Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 4/2015

01.04.2015

A facile synthesis and characterization of LiFePO4/C using simple binary reactants with oxalic acid by polyol technique and other high temperature methods

verfasst von: R. Muruganantham, M. Sivakumar, R. Subadevi, N.-L. Wu

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 4/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An attempt has been made to synthesize the carbon coated Fe-based phospho-olivine nano-crystalline cathode materials using simple binary sources via polyol method. Also, a curious attempt has been made to compare the material with the high temperature methods, viz., hydrothermal and solid state method with the same binary sources as raw materials and oxalic acid as a carbon source. The thermal behaviour of the mixed raw materials of LiFePO4 and thermal stability of the final prepared materials were characterized by TGA. The prepared materials were confirmed as orthorhombic olivine structure with Pnma space group. LiFePO4/C material prepared by Polyol method exhibits an initial reverse capacity of 150 mAh g−1 at 0.1 C rate under room temperature. Also, stable capacity of 143 mAh g−1 has been observed over 50 cycles at 0.1 C rate at room temperature among the other methods studied. It may be due to the coverage of tiny particles by carbon and it leads to provide better electronic conductivity and thereby provides good electrochemical performances.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Armand, J.M. Tarascon, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001)CrossRef M. Armand, J.M. Tarascon, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001)CrossRef
2.
Zurück zum Zitat J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries. Chem. Mater. 22, 587 (2010)CrossRef J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries. Chem. Mater. 22, 587 (2010)CrossRef
3.
Zurück zum Zitat A. Padhi, K. Nanjundaswamy, J.B. Goodenough, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188–1194 (1997)CrossRef A. Padhi, K. Nanjundaswamy, J.B. Goodenough, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188–1194 (1997)CrossRef
4.
Zurück zum Zitat B.C. Melot, D.O. Scanlon, M. Reynaud, G. Rousse, J.-N. Chotard, M. Henry, J.-M. Tarascon, Chemical and structural indicators for large redox potentials in Fe-based positive electrode materials. ACS Appl. Mater. Interfaces (2014). doi:10.1021/am405579h B.C. Melot, D.O. Scanlon, M. Reynaud, G. Rousse, J.-N. Chotard, M. Henry, J.-M. Tarascon, Chemical and structural indicators for large redox potentials in Fe-based positive electrode materials. ACS Appl. Mater. Interfaces (2014). doi:10.​1021/​am405579h
5.
Zurück zum Zitat G.T.-K. Fey, Y.G. Chen, H.-M. Kao, Electrochemical properties of LiFePO4 prepared via ball-milling. J. Power Sources 189, 169–178 (2009)CrossRef G.T.-K. Fey, Y.G. Chen, H.-M. Kao, Electrochemical properties of LiFePO4 prepared via ball-milling. J. Power Sources 189, 169–178 (2009)CrossRef
6.
Zurück zum Zitat J. Wang, X. Sun, Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries. Energy Environ. Sci. 5, 5163–5185 (2012)CrossRef J. Wang, X. Sun, Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries. Energy Environ. Sci. 5, 5163–5185 (2012)CrossRef
7.
Zurück zum Zitat K. Kim, Y.H. Cho, D. Kam, H.S. Kim, J.W. Lee, Effects of organic acids as reducing agents in the synthesis of LiFePO4. J. Alloys Compd. 504, 166–170 (2010)CrossRef K. Kim, Y.H. Cho, D. Kam, H.S. Kim, J.W. Lee, Effects of organic acids as reducing agents in the synthesis of LiFePO4. J. Alloys Compd. 504, 166–170 (2010)CrossRef
8.
Zurück zum Zitat D. Shao, J. Wang, X. Dong, W. Yu, G. Liu, F. Zhang, L. Wang, Electrospinning fabrication and electrochemical properties of LiFePO4/C composite nanofibers. J. Mater. Sci. Mater. Electron. 24(11), 4263–4269 (2013)CrossRef D. Shao, J. Wang, X. Dong, W. Yu, G. Liu, F. Zhang, L. Wang, Electrospinning fabrication and electrochemical properties of LiFePO4/C composite nanofibers. J. Mater. Sci. Mater. Electron. 24(11), 4263–4269 (2013)CrossRef
9.
Zurück zum Zitat B. Ding, P. Xiao, G. Ji, Y. Ma, L. Lu, J.Y. Lee, High-performance lithium-ion cathode LiMn0.7Fe0.3PO4/C and the mechanism of performance enhancements through Fe substitution. ACS Appl. Mater. Interfaces 5, 12120–12126 (2013)CrossRef B. Ding, P. Xiao, G. Ji, Y. Ma, L. Lu, J.Y. Lee, High-performance lithium-ion cathode LiMn0.7Fe0.3PO4/C and the mechanism of performance enhancements through Fe substitution. ACS Appl. Mater. Interfaces 5, 12120–12126 (2013)CrossRef
10.
Zurück zum Zitat K.L. Harrison, A. Manthiram, Microwave-assisted solvothermal synthesis and characterization of metastable LiFe1–x(VO)xPO4 cathodes. Inorg. Chem. 50, 3613–3620 (2011)CrossRef K.L. Harrison, A. Manthiram, Microwave-assisted solvothermal synthesis and characterization of metastable LiFe1–x(VO)xPO4 cathodes. Inorg. Chem. 50, 3613–3620 (2011)CrossRef
11.
Zurück zum Zitat D.-H. Kim, J.K. Kim, Synthesis of LiFePO4 nanoparticle in polyol medium and their electrochemical properties. Electrochem. Solid State Lett. 9, A439–A442 (2006)CrossRef D.-H. Kim, J.K. Kim, Synthesis of LiFePO4 nanoparticle in polyol medium and their electrochemical properties. Electrochem. Solid State Lett. 9, A439–A442 (2006)CrossRef
12.
Zurück zum Zitat J. Jiang, W. Liu, J.T. Chen, Y.L. Hou, LiFePO4 nanocrystals: liquid-phase reduction synthesis and their electrochemical performance. ACS Appl. Mater. Interfaces 4, 3062–3068 (2012)CrossRef J. Jiang, W. Liu, J.T. Chen, Y.L. Hou, LiFePO4 nanocrystals: liquid-phase reduction synthesis and their electrochemical performance. ACS Appl. Mater. Interfaces 4, 3062–3068 (2012)CrossRef
13.
Zurück zum Zitat S. Li, X. Liu, R. Mi, H. Liu, Y. Li, W-m Lau, J. Mei, A facile route to modify ferrous phosphate and its use as an iron-containing resource for LiFePO4 via a polyol process. ACS Appl. Mater. Interfaces 6, 9449–9457 (2014)CrossRef S. Li, X. Liu, R. Mi, H. Liu, Y. Li, W-m Lau, J. Mei, A facile route to modify ferrous phosphate and its use as an iron-containing resource for LiFePO4 via a polyol process. ACS Appl. Mater. Interfaces 6, 9449–9457 (2014)CrossRef
14.
Zurück zum Zitat J. Chen, J. Graetz, Study of Antisite Defects in Hydrothermally Prepared LiFePO4 by in Situ X-ray Diffraction. ACS Appl. Mater. Interfaces 3, 1380–1384 (2011)CrossRef J. Chen, J. Graetz, Study of Antisite Defects in Hydrothermally Prepared LiFePO4 by in Situ X-ray Diffraction. ACS Appl. Mater. Interfaces 3, 1380–1384 (2011)CrossRef
15.
Zurück zum Zitat S.S. Zhang, J.L. Allen, K. Xu, T.R. Jow, Optimization of reaction condition for solid-state synthesis of LiFePO4/C composite cathodes. J. Power Sources 147, 234–240 (2005)CrossRef S.S. Zhang, J.L. Allen, K. Xu, T.R. Jow, Optimization of reaction condition for solid-state synthesis of LiFePO4/C composite cathodes. J. Power Sources 147, 234–240 (2005)CrossRef
16.
Zurück zum Zitat D.-H. Kim, J.K. Kim, Synthesis of LiFePO4 nanoparticles and their electrochemical properties. J. Phys. Chem. Solids 68, 734–737 (2007)CrossRef D.-H. Kim, J.K. Kim, Synthesis of LiFePO4 nanoparticles and their electrochemical properties. J. Phys. Chem. Solids 68, 734–737 (2007)CrossRef
17.
Zurück zum Zitat N.N. Sinha, N.J. Munichandraiah, Single-shot preparation of crystalline nanoplate LiFePO4 by a simple polyol route. Electrochem. Soc. 157, A824–A829 (2010)CrossRef N.N. Sinha, N.J. Munichandraiah, Single-shot preparation of crystalline nanoplate LiFePO4 by a simple polyol route. Electrochem. Soc. 157, A824–A829 (2010)CrossRef
18.
Zurück zum Zitat M. Singh, M. Willert-Porada, Polyol process for the synthesis of LiFePO4 rhombohedral particles. Adv. Powder Technol. 22, 284–289 (2011)CrossRef M. Singh, M. Willert-Porada, Polyol process for the synthesis of LiFePO4 rhombohedral particles. Adv. Powder Technol. 22, 284–289 (2011)CrossRef
19.
Zurück zum Zitat L. Dimesso, C. Spanheimer, S. Jacke, W. Jaegermann, Synthesis and characterization of LiFePO4/3-dimensional carbon nanostructure composites as possible cathode materials for Li-ion batteries. Ionics 17, 429–435 (2011)CrossRef L. Dimesso, C. Spanheimer, S. Jacke, W. Jaegermann, Synthesis and characterization of LiFePO4/3-dimensional carbon nanostructure composites as possible cathode materials for Li-ion batteries. Ionics 17, 429–435 (2011)CrossRef
20.
Zurück zum Zitat R. Yang, E. Kang, B. Jiang, J.-H. Ahn, Effect of complexing agents on the electrochemical performance of LiFePO4/C prepared by sol-gel method. Nanoscale Res. Lett. 40, 1–7 (2012) R. Yang, E. Kang, B. Jiang, J.-H. Ahn, Effect of complexing agents on the electrochemical performance of LiFePO4/C prepared by sol-gel method. Nanoscale Res. Lett. 40, 1–7 (2012)
21.
Zurück zum Zitat V. Drozd, G.Q. Liu, R.S. Liu, H.T. Kuo, C.H. Shen, D.S. Shy, X.K. Xing, Synthesis, electrochemical properties, and characterization of LiFePO4/C composite by a two-source method. J. Alloys Compd. 487, 58–63 (2009)CrossRef V. Drozd, G.Q. Liu, R.S. Liu, H.T. Kuo, C.H. Shen, D.S. Shy, X.K. Xing, Synthesis, electrochemical properties, and characterization of LiFePO4/C composite by a two-source method. J. Alloys Compd. 487, 58–63 (2009)CrossRef
22.
Zurück zum Zitat M.S.R. Swamy, T.P. Prasad, Thermal decomposition of iron (ii) sulphate heptahydrate in the presence of alkali metal carbonates. J. Therm. Anal. 25, 347–354 (1982)CrossRef M.S.R. Swamy, T.P. Prasad, Thermal decomposition of iron (ii) sulphate heptahydrate in the presence of alkali metal carbonates. J. Therm. Anal. 25, 347–354 (1982)CrossRef
23.
Zurück zum Zitat K.-S. Lee, J. Moon, J. Lee, M. Jeon, High-temperature phase transformations in LiH2PO4 and possible solid-state polymerization. Solid State Commun. 147, 74–77 (2008)CrossRef K.-S. Lee, J. Moon, J. Lee, M. Jeon, High-temperature phase transformations in LiH2PO4 and possible solid-state polymerization. Solid State Commun. 147, 74–77 (2008)CrossRef
24.
Zurück zum Zitat S.F. Yang, Y.N. Song, P.Y. Zavalij, M.S. Whittingham, Reactivity, stability and electrochemical behavior of lithium iron phosphates. Electrochem. Commun. 4, 239–244 (2002) S.F. Yang, Y.N. Song, P.Y. Zavalij, M.S. Whittingham, Reactivity, stability and electrochemical behavior of lithium iron phosphates. Electrochem. Commun. 4, 239–244 (2002)
25.
Zurück zum Zitat G. Hasegawa, Y. Ishihara, K. Kanamori, K. Miyazaki, Y. Yamada, K. Nakanishi, T. Abe, Facile preparation of monolithic LiFePO4/carbon composites with well-defined macropores for a lithium-ion battery. Chem. Mater. 23, 5208–5216 (2011)CrossRef G. Hasegawa, Y. Ishihara, K. Kanamori, K. Miyazaki, Y. Yamada, K. Nakanishi, T. Abe, Facile preparation of monolithic LiFePO4/carbon composites with well-defined macropores for a lithium-ion battery. Chem. Mater. 23, 5208–5216 (2011)CrossRef
26.
Zurück zum Zitat C.-H. Yima, E.A. Baranovab, Y. Abu-Lebdeha, I. Davidsona, Highly ordered LiFePO4 cathode material for Li-ion batteries templated by surfactant-modified polystyrene colloidal crystals. J. Power Sources 205, 414–419 (2012)CrossRef C.-H. Yima, E.A. Baranovab, Y. Abu-Lebdeha, I. Davidsona, Highly ordered LiFePO4 cathode material for Li-ion batteries templated by surfactant-modified polystyrene colloidal crystals. J. Power Sources 205, 414–419 (2012)CrossRef
27.
Zurück zum Zitat J. Lim, V. Mathew, K. Kim, J. Moon, J.K. Kim, One-pot synthesis of multi-morphous LiFePO4 nanoparticles in polyol medium. J. Electrochem. Soc. 158(6), A736–A740 (2011)CrossRef J. Lim, V. Mathew, K. Kim, J. Moon, J.K. Kim, One-pot synthesis of multi-morphous LiFePO4 nanoparticles in polyol medium. J. Electrochem. Soc. 158(6), A736–A740 (2011)CrossRef
28.
Zurück zum Zitat A.V. Murugan, T. Muraliganth, P.J. Ferreira, A. Manthiram, Dimensionally modulated, single-crystalline LiMPO4 (M = Mn, Fe Co, and Ni) with Nano-Thumblike shapes for high-power energy storage. Inorg. Chem. 48, 946–952 (2009)CrossRef A.V. Murugan, T. Muraliganth, P.J. Ferreira, A. Manthiram, Dimensionally modulated, single-crystalline LiMPO4 (M = Mn, Fe Co, and Ni) with Nano-Thumblike shapes for high-power energy storage. Inorg. Chem. 48, 946–952 (2009)CrossRef
29.
Zurück zum Zitat B. D. Cullity, S. R. Stock, Elements of X-Ray Diffraction, 3rd edn., ch. 5.2 (Prentice Hall Publishers, New Jersey, 2001) B. D. Cullity, S. R. Stock, Elements of X-Ray Diffraction, 3rd edn., ch. 5.2 (Prentice Hall Publishers, New Jersey, 2001)
30.
Zurück zum Zitat K. Zaghib, A. Mauger, F. Gendron, C.M. Julien, Relationship between local structure and electrochemical performance of LiFePO4 in Li-ion batteries. Ionics 14, 271–278 (2008)CrossRef K. Zaghib, A. Mauger, F. Gendron, C.M. Julien, Relationship between local structure and electrochemical performance of LiFePO4 in Li-ion batteries. Ionics 14, 271–278 (2008)CrossRef
31.
Zurück zum Zitat K. Vediappan, A. Guerfi, V. Gariépy, G.P. Demopoulos, P. Hovington, J. Trottier, A. Mauger, C.M. Julien, K. Zaghib, Stirring effect in hydrothermal synthesis of nano C-LiFePO4. J. Power Sources 266, 99–106 (2014)CrossRef K. Vediappan, A. Guerfi, V. Gariépy, G.P. Demopoulos, P. Hovington, J. Trottier, A. Mauger, C.M. Julien, K. Zaghib, Stirring effect in hydrothermal synthesis of nano C-LiFePO4. J. Power Sources 266, 99–106 (2014)CrossRef
32.
Zurück zum Zitat N. Ravet, M. Gauthier, K. Zaghib, J.B. Goodenough, A. Mauger, F. Gendron, C.M. Julien, Mechanism of the Fe3+ reduction at low temperature for LiFePO4 synthesis from a polymeric additive. Chem. Mater. 19(10), 2595–2602 (2007)CrossRef N. Ravet, M. Gauthier, K. Zaghib, J.B. Goodenough, A. Mauger, F. Gendron, C.M. Julien, Mechanism of the Fe3+ reduction at low temperature for LiFePO4 synthesis from a polymeric additive. Chem. Mater. 19(10), 2595–2602 (2007)CrossRef
33.
Zurück zum Zitat H.M. Xie, R.S. Wang, J.R. Ying, L.-Y. Zhang, A.F. Jalbout, H.-Y. Yu, G.-L. Yang, X.-M. Pan, Z.-M. Su, Optimized LiFePO4-polyacene cathode material for lithium-ion batteries. Adv. Mater. 18(19), 2609–2613 (2006)CrossRef H.M. Xie, R.S. Wang, J.R. Ying, L.-Y. Zhang, A.F. Jalbout, H.-Y. Yu, G.-L. Yang, X.-M. Pan, Z.-M. Su, Optimized LiFePO4-polyacene cathode material for lithium-ion batteries. Adv. Mater. 18(19), 2609–2613 (2006)CrossRef
34.
Zurück zum Zitat L. Zhang, R.K. Brow, A Raman study of iron-phosphate crystalline compounds and glasses. J. Am. Ceram. Soc. 94(9), 3123–3130 (2011)CrossRef L. Zhang, R.K. Brow, A Raman study of iron-phosphate crystalline compounds and glasses. J. Am. Ceram. Soc. 94(9), 3123–3130 (2011)CrossRef
35.
Zurück zum Zitat B.-H. Rita, J.-P.P. Ramos, Raman microspectrometry applied to the study of electrode materials for lithium batteries. Chem. Rev. 110, 1278–1319 (2010)CrossRef B.-H. Rita, J.-P.P. Ramos, Raman microspectrometry applied to the study of electrode materials for lithium batteries. Chem. Rev. 110, 1278–1319 (2010)CrossRef
36.
Zurück zum Zitat M.M. Doeff, Y.Q. Hu, F. McLarnon, R. Kostecki, Effect of surface carbon structure on the electrochemical performance of LiFePO4. Electrochem. Solid State Lett. 6, A207–A209 (2003)CrossRef M.M. Doeff, Y.Q. Hu, F. McLarnon, R. Kostecki, Effect of surface carbon structure on the electrochemical performance of LiFePO4. Electrochem. Solid State Lett. 6, A207–A209 (2003)CrossRef
37.
Zurück zum Zitat N. Lyczko, A. Nzihou, P. Sharrock, A. Germeau, C. Toussaint, Characterization of LiFePO4/C cathode for lithium ion batteries. Ind. Eng. Chem. Res. 51(1), 292–300 (2012)CrossRef N. Lyczko, A. Nzihou, P. Sharrock, A. Germeau, C. Toussaint, Characterization of LiFePO4/C cathode for lithium ion batteries. Ind. Eng. Chem. Res. 51(1), 292–300 (2012)CrossRef
38.
Zurück zum Zitat S. Wi, S. Nam, Y. Oh, J. Kim, H. Choi, S. Hong, S. Byun, S. Kang, D.J. Choi, K.-O. Ahn, Y.-H. Kim, B. Park, Facile synthesis of porous-carbon/LiFePO4 nanocomposites. J. Nanopart. Res. 14, 1327 (2012)CrossRef S. Wi, S. Nam, Y. Oh, J. Kim, H. Choi, S. Hong, S. Byun, S. Kang, D.J. Choi, K.-O. Ahn, Y.-H. Kim, B. Park, Facile synthesis of porous-carbon/LiFePO4 nanocomposites. J. Nanopart. Res. 14, 1327 (2012)CrossRef
39.
Zurück zum Zitat Jun Ma, Baohua Li, Du Hongda, Xu Chengjun, Feiyu Kang, Inorganic-based sol–gel synthesis of nano-structured LiFePO4/C composite materials for lithium ion batteries. J. Solid State Electrochem. 16, 1353–1362 (2012)CrossRef Jun Ma, Baohua Li, Du Hongda, Xu Chengjun, Feiyu Kang, Inorganic-based sol–gel synthesis of nano-structured LiFePO4/C composite materials for lithium ion batteries. J. Solid State Electrochem. 16, 1353–1362 (2012)CrossRef
40.
Zurück zum Zitat Z.G. Lu, M.F. Lo, C.Y. Chung, Pulse laser deposition and electrochemical characterization of LiFePO4-C composite thin films. J. Phys. Chem. C 112, 7069–7078 (2008)CrossRef Z.G. Lu, M.F. Lo, C.Y. Chung, Pulse laser deposition and electrochemical characterization of LiFePO4-C composite thin films. J. Phys. Chem. C 112, 7069–7078 (2008)CrossRef
41.
Zurück zum Zitat R. Dedryvère, M. Maccario, L. Croguennec, F. Le Cras, C. Delmas, D. Gonbeau, X-ray photoelectron spectroscopy investigations of carbon-coated LixFePO4 materials. Chem. Mater. 20, 7164–7170 (2008)CrossRef R. Dedryvère, M. Maccario, L. Croguennec, F. Le Cras, C. Delmas, D. Gonbeau, X-ray photoelectron spectroscopy investigations of carbon-coated LixFePO4 materials. Chem. Mater. 20, 7164–7170 (2008)CrossRef
42.
Zurück zum Zitat K. Zaghib, A. Mauger, F. Gendron, C.M. Julien, Surface effects on the physical and electrochemical properties of thin LiFePO4 particles. Chem. Mater. 20, 462–469 (2008)CrossRef K. Zaghib, A. Mauger, F. Gendron, C.M. Julien, Surface effects on the physical and electrochemical properties of thin LiFePO4 particles. Chem. Mater. 20, 462–469 (2008)CrossRef
43.
Zurück zum Zitat A. Yamada, Y. Takei, H. Koizumi, N. Sonoyama, R. Kanno, K. Itoh, M. Yonemura, T. Kamiyama, Electrochemical, magnetic, and structural investigation of the Li x (Mn y Fe1–y ) PO4 olivine phases. Chem. Mater. 18, 804–813 (2006)CrossRef A. Yamada, Y. Takei, H. Koizumi, N. Sonoyama, R. Kanno, K. Itoh, M. Yonemura, T. Kamiyama, Electrochemical, magnetic, and structural investigation of the Li x (Mn y Fe1–y ) PO4 olivine phases. Chem. Mater. 18, 804–813 (2006)CrossRef
44.
Zurück zum Zitat G. Herzer, Nanocrystalline soft magnetic materials. J. Magn. Magn. Mater. 157(158), 133–136 (1996)CrossRef G. Herzer, Nanocrystalline soft magnetic materials. J. Magn. Magn. Mater. 157(158), 133–136 (1996)CrossRef
45.
Zurück zum Zitat K. Zaghib, A. Mauger, J.B. Goodenough, F. Gendron, C.M. Julien, Electronic, optical, and magnetic properties of LiFePO4: small magnetic polaron effects. Chem. Mater. 19, 3740–3747 (2007)CrossRef K. Zaghib, A. Mauger, J.B. Goodenough, F. Gendron, C.M. Julien, Electronic, optical, and magnetic properties of LiFePO4: small magnetic polaron effects. Chem. Mater. 19, 3740–3747 (2007)CrossRef
46.
Zurück zum Zitat K. Saravanan, M.V. Reddy, P. Balaya, H. Gong, B.V.R. Chowdari, J.J. Vittal, Storage performance of LiFePO4 nanoplates. J. Mater. Chem. 19, 605–610 (2009)CrossRef K. Saravanan, M.V. Reddy, P. Balaya, H. Gong, B.V.R. Chowdari, J.J. Vittal, Storage performance of LiFePO4 nanoplates. J. Mater. Chem. 19, 605–610 (2009)CrossRef
47.
Zurück zum Zitat H. Liu, Q. Cao, L.J. Fu, C. Li, Y.P. Wu, H.Q. Wu, Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries. Electrochem. Commun. 8, 1553–1557 (2006)CrossRef H. Liu, Q. Cao, L.J. Fu, C. Li, Y.P. Wu, H.Q. Wu, Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries. Electrochem. Commun. 8, 1553–1557 (2006)CrossRef
48.
Zurück zum Zitat H. Ning, C.-Y. Wang, X.-Y. Kang, Y.T. Han, Synthesis and electrochemical characterizations of zinc-doped LiFePO4/C by carbothermal reduction. J. Inorg. Mater. 25, 887–892 (2010)CrossRef H. Ning, C.-Y. Wang, X.-Y. Kang, Y.T. Han, Synthesis and electrochemical characterizations of zinc-doped LiFePO4/C by carbothermal reduction. J. Inorg. Mater. 25, 887–892 (2010)CrossRef
49.
Zurück zum Zitat B. Niu, E. Qi, J.-Q. Wang, A simple and facile preparation of LiFePO4 by a one-step microwave hydrothermal method. J. Inorg. Organomet. Polym. 21, 906–912 (2011)CrossRef B. Niu, E. Qi, J.-Q. Wang, A simple and facile preparation of LiFePO4 by a one-step microwave hydrothermal method. J. Inorg. Organomet. Polym. 21, 906–912 (2011)CrossRef
50.
Zurück zum Zitat X. Huang, S. Yan, H. Zhao, L. Zhang, R. Guo, C. Chang, X. Kong, H. Han, Electrochemical performance of LiFePO4 nanorods obtained from hydrothermal process. Mater. Charact. 61, 720–725 (2010)CrossRef X. Huang, S. Yan, H. Zhao, L. Zhang, R. Guo, C. Chang, X. Kong, H. Han, Electrochemical performance of LiFePO4 nanorods obtained from hydrothermal process. Mater. Charact. 61, 720–725 (2010)CrossRef
51.
Zurück zum Zitat H.-P. Liu, Z.-X. Wang, X.-H. Li, H.-J. Guo, W.-J. Peng, Y.-H. Zhang, Q.-Y. Hu, Synthesis and electrochemical properties of olivine LiFePO4 prepared by a carbothermal reduction method. J. Power Sources 184, 469–472 (2008)CrossRef H.-P. Liu, Z.-X. Wang, X.-H. Li, H.-J. Guo, W.-J. Peng, Y.-H. Zhang, Q.-Y. Hu, Synthesis and electrochemical properties of olivine LiFePO4 prepared by a carbothermal reduction method. J. Power Sources 184, 469–472 (2008)CrossRef
52.
Zurück zum Zitat A.S. Andersson, J.O. Thomas, The source of first-cycle capacity loss in LiFePO4. J. Power Sources 97–98, 498–502 (2001)CrossRef A.S. Andersson, J.O. Thomas, The source of first-cycle capacity loss in LiFePO4. J. Power Sources 97–98, 498–502 (2001)CrossRef
53.
Zurück zum Zitat Y.-H. Rho, L.F. Nazar, L. Perry, D. Ryan, Surface chemistry of LiFePO4 studied by Mössbauer and X-Ray photoelectron spectroscopy and its effect on electrochemical properties. J. Electrochem. Soc. 154, A283–A289 (2007)CrossRef Y.-H. Rho, L.F. Nazar, L. Perry, D. Ryan, Surface chemistry of LiFePO4 studied by Mössbauer and X-Ray photoelectron spectroscopy and its effect on electrochemical properties. J. Electrochem. Soc. 154, A283–A289 (2007)CrossRef
54.
Zurück zum Zitat J. Barker, M.Y. Saidi, J.L. Swoyer, Lithium iron(II) phospho-olivines prepared by a novel carbothermal reduction method. Electrochem. Solid State lett. 6(3), A53–A55 (2003)CrossRef J. Barker, M.Y. Saidi, J.L. Swoyer, Lithium iron(II) phospho-olivines prepared by a novel carbothermal reduction method. Electrochem. Solid State lett. 6(3), A53–A55 (2003)CrossRef
55.
Zurück zum Zitat B.Q. Zhu, X.H. Li, Z.X. Wang, H.J. Guo, Novel synthesis of LiFePO4 by aqueous precipitation and carbothermal reduction. Mater. Chem. Phys. 98, 373–376 (2006)CrossRef B.Q. Zhu, X.H. Li, Z.X. Wang, H.J. Guo, Novel synthesis of LiFePO4 by aqueous precipitation and carbothermal reduction. Mater. Chem. Phys. 98, 373–376 (2006)CrossRef
Metadaten
Titel
A facile synthesis and characterization of LiFePO4/C using simple binary reactants with oxalic acid by polyol technique and other high temperature methods
verfasst von
R. Muruganantham
M. Sivakumar
R. Subadevi
N.-L. Wu
Publikationsdatum
01.04.2015
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 4/2015
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-014-2653-0

Weitere Artikel der Ausgabe 4/2015

Journal of Materials Science: Materials in Electronics 4/2015 Zur Ausgabe

Neuer Inhalt