Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 7/2014

01.07.2014

Lead-free vanadium-substituted (K0.485Na0.5Li0.015)(Nb0.9Ta0.1)O3 piezoceramics synthesized from nanopowders

verfasst von: Roopam Gaur, Maitreyi Sangal, Arpit Dwivedi, K. Chandramani Singh

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 7/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Lead-free, alkaline niobate-based piezoelectric ceramics substituted with vanadium (K0.485Na0.5Li0.015)(Nb0.9−x Ta0.1V x )O3 (x = 0, 0.05, 0.10, 0.15 and 0.2) were synthesized from nanocrystalline powders by traditional solid state sintering technique. The base composition chosen is among those recently reported to show high piezoelectric properties. The nanocrystalline powders were produced by high energy ball milling. The crystalline phase of all the ceramics prepared was found to be perovskite with orthorhombic symmetry. Without any sintering aid, the bulk density of 97 % of the theoretical density was obtained for the ceramics with no vanadium. The optimum sintering temperature for all compositions was achieved at a low value of 1,050 °C. In the composition range studied, increasing V5+ content in the ceramics gives rise to a gradual decrease in room temperature dielectric constant (ε r ) from 1,193 to 474, remnant polarization (P r ) from 12.9 to 5.6 μC/cm2, electromechanical coupling factor (k p ) from 0.45 to 0.32, and piezoelectric charge constant (d 33) from 156 to 53 pC/N. The decrease in these parameters is attributed to the associated decrease in density and grain size of the ceramics with increasing V5+ content. Increasing V5+ content from 0 to 0.15 results in an increase in the coercive field from 9.9 to 15.5 kV/cm, thereby, making the ceramics harder in this range of composition.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat B. Noheda, J.A. Gonzalo, L.E. Cross, R. Guo, S.E. Park, D.E. Cox, G. Shirane, Tetragonal-to-monoclinic phase transition in a ferroelectric perovskite: the structure of PbZr0.52Ti0.48O3. Phys. Rev. B 61, 8687–8695 (2000)CrossRef B. Noheda, J.A. Gonzalo, L.E. Cross, R. Guo, S.E. Park, D.E. Cox, G. Shirane, Tetragonal-to-monoclinic phase transition in a ferroelectric perovskite: the structure of PbZr0.52Ti0.48O3. Phys. Rev. B 61, 8687–8695 (2000)CrossRef
2.
Zurück zum Zitat H. Nagata, M. Yoshida, Y. Makiuchi, T. Takenaka, Large piezoelectric constant and high Curie temperature of lead-free piezoelectric ceramic ternary system based on bismuth sodium titanate–bismuth potassium titanate–barium titanate near the morphotropic phase boundary. Jpn. J. Appl. Phys. 42, 7401–7403 (2003)CrossRef H. Nagata, M. Yoshida, Y. Makiuchi, T. Takenaka, Large piezoelectric constant and high Curie temperature of lead-free piezoelectric ceramic ternary system based on bismuth sodium titanate–bismuth potassium titanate–barium titanate near the morphotropic phase boundary. Jpn. J. Appl. Phys. 42, 7401–7403 (2003)CrossRef
3.
Zurück zum Zitat M. Suzuki, H. Nagata, J. Ohara, H. Funakubo, T. Takenaka, Bi3−xMxTiTaO9 (M = La or Nd) ceramics with high mechanical quality factor Qm. Jpn. J. Appl. Phys. 42, 6090–6093 (2003)CrossRef M. Suzuki, H. Nagata, J. Ohara, H. Funakubo, T. Takenaka, Bi3−xMxTiTaO9 (M = La or Nd) ceramics with high mechanical quality factor Qm. Jpn. J. Appl. Phys. 42, 6090–6093 (2003)CrossRef
4.
Zurück zum Zitat R.J. Xie, Y. Akimune, R. Wang, N. Hirosaki, T. Nishimura, Dielectric and piezoelectric properties of barium-substituted Sr1.9Ca0.1NaNb5O15 ceramic. Jpn. J. Appl. Phys. 42, 7404–7409 (2003)CrossRef R.J. Xie, Y. Akimune, R. Wang, N. Hirosaki, T. Nishimura, Dielectric and piezoelectric properties of barium-substituted Sr1.9Ca0.1NaNb5O15 ceramic. Jpn. J. Appl. Phys. 42, 7404–7409 (2003)CrossRef
5.
Zurück zum Zitat Z. Yu, C. Ang, R. Guo, A.S. Bhalla, Dielectric behavior of Ba(Ti1−xZrx)O3 single crystals. Jpn. J. Appl. Phys. 92, 1489–1493 (2002)CrossRef Z. Yu, C. Ang, R. Guo, A.S. Bhalla, Dielectric behavior of Ba(Ti1−xZrx)O3 single crystals. Jpn. J. Appl. Phys. 92, 1489–1493 (2002)CrossRef
6.
Zurück zum Zitat R. Wang, R. Xie, T. Sekiya, Y. Shimojo, Fabrication and characterization of potassium–sodium niobate piezoelectric ceramics by spark-plasma-sintering method. Mater. Res. Bull. 39, 1709–1715 (2004)CrossRef R. Wang, R. Xie, T. Sekiya, Y. Shimojo, Fabrication and characterization of potassium–sodium niobate piezoelectric ceramics by spark-plasma-sintering method. Mater. Res. Bull. 39, 1709–1715 (2004)CrossRef
7.
Zurück zum Zitat M. Matsubara, T. Yamaguchi, K. Kikuta, S. Hirano, Sintering and piezoelectric properties of potassium sodium niobate ceramics with newly developed sintering aid. Jpn. J. Appl. Phys. 44, 258–263 (2005)CrossRef M. Matsubara, T. Yamaguchi, K. Kikuta, S. Hirano, Sintering and piezoelectric properties of potassium sodium niobate ceramics with newly developed sintering aid. Jpn. J. Appl. Phys. 44, 258–263 (2005)CrossRef
8.
Zurück zum Zitat M.D. Maeder, D. Damjanovic, N. Setter, Lead free piezoelectric materials. J. Electroceram. 13, 385–392 (2004)CrossRef M.D. Maeder, D. Damjanovic, N. Setter, Lead free piezoelectric materials. J. Electroceram. 13, 385–392 (2004)CrossRef
9.
Zurück zum Zitat Y. Saito, H. Takao, T. Tani, T. Nonoyaima, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezoceramics. Nature 432, 84–87 (2004)CrossRef Y. Saito, H. Takao, T. Tani, T. Nonoyaima, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezoceramics. Nature 432, 84–87 (2004)CrossRef
10.
Zurück zum Zitat M. Kosec, D. Kolar, On activated sintering and electrical properties of NaKNbO3. Mater. Res. Bull. 10, 335–340 (1975)CrossRef M. Kosec, D. Kolar, On activated sintering and electrical properties of NaKNbO3. Mater. Res. Bull. 10, 335–340 (1975)CrossRef
11.
Zurück zum Zitat R. Wang, R.J. Xie, K. Hanada, K. Matsusaki, H. Bando, M. Itoh, Phase diagram and enhanced piezoelectricity in the strontium titanate doped potassium–sodium niobate solid solution. Phys. Stat. Sol. A 202, R57–R59 (2005)CrossRef R. Wang, R.J. Xie, K. Hanada, K. Matsusaki, H. Bando, M. Itoh, Phase diagram and enhanced piezoelectricity in the strontium titanate doped potassium–sodium niobate solid solution. Phys. Stat. Sol. A 202, R57–R59 (2005)CrossRef
12.
Zurück zum Zitat R.E. Jaeger, L. Egerton, Hot pressing of potassium–sodium. J. Am. Ceram. Soc. 45, 209–213 (1962)CrossRef R.E. Jaeger, L. Egerton, Hot pressing of potassium–sodium. J. Am. Ceram. Soc. 45, 209–213 (1962)CrossRef
13.
Zurück zum Zitat G.H. Haertling, Properties of hot-pressed ferroelectric alkali niobate ceramics. J. Am. Ceram. Soc. 50, 329–330 (1967)CrossRef G.H. Haertling, Properties of hot-pressed ferroelectric alkali niobate ceramics. J. Am. Ceram. Soc. 50, 329–330 (1967)CrossRef
14.
Zurück zum Zitat L. Egerton, C.A. Bieling, Isostatically hot-pressed sodium potassium niobate transducer material for ultrasonic devices. Ceram. Bull. 47, 1151–1156 (1968) L. Egerton, C.A. Bieling, Isostatically hot-pressed sodium potassium niobate transducer material for ultrasonic devices. Ceram. Bull. 47, 1151–1156 (1968)
15.
Zurück zum Zitat H.Y. Park, C.W. Ahn, H.C. Song, Microstructure and piezoelectric properties of 0.95(Na0.5K0.5)NbO3− 0.05BaTiO3 ceramics. Appl. Phys. Lett. 89(062906), 1–3 (2006) H.Y. Park, C.W. Ahn, H.C. Song, Microstructure and piezoelectric properties of 0.95(Na0.5K0.5)NbO3− 0.05BaTiO3 ceramics. Appl. Phys. Lett. 89(062906), 1–3 (2006)
16.
Zurück zum Zitat Y. Guo, K. Kakimoto, H. Ohsato, Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3–LiNbO3 ceramics. Appl. Phys. Lett. 85, 4121–4123 (2004)CrossRef Y. Guo, K. Kakimoto, H. Ohsato, Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3–LiNbO3 ceramics. Appl. Phys. Lett. 85, 4121–4123 (2004)CrossRef
17.
Zurück zum Zitat E. Hollenstein, M. Davis, D. Damjanovic, N. Setter, Piezoelectric properties of Li and Ta modified (Na0.5K0.5)NbO3 ceramics. Appl. Phys. Lett. 87, 182905/1–182905/3 (2005)CrossRef E. Hollenstein, M. Davis, D. Damjanovic, N. Setter, Piezoelectric properties of Li and Ta modified (Na0.5K0.5)NbO3 ceramics. Appl. Phys. Lett. 87, 182905/1–182905/3 (2005)CrossRef
18.
Zurück zum Zitat S. Zhang, J.B. Lim, T.R. Shrout, Characterization of hard piezoelectric lead-free ceramics. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 1523–1527 (2009)CrossRef S. Zhang, J.B. Lim, T.R. Shrout, Characterization of hard piezoelectric lead-free ceramics. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 1523–1527 (2009)CrossRef
19.
Zurück zum Zitat S.H. Park, C.W. Ahn, S. Nahm, J.S. Song, Microstructure and piezoelectric properties of ZnO-added (Na0.5K0.5)NbO3 ceramics. Jpn. J. Appl. Phys. 43, L1072–L1074 (2004)CrossRef S.H. Park, C.W. Ahn, S. Nahm, J.S. Song, Microstructure and piezoelectric properties of ZnO-added (Na0.5K0.5)NbO3 ceramics. Jpn. J. Appl. Phys. 43, L1072–L1074 (2004)CrossRef
20.
Zurück zum Zitat F.R. Marcos, J.J. Romero, M.G. Navarro-Rojero, J.F. Fernandez, Effect of ZnO on the structure, microstructure and electrical properties of KNN-modified piezoceramics. J. Eur. Ceram. Soc. 29, 3045–3052 (2009)CrossRef F.R. Marcos, J.J. Romero, M.G. Navarro-Rojero, J.F. Fernandez, Effect of ZnO on the structure, microstructure and electrical properties of KNN-modified piezoceramics. J. Eur. Ceram. Soc. 29, 3045–3052 (2009)CrossRef
21.
Zurück zum Zitat D. Lin, Z. Li, S. Zhang, Z. Xu, X. Yao, Influence of MnO2 doping on the dielectric and piezoelectric properties and the domain structure in (K0.5Na0.5)NbO3 single crystals. J. Am. Ceram. Soc. 93, 941–944 (2010)CrossRef D. Lin, Z. Li, S. Zhang, Z. Xu, X. Yao, Influence of MnO2 doping on the dielectric and piezoelectric properties and the domain structure in (K0.5Na0.5)NbO3 single crystals. J. Am. Ceram. Soc. 93, 941–944 (2010)CrossRef
22.
Zurück zum Zitat R. Huang, Y. Zhao, X. Zhang, Y. Zhao, R. Liu, H. Zhou, Low-temperature sintering of CuO-doped 0.94(K0.48Na0.535)NbO3–LiNbO3 lead-free piezoelectric ceramics. J. Am. Ceram. Soc. 93, 4018–4021 (2010)CrossRef R. Huang, Y. Zhao, X. Zhang, Y. Zhao, R. Liu, H. Zhou, Low-temperature sintering of CuO-doped 0.94(K0.48Na0.535)NbO3–LiNbO3 lead-free piezoelectric ceramics. J. Am. Ceram. Soc. 93, 4018–4021 (2010)CrossRef
23.
Zurück zum Zitat K.C. Singh, C. Jiten, R. Laishram, O.P. Thakur, D.K. Bhattacharya, Structure and electrical properties of Li- and Ta-substituted K0.5Na0.5NbO3 lead-free piezoelectric ceramics prepared from nanopowders. J. Alloy. Compd. 496, 717–722 (2010)CrossRef K.C. Singh, C. Jiten, R. Laishram, O.P. Thakur, D.K. Bhattacharya, Structure and electrical properties of Li- and Ta-substituted K0.5Na0.5NbO3 lead-free piezoelectric ceramics prepared from nanopowders. J. Alloy. Compd. 496, 717–722 (2010)CrossRef
24.
Zurück zum Zitat D. Lin, K.W. Kwok, K.H. Lam, H.L.W. Chan, Structure and electrical properties of K0.5Na0.5NbO3–LiSbO3 lead-free piezoelectric ceramics. J. Appl. Phys. 101, 074111–074116 (2007)CrossRef D. Lin, K.W. Kwok, K.H. Lam, H.L.W. Chan, Structure and electrical properties of K0.5Na0.5NbO3–LiSbO3 lead-free piezoelectric ceramics. J. Appl. Phys. 101, 074111–074116 (2007)CrossRef
25.
Zurück zum Zitat M. Matsubara, K. Kikuta, S. Hirano, Piezoelectric properties of (K0.5Na0.5)(Nb1−xTax)O3 − K5.4CuTa10O29 ceramics. J. Appl. Phys. 97(114105), 1–5 (2005) M. Matsubara, K. Kikuta, S. Hirano, Piezoelectric properties of (K0.5Na0.5)(Nb1−xTax)O3 − K5.4CuTa10O29 ceramics. J. Appl. Phys. 97(114105), 1–5 (2005)
26.
Zurück zum Zitat P. Guo, K. Kakimoto, H. Ohsato, Na0.5K0.5NbO3-LiTaO3lead-free piezoelectric ceramics. Mater. Lett. 59, 241–244 (2005)CrossRef P. Guo, K. Kakimoto, H. Ohsato, Na0.5K0.5NbO3-LiTaO3lead-free piezoelectric ceramics. Mater. Lett. 59, 241–244 (2005)CrossRef
27.
Zurück zum Zitat X. Zhai, H. Wang, J. Xu, C. Yuan, X. Zhang, C. Zhou, X. Liu, Effect of V2O5 doping on the structure and properties lead-free KNN-LS-BF piezoelectric ceramics. J. Mater. Sci. Mater. Electron. 24, 687–691 (2013)CrossRef X. Zhai, H. Wang, J. Xu, C. Yuan, X. Zhang, C. Zhou, X. Liu, Effect of V2O5 doping on the structure and properties lead-free KNN-LS-BF piezoelectric ceramics. J. Mater. Sci. Mater. Electron. 24, 687–691 (2013)CrossRef
28.
Zurück zum Zitat H. Wang, X. Zhai, J. Xu, C. Yuan, L. Yang, Temperature stability of V2O5-Doped KNN-LS-BF lead-free piezoelectric ceramics. J. Electron. Mater. 42, 2556–2559 (2013)CrossRef H. Wang, X. Zhai, J. Xu, C. Yuan, L. Yang, Temperature stability of V2O5-Doped KNN-LS-BF lead-free piezoelectric ceramics. J. Electron. Mater. 42, 2556–2559 (2013)CrossRef
29.
Zurück zum Zitat M. Matsubara, T. Yamaguchi, W. Sakamoto, K. Kikuta, T. Yogo, S. Hirano, Processing and piezoelectric properties of lead free (KNa)(NbTa)O3. J. Am. Ceram. Soc. 88, 1190–1196 (2005)CrossRef M. Matsubara, T. Yamaguchi, W. Sakamoto, K. Kikuta, T. Yogo, S. Hirano, Processing and piezoelectric properties of lead free (KNa)(NbTa)O3. J. Am. Ceram. Soc. 88, 1190–1196 (2005)CrossRef
30.
Zurück zum Zitat M. Matsubara, T. Yamaguchi, K. Kikuta, S. Hirano, Effect of Li substitution of piezoelectric properties of potassium sodium niobate ceramics. Jpn. J. Appl. Phys. 44, 6136–6142 (2005)CrossRef M. Matsubara, T. Yamaguchi, K. Kikuta, S. Hirano, Effect of Li substitution of piezoelectric properties of potassium sodium niobate ceramics. Jpn. J. Appl. Phys. 44, 6136–6142 (2005)CrossRef
31.
Zurück zum Zitat N.M. Hagh, B. Jadidian, A. Safari, Property-processing relationship in lead-free (K, Na, Li)NbO3 solid solution systems. J. Electroceramics 18, 339–346 (2007)CrossRef N.M. Hagh, B. Jadidian, A. Safari, Property-processing relationship in lead-free (K, Na, Li)NbO3 solid solution systems. J. Electroceramics 18, 339–346 (2007)CrossRef
32.
Zurück zum Zitat G.C. Jiao, H.Q. Fan, L.J. Liu, W. Wang, Structure and piezoelectric properties of Cu-doped potassium sodium tantalate niobate ceramics. Mater. Lett. 61, 4185–4187 (2007)CrossRef G.C. Jiao, H.Q. Fan, L.J. Liu, W. Wang, Structure and piezoelectric properties of Cu-doped potassium sodium tantalate niobate ceramics. Mater. Lett. 61, 4185–4187 (2007)CrossRef
33.
Zurück zum Zitat G.Z. Zhang, L.B. Li, X. Yi, J. Du, Y. Li, Electrical properties of B site substituted (K0.48Na0.52)(W2/3Bi1/3)xNb1−xO3 piezoceramics. J. Mater. Sci. Mater. Electron. 23, 977–980 (2012)CrossRef G.Z. Zhang, L.B. Li, X. Yi, J. Du, Y. Li, Electrical properties of B site substituted (K0.48Na0.52)(W2/3Bi1/3)xNb1−xO3 piezoceramics. J. Mater. Sci. Mater. Electron. 23, 977–980 (2012)CrossRef
34.
Zurück zum Zitat X. Pang, J. Qiu, K. Zhu, J. Du, Effect of ZnO on the microstructure and electrical properties of (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics. J. Mater. Sci. Mater. Electron. 23, 1083–1086 (2012)CrossRef X. Pang, J. Qiu, K. Zhu, J. Du, Effect of ZnO on the microstructure and electrical properties of (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics. J. Mater. Sci. Mater. Electron. 23, 1083–1086 (2012)CrossRef
35.
Zurück zum Zitat D. Lin, K.W. Kwok, Structure and piezoelectric properties of K0.5Na0.5NbO3–Bi0.5Li0.5TiO3 lead-free ceramics. J. Mater. Sci. Mater. Electron. 23, 501–505 (2012)CrossRef D. Lin, K.W. Kwok, Structure and piezoelectric properties of K0.5Na0.5NbO3–Bi0.5Li0.5TiO3 lead-free ceramics. J. Mater. Sci. Mater. Electron. 23, 501–505 (2012)CrossRef
36.
Zurück zum Zitat H.C. Song, K.H. Cho, H.W. Park, C.W. Ahn, S. Nahm, K. Uchino, S.H. Park, H.G. Lee, Microstructure and piezoelectric properties of (1 − x)(Na0.5K0.5)NbO3–xLiNbO3 ceramics. J. Am. Ceram. Soc. 90, 1812–1816 (2007)CrossRef H.C. Song, K.H. Cho, H.W. Park, C.W. Ahn, S. Nahm, K. Uchino, S.H. Park, H.G. Lee, Microstructure and piezoelectric properties of (1 − x)(Na0.5K0.5)NbO3xLiNbO3 ceramics. J. Am. Ceram. Soc. 90, 1812–1816 (2007)CrossRef
37.
Zurück zum Zitat Y. Zhen, J.F. Li, Normal sintering of (K, Na)NbO3-based ceramics: influence of sintering temperature on densification, microstructure, and electrical properties. J. Am. Ceram. Soc. 89, 3669–3675 (2006)CrossRef Y. Zhen, J.F. Li, Normal sintering of (K, Na)NbO3-based ceramics: influence of sintering temperature on densification, microstructure, and electrical properties. J. Am. Ceram. Soc. 89, 3669–3675 (2006)CrossRef
38.
Zurück zum Zitat R. Zuo, J. Rodel, R. Chen, L. Li, Sintering and electrical properties of lead-free Na0.5K0.5NbO3 piezoelectric ceramics. J. Am. Ceram. Soc. 89, 2010–2015 (2006)CrossRef R. Zuo, J. Rodel, R. Chen, L. Li, Sintering and electrical properties of lead-free Na0.5K0.5NbO3 piezoelectric ceramics. J. Am. Ceram. Soc. 89, 2010–2015 (2006)CrossRef
39.
Zurück zum Zitat R. Gaur, K.C. Singh, R. Laishram, Structural and piezoelectric properties of barium modified lead-free (K0.455Li0.045Na0.5)(Nb0.9Ta0.1)O3 ceramics. J. Mater. Sci. 48, 5607–5613 (2013)CrossRef R. Gaur, K.C. Singh, R. Laishram, Structural and piezoelectric properties of barium modified lead-free (K0.455Li0.045Na0.5)(Nb0.9Ta0.1)O3 ceramics. J. Mater. Sci. 48, 5607–5613 (2013)CrossRef
40.
Zurück zum Zitat R.Z. Zuo, J. Fu, D.Y. Lu, Y. Liu, Antimony tuned rhombohedral–orthorhombic phase transition and enhanced piezoelectric properties in sodium potassium niobate. J. Am. Ceram. Soc. 93, 2783–2787 (2010)CrossRef R.Z. Zuo, J. Fu, D.Y. Lu, Y. Liu, Antimony tuned rhombohedral–orthorhombic phase transition and enhanced piezoelectric properties in sodium potassium niobate. J. Am. Ceram. Soc. 93, 2783–2787 (2010)CrossRef
41.
Zurück zum Zitat S. Huo, S. Yuan, Z. Tian, C. Wang, Y. Qiu, Grain size effects on the ferroelectric and piezoelectric properties of Na0.5K0.5NbO3 ceramics prepared by Pechini method. J. Am. Ceram. Soc. 95, 1383–1387 (2012)CrossRef S. Huo, S. Yuan, Z. Tian, C. Wang, Y. Qiu, Grain size effects on the ferroelectric and piezoelectric properties of Na0.5K0.5NbO3 ceramics prepared by Pechini method. J. Am. Ceram. Soc. 95, 1383–1387 (2012)CrossRef
42.
Zurück zum Zitat J.S. Liu, S.R. Zhang, H.Z. Zeng, C.T. Yang, Y. Yuan, Coercive field dependence of the grain size of ferroelectric films. Phys. Rev. B 72, 172101 (2005)CrossRef J.S. Liu, S.R. Zhang, H.Z. Zeng, C.T. Yang, Y. Yuan, Coercive field dependence of the grain size of ferroelectric films. Phys. Rev. B 72, 172101 (2005)CrossRef
43.
Zurück zum Zitat H. Huang, C.Q. Sun, T.S. Zhang, H. Peter, Grain-size effect on ferroelectric Pb(Zr1−x Ti x )O3 solid solutions induced by surface bond contraction. Phys. Rev. B 63, 184112 (2001)CrossRef H. Huang, C.Q. Sun, T.S. Zhang, H. Peter, Grain-size effect on ferroelectric Pb(Zr1−x Ti x )O3 solid solutions induced by surface bond contraction. Phys. Rev. B 63, 184112 (2001)CrossRef
44.
Zurück zum Zitat C. Leu, C.Y. Chen, C.H. Chien, Domain structure study of SrBi2Ta2O9 ferroelectric thin films by scanning capacitance microscopy. Appl. Phys. Lett. 82, 3493–3495 (2003)CrossRef C. Leu, C.Y. Chen, C.H. Chien, Domain structure study of SrBi2Ta2O9 ferroelectric thin films by scanning capacitance microscopy. Appl. Phys. Lett. 82, 3493–3495 (2003)CrossRef
45.
Zurück zum Zitat W.F. Liang, W.J. Wu, D.Q. Xiao, J.G. Zhu, J.G. Wu, Construction of new morphotropic phase boundary in 0.94(K0.4−xNa0.6BaxNb1−xZrx)O3–0.06LiSbO3 lead-free piezoelectric ceramics. J. Mater. Sci. 46, 6871–6876 (2011)CrossRef W.F. Liang, W.J. Wu, D.Q. Xiao, J.G. Zhu, J.G. Wu, Construction of new morphotropic phase boundary in 0.94(K0.4−xNa0.6BaxNb1−xZrx)O3–0.06LiSbO3 lead-free piezoelectric ceramics. J. Mater. Sci. 46, 6871–6876 (2011)CrossRef
46.
Zurück zum Zitat S.E. Park, T.R. Shrout, Characteristics of relaxor-based piezoelectric single crystals for ultrasonic transducers. IEEE Trans. Ultrason. Ferroelectr. 44, 1140–1147 (1997)CrossRef S.E. Park, T.R. Shrout, Characteristics of relaxor-based piezoelectric single crystals for ultrasonic transducers. IEEE Trans. Ultrason. Ferroelectr. 44, 1140–1147 (1997)CrossRef
47.
Zurück zum Zitat H. Birol, D. Damjanovic, Preparation and characterization of (K0.5Na0.5)NbO3 ceramics. J. Eur. Ceram. Soc. 26, 861–866 (2006)CrossRef H. Birol, D. Damjanovic, Preparation and characterization of (K0.5Na0.5)NbO3 ceramics. J. Eur. Ceram. Soc. 26, 861–866 (2006)CrossRef
48.
Zurück zum Zitat H. Takahashi, Y. Numamoto, J. Tani, K. Matsuta, J. Qiu, S. Tsurekawa, Lead-free barium titanate ceramics with large piezoelectric constant fabricated by microwave sintering. Jpn. J. Appl. Phys. 45, L30–L32 (2006)CrossRef H. Takahashi, Y. Numamoto, J. Tani, K. Matsuta, J. Qiu, S. Tsurekawa, Lead-free barium titanate ceramics with large piezoelectric constant fabricated by microwave sintering. Jpn. J. Appl. Phys. 45, L30–L32 (2006)CrossRef
49.
Zurück zum Zitat C.A. Randall, N. Kim, J.P. Kucera, W. Cao, T.R. Shrout, Intrinsic and extrinsic size effects in fine-grained morphotropic-phase-boundary lead zirconate titanate ceramics. J. Am. Ceram. Soc. 81, 677–688 (1998)CrossRef C.A. Randall, N. Kim, J.P. Kucera, W. Cao, T.R. Shrout, Intrinsic and extrinsic size effects in fine-grained morphotropic-phase-boundary lead zirconate titanate ceramics. J. Am. Ceram. Soc. 81, 677–688 (1998)CrossRef
Metadaten
Titel
Lead-free vanadium-substituted (K0.485Na0.5Li0.015)(Nb0.9Ta0.1)O3 piezoceramics synthesized from nanopowders
verfasst von
Roopam Gaur
Maitreyi Sangal
Arpit Dwivedi
K. Chandramani Singh
Publikationsdatum
01.07.2014
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 7/2014
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-014-2003-2

Weitere Artikel der Ausgabe 7/2014

Journal of Materials Science: Materials in Electronics 7/2014 Zur Ausgabe

Neuer Inhalt