjee A, Nandy TK, Rao GVSN (2013) Tensile and fracture toughness of high strength β Titanium alloy, Ti–10V–2Fe–3Al, as a function of rolling and solution treatment temperatures. Mater Des 47:323–330CrossRef Srinivasu G, Natraj Y, Bhattacharjee A, Nandy TK, Rao GVSN (2013) Tensile and fracture toughness of high strength β Titanium alloy, Ti–10V–2Fe–3Al, as a function of rolling and solution treatment temperatures. Mater Des 47:323–330CrossRef
31.
Zurück zum Zitat Froes FH, Friedrich H, Kiese J, Bergoint D (2004) Titanium in the family automobile: the cost challenge. JOM 56:40–44CrossRef Froes FH, Friedrich H, Kiese J, Bergoint D (2004) Titanium in the family automobile: the cost challenge. JOM 56:40–44CrossRef
32.
Zurück zum Zitat Yan M, Liu Y, Liu YB, Kong C, Schaffer GB, Ma Q (2012) Simultaneous gettering of oxygen and chlorine and homogenization of the β phase by rare earth hydride additions to a powder metallurgy Ti–2.25Mo–1.5Fe alloy. Scr Mater 67:491–494CrossRef Yan M, Liu Y, Liu YB, Kong C, Schaffer GB, Ma Q (2012) Simultaneous gettering of oxygen and chlorine and homogenization of the β phase by rare earth hydride additions to a powder metallurgy Ti–2.25Mo–1.5Fe alloy. Scr Mater 67:491–494CrossRef
33.
Zurück zum Zitat Yan M, Dargusch MS, Ebel T, Ma Q (2014) Transmission electron microscopy and 3D atom probe study of oxygen-induced fine microstructural features in as-sintered Ti–6Al–4V and their impacts on ductility. Acta Mater 68:196–206CrossRef Yan M, Dargusch MS, Ebel T, Ma Q (2014) Transmission electron microscopy and 3D atom probe study of oxygen-induced fine microstructural features in as-sintered Ti–6Al–4V and their impacts on ductility. Acta Mater 68:196–206CrossRef
34.
Zurück zum Zitat Sun B, Li S, Imai H, Mimoto T, Umeda J, Kondoh K (2013) Fabrication of high-strength Ti materials by in-process solid solution strengthening of oxygen via P/M methods. Mater Sci Eng A 563:95–100CrossRef Sun B, Li S, Imai H, Mimoto T, Umeda J, Kondoh K (2013) Fabrication of high-strength Ti materials by in-process solid solution strengthening of oxygen via P/M methods. Mater Sci Eng A 563:95–100CrossRef
35.
Zurück zum Zitat Saitova LR, Höppel HW, Göken M, Semenova IP (2009) Fatigue behavior of ultrafine-grained Ti–6Al–4V ‘ELI’ alloy for medical applications. Mater Sci Eng A 503:145–147CrossRef Saitova LR, Höppel HW, Göken M, Semenova IP (2009) Fatigue behavior of ultrafine-grained Ti–6Al–4V ‘ELI’ alloy for medical applications. Mater Sci Eng A 503:145–147CrossRef
36.
Zurück zum Zitat Zuo JH, Wang ZG, Han EH (2008) Effect of microstructure on ultra-high cycle fatigue behavior of Ti–6Al–4V. Mater Sci Eng A 473:147–152CrossRef Zuo JH, Wang ZG, Han EH (2008) Effect of microstructure on ultra-high cycle fatigue behavior of Ti–6Al–4V. Mater Sci Eng A 473:147–152CrossRef
37.
Zurück zum Zitat Cao YK, Zeng FP, Liu B, Liu Y, Lu JZ, Gan ZY, Tang HP (2016) Characterization of fatigue properties of powder metallurgy titanium alloy. Mater Sci Eng A 654:418–425CrossRef Cao YK, Zeng FP, Liu B, Liu Y, Lu JZ, Gan ZY, Tang HP (2016) Characterization of fatigue properties of powder metallurgy titanium alloy. Mater Sci Eng A 654:418–425CrossRef
38.
Zurück zum Zitat Song JH, Hong KJ, Ha TK, Jeong HT (2007) The effect of hot rolling condition on the anisotropy of mechanical properties in Ti–6Al–4V alloy. Mater Sci Eng A 449–451:144–148CrossRef Song JH, Hong KJ, Ha TK, Jeong HT (2007) The effect of hot rolling condition on the anisotropy of mechanical properties in Ti–6Al–4V alloy. Mater Sci Eng A 449–451:144–148CrossRef
39.
Zurück zum Zitat Tan C, Li X, Sun Q, Xiao L, Zhao Y, Sun J (2015) Effect of α-phase morphology on low-cycle fatigue behavior of TC21 alloy. Int J Fatigue 75:1–9CrossRef Tan C, Li X, Sun Q, Xiao L, Zhao Y, Sun J (2015) Effect of α-phase morphology on low-cycle fatigue behavior of TC21 alloy. Int J Fatigue 75:1–9CrossRef
40.
Zurück zum Zitat Devaraj A, Joshi VV, Srivastava A, Manandhar S, Moxson V (2016) A low-cost hierarchical nanostructured beta-titanium alloy with high strength. Nat Commun 7; Article Number: 11176 Devaraj A, Joshi VV, Srivastava A, Manandhar S, Moxson V (2016) A low-cost hierarchical nanostructured beta-titanium alloy with high strength. Nat Commun 7; Article Number: 11176
41.
Zurück zum Zitat Mantri SA, Choudhuri D, Alam T, Viswanathan GB, Sosa JM, Fraser HL, Banerjee R (2018) Tuning the scale of α precipitates in β-titanium alloys for achieving high strength. Scr Mater 154:139–144CrossRef Mantri SA, Choudhuri D, Alam T, Viswanathan GB, Sosa JM, Fraser HL, Banerjee R (2018) Tuning the scale of α precipitates in β-titanium alloys for achieving high strength. Scr Mater 154:139–144CrossRef
Metadaten
Titel
Low-cost and high-strength powder metallurgy Ti–Al–Mo–Fe alloy and its application
verfasst von
Rongjun Xu
Bin Liu
Zhiqiao Yan
Feng Chen
Wenmin Guo
Yong Liu
Publikationsdatum
10.06.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 18/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03734-y

Weitere Artikel der Ausgabe 18/2019

Journal of Materials Science 18/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.