Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 8/2017

12.01.2017

Green synthesis of dendritic silver nanostructure and its application in conductive ink

verfasst von: Hua Wang, Wenjia Xing, Jing Chen, Guixiang Liu, Guangliang Xu

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 8/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, dendritic silver nanostructure (DSN) was synthesized via a novel and eco-friendly method. The effects of the dosage of clove oil, concentration of silver nitrate and ultrasonic time on the formation of DSN were discussed. The structures of the obtained products were characterized by X-ray power diffraction, field emission scanning electron microscopy, transmission electron microscopy, and the chemical composition of DSN was examined by energy dispersive X-ray spectroscopy. The results show that the length of the trunks is approximately 2–5 μm and that of the lateral branches is about 0.5–2 μm. The conductive inks filled with dendritic silver and sphere silver powders were prepared respectively at mass fraction of 60%. The result shows that the coating of the conductive ink filled with dendritic silver has a lower sheet resistance of approximately 0.07 Ω/□ at a thickness of 20 μm.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Y.H. Ji, Y. Liu, Y.Q. Li, H.M. Xiao, S.S. Du, J.Y. Zhang, N. Hu, S.Y. Fu, Significantly enhanced electrical conductivity of silver nanowire/polyurethane composites via graphene oxide as novel dispersant. Compos. Sci. Technol. 132, 57–67 (2016)CrossRef Y.H. Ji, Y. Liu, Y.Q. Li, H.M. Xiao, S.S. Du, J.Y. Zhang, N. Hu, S.Y. Fu, Significantly enhanced electrical conductivity of silver nanowire/polyurethane composites via graphene oxide as novel dispersant. Compos. Sci. Technol. 132, 57–67 (2016)CrossRef
2.
Zurück zum Zitat D. Singha, N. Barman, K. Sahu, A facile synthesis of high optical quality silver nanoparticles by ascorbic acid reduction in reverse micelles at room temperature. J. Coll. Interface Sci. 413, 37–42 (2014)CrossRef D. Singha, N. Barman, K. Sahu, A facile synthesis of high optical quality silver nanoparticles by ascorbic acid reduction in reverse micelles at room temperature. J. Coll. Interface Sci. 413, 37–42 (2014)CrossRef
3.
Zurück zum Zitat B. Hu, N. Wang, L. Han, M.L. Chen, J.H. Wang, Core-shell-shell nanorods for controlled release of silver that can serve as a nanoheater for photothermal treatment on bacteria. Acta Biomater. 11, 511–519 (2015)CrossRef B. Hu, N. Wang, L. Han, M.L. Chen, J.H. Wang, Core-shell-shell nanorods for controlled release of silver that can serve as a nanoheater for photothermal treatment on bacteria. Acta Biomater. 11, 511–519 (2015)CrossRef
4.
Zurück zum Zitat W.G. Menezes, V. Zielasek, K. Thiel, A. Hartwig, M. Bäumer, Effects of particle size, composition, and support on catalytic activity of Au Ag nanoparticles prepared in reverse block copolymer micelles as nanoreactors. J. Catal. 299, 222–231 (2013)CrossRef W.G. Menezes, V. Zielasek, K. Thiel, A. Hartwig, M. Bäumer, Effects of particle size, composition, and support on catalytic activity of Au Ag nanoparticles prepared in reverse block copolymer micelles as nanoreactors. J. Catal. 299, 222–231 (2013)CrossRef
5.
Zurück zum Zitat A. Rostami-Vartooni, M. Nasrollahzadeh, M. Salavati-Niasari, M. Ataro, Photocatalytic degradation of azo dyes by titanium dioxide supported silver nanoparticles prepared by a green method using Carpobrotus acinaciformis extract. J. Alloys Compds. 689, 15–20 (2016)CrossRef A. Rostami-Vartooni, M. Nasrollahzadeh, M. Salavati-Niasari, M. Ataro, Photocatalytic degradation of azo dyes by titanium dioxide supported silver nanoparticles prepared by a green method using Carpobrotus acinaciformis extract. J. Alloys Compds. 689, 15–20 (2016)CrossRef
6.
Zurück zum Zitat M. Umadevi, M.R. Bindhu, V. Sathe, A novel synthesis of malic acid capped silver nanoparticles using solanum lycopersicums fruit extract. J. Mater. Sci. Technol. 29 (2013) 317–322.CrossRef M. Umadevi, M.R. Bindhu, V. Sathe, A novel synthesis of malic acid capped silver nanoparticles using solanum lycopersicums fruit extract. J. Mater. Sci. Technol. 29 (2013) 317–322.CrossRef
7.
Zurück zum Zitat B. Moldovan, L. David, M. Achim, S. Clichici, G. A. Filip, A green approach to phytomediated synthesis of silver nanoparticles using Sambucus nigra L. fruits extract and their antioxidant activity, J. Mol. Liq. 221 (2016) 271–278.CrossRef B. Moldovan, L. David, M. Achim, S. Clichici, G. A. Filip, A green approach to phytomediated synthesis of silver nanoparticles using Sambucus nigra L. fruits extract and their antioxidant activity, J. Mol. Liq. 221 (2016) 271–278.CrossRef
8.
Zurück zum Zitat R. Yan-yu, Y. Hui, W. Tao, W. Chuang, Green synthesis and antimicrobial activity of monodisperse silver nanoparticles synthesized using Ginkgo Bilobaleaf extract. Phys. Lett. A 380, 3773–3777 (2016)CrossRef R. Yan-yu, Y. Hui, W. Tao, W. Chuang, Green synthesis and antimicrobial activity of monodisperse silver nanoparticles synthesized using Ginkgo Bilobaleaf extract. Phys. Lett. A 380, 3773–3777 (2016)CrossRef
9.
Zurück zum Zitat C.F. Dong, X.L. Zhang, H. Cai, C.L. Cao, Green synthesis of biocompatible silver nanoparticlesmediated by Osmanthus fragrans extract in aqueous solution, Optik 127 (2016) 10378–10388.CrossRef C.F. Dong, X.L. Zhang, H. Cai, C.L. Cao, Green synthesis of biocompatible silver nanoparticlesmediated by Osmanthus fragrans extract in aqueous solution, Optik 127 (2016) 10378–10388.CrossRef
10.
Zurück zum Zitat B. Mohapatra, S. Kuriakose, S. Mohapatra, Rapid green synthesis of silver nanoparticles and nanorods using piper nigrum extract. J. Alloys Compd. 637, 119–126 (2015)CrossRef B. Mohapatra, S. Kuriakose, S. Mohapatra, Rapid green synthesis of silver nanoparticles and nanorods using piper nigrum extract. J. Alloys Compd. 637, 119–126 (2015)CrossRef
11.
Zurück zum Zitat F. Tavakoli, M. Salavati-Niasari, F. Mohandes, Green synthesis of flower-like CuI microstructures composed of trigonal nanostructures using pomegranate juice. Mater. Lett. 100, 133–136 (2013)CrossRef F. Tavakoli, M. Salavati-Niasari, F. Mohandes, Green synthesis of flower-like CuI microstructures composed of trigonal nanostructures using pomegranate juice. Mater. Lett. 100, 133–136 (2013)CrossRef
12.
Zurück zum Zitat T. N. J. I. Edison, Y. R. Lee, M. G. Sethuraman, Green synthesis of silver nanoparticles using Terminalia cuneata and its catalytic action in reduction of direct yellow-12 dye, Spectrochim. Acta Part A 161 (2016) 122–129.CrossRef T. N. J. I. Edison, Y. R. Lee, M. G. Sethuraman, Green synthesis of silver nanoparticles using Terminalia cuneata and its catalytic action in reduction of direct yellow-12 dye, Spectrochim. Acta Part A 161 (2016) 122–129.CrossRef
13.
Zurück zum Zitat X.K. Wang, L. Shao, W.L. Guo, J.G. Wang, Y.P. Zhu, C. Wang, Synthesis of dendritic silver nanostructures by means of ultrasonic irradiation. Ultrason. Sonochem. 16, 747–751 (2009)CrossRef X.K. Wang, L. Shao, W.L. Guo, J.G. Wang, Y.P. Zhu, C. Wang, Synthesis of dendritic silver nanostructures by means of ultrasonic irradiation. Ultrason. Sonochem. 16, 747–751 (2009)CrossRef
14.
Zurück zum Zitat J.P. Xiao, Y. Xie, R. Tang, M. Chen, X.B. Tian, Novel ultrasonically assisted templated synthesis of palladium and silver dendritic nanostructures. Adv. Mater. 13, 1887–1891 (2001)CrossRef J.P. Xiao, Y. Xie, R. Tang, M. Chen, X.B. Tian, Novel ultrasonically assisted templated synthesis of palladium and silver dendritic nanostructures. Adv. Mater. 13, 1887–1891 (2001)CrossRef
15.
Zurück zum Zitat G.D. Wei, C.W. Nan, Y. Deng, Y.H. Lin, Self-organized synthesis of silver chainlike and dendritic nanostructures via a solvothermal method. Chem. Mater. 15, 4436–4441 (2003)CrossRef G.D. Wei, C.W. Nan, Y. Deng, Y.H. Lin, Self-organized synthesis of silver chainlike and dendritic nanostructures via a solvothermal method. Chem. Mater. 15, 4436–4441 (2003)CrossRef
16.
Zurück zum Zitat H.P. Ding, G.Q. Xin, K.C. Chen, M.L. Zhang, Q.Y. Liu, J.C. Hao, H.G. Liu, Silver dendritic nanostructures formed at the solid/liquid interfacevia electroless deposition. Coll. Surf. A 353, 166–171 (2010)CrossRef H.P. Ding, G.Q. Xin, K.C. Chen, M.L. Zhang, Q.Y. Liu, J.C. Hao, H.G. Liu, Silver dendritic nanostructures formed at the solid/liquid interfacevia electroless deposition. Coll. Surf. A 353, 166–171 (2010)CrossRef
17.
Zurück zum Zitat M.V. Mandke, S.H. Hand, H.M. Pathan, Growth of silver dendritic nanostructures via electrochemical route, Crystengcomm 14 (2011) 86–89.CrossRef M.V. Mandke, S.H. Hand, H.M. Pathan, Growth of silver dendritic nanostructures via electrochemical route, Crystengcomm 14 (2011) 86–89.CrossRef
18.
Zurück zum Zitat L.H. Lu, A. Kobayashi, Y. Kikkawa, K. Tawa, Y. Ozaki, Oriented attachment—based assembly of dendritic silver nanostructures at room temperature. J. Phys. Chem. B 110, 23234–23241 (2006)CrossRef L.H. Lu, A. Kobayashi, Y. Kikkawa, K. Tawa, Y. Ozaki, Oriented attachment—based assembly of dendritic silver nanostructures at room temperature. J. Phys. Chem. B 110, 23234–23241 (2006)CrossRef
19.
Zurück zum Zitat X.Q. Wang, H. Itoh, K. Naka, Y. Chujo, Tetrathiafulvalene-assisted rormation of silver dendritic nanostructures in acetonitrile. Langmuir 19, 6242–6246 (2003)CrossRef X.Q. Wang, H. Itoh, K. Naka, Y. Chujo, Tetrathiafulvalene-assisted rormation of silver dendritic nanostructures in acetonitrile. Langmuir 19, 6242–6246 (2003)CrossRef
20.
Zurück zum Zitat V.V. Agrawal, G.U. Kulkarni, C.N.R. Rao, Surfactant-promoted formation of fractal and dendritic nanostructures of gold and silver at the organic-aqueous interface. J. Colloid Interface Sci. 318, 501–506 (2008)CrossRef V.V. Agrawal, G.U. Kulkarni, C.N.R. Rao, Surfactant-promoted formation of fractal and dendritic nanostructures of gold and silver at the organic-aqueous interface. J. Colloid Interface Sci. 318, 501–506 (2008)CrossRef
21.
Zurück zum Zitat J.X. Fang, H.J. You, C. Zhu, P. Kong, M. Shi, X.P. Song, B.J. Ding, Thermodynamic and kinetic competition in silver dendrite growth. Chem. Phys. Lett. 439, 204–208 (2007)CrossRef J.X. Fang, H.J. You, C. Zhu, P. Kong, M. Shi, X.P. Song, B.J. Ding, Thermodynamic and kinetic competition in silver dendrite growth. Chem. Phys. Lett. 439, 204–208 (2007)CrossRef
22.
Zurück zum Zitat M.H. Abdellatif, G.N. Abdelrasoul, A. Scarpellini, S. Marras, A. Diaspro, Induced growth of dendrite gold nanostructure by controlling self-assembly aggregation dynamics. J. Colloid Interface Sci. 458, 266–272 (2015)CrossRef M.H. Abdellatif, G.N. Abdelrasoul, A. Scarpellini, S. Marras, A. Diaspro, Induced growth of dendrite gold nanostructure by controlling self-assembly aggregation dynamics. J. Colloid Interface Sci. 458, 266–272 (2015)CrossRef
23.
Zurück zum Zitat A. Jeevika, D.R. Shankaran, Seed-free synthesis of 1D silver nanowires ink using clove oil (Syzygium Aromaticum) at room temperature. J. Colloid Interface Sci. 458, 155–159 (2015)CrossRef A. Jeevika, D.R. Shankaran, Seed-free synthesis of 1D silver nanowires ink using clove oil (Syzygium Aromaticum) at room temperature. J. Colloid Interface Sci. 458, 155–159 (2015)CrossRef
24.
Zurück zum Zitat K. Sun, J. Qiu, J. Liu, Y. Miao, Preparation and characterization of gold nanoparticles using ascorbic acid as reducing agent in reverse micelles. J. Mater. Sci. 44, 754–758 (2009)CrossRef K. Sun, J. Qiu, J. Liu, Y. Miao, Preparation and characterization of gold nanoparticles using ascorbic acid as reducing agent in reverse micelles. J. Mater. Sci. 44, 754–758 (2009)CrossRef
25.
Zurück zum Zitat K.P. Velikov, G.E. Zegers, A.V. Blaaderen, Synthesis and characterization of large colloidal silver particles. Langmuir 19, 1384–1389 (2003)CrossRef K.P. Velikov, G.E. Zegers, A.V. Blaaderen, Synthesis and characterization of large colloidal silver particles. Langmuir 19, 1384–1389 (2003)CrossRef
26.
Zurück zum Zitat N.T. Thanh, N. Maclean, S. Mahiddine, Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 114, 7610–7630 (2014)CrossRef N.T. Thanh, N. Maclean, S. Mahiddine, Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 114, 7610–7630 (2014)CrossRef
27.
Zurück zum Zitat A. Ghosale, R. Shankar, V. Ganesand, K. Shrivasa, Direct-writing of paper based conductive track using silver nano-ink for electroanalytical application. Electrochim. Acta 209, 511–520 (2016)CrossRef A. Ghosale, R. Shankar, V. Ganesand, K. Shrivasa, Direct-writing of paper based conductive track using silver nano-ink for electroanalytical application. Electrochim. Acta 209, 511–520 (2016)CrossRef
28.
Zurück zum Zitat S.A. Odom, S. Chayanupatkul, B.J. Blaiszik, O. Zhao, A.C. Jackson, P.V. Braun, N.R. Sottos, S.R. White, J.S. Moore, A. self-healing conductive ink, Adv. Mater. 24, 2578–2258 (2012)CrossRef S.A. Odom, S. Chayanupatkul, B.J. Blaiszik, O. Zhao, A.C. Jackson, P.V. Braun, N.R. Sottos, S.R. White, J.S. Moore, A. self-healing conductive ink, Adv. Mater. 24, 2578–2258 (2012)CrossRef
29.
Zurück zum Zitat W. Wu, S.L. Yang, S.F. Zhang, H.B. Zhang, C.Z. Jiang, Fabrication, characterization and screen printing of conductive ink based on carbon@Ag core–shell nanoparticles. J. Colloid Interface Sci. 427, 15–19 (2014)CrossRef W. Wu, S.L. Yang, S.F. Zhang, H.B. Zhang, C.Z. Jiang, Fabrication, characterization and screen printing of conductive ink based on carbon@Ag core–shell nanoparticles. J. Colloid Interface Sci. 427, 15–19 (2014)CrossRef
30.
Zurück zum Zitat Y. Tang, W. He, S.X. Wang, Z.H. Tao, L.J. Cheng, One step synthesis of silver nanowires used in preparation of conductive silver paste. J. Mater. Sci.: Mater. Electron. 25, 2929–2933 (2014) Y. Tang, W. He, S.X. Wang, Z.H. Tao, L.J. Cheng, One step synthesis of silver nanowires used in preparation of conductive silver paste. J. Mater. Sci.: Mater. Electron. 25, 2929–2933 (2014)
31.
Zurück zum Zitat M.H. Rashid, T.K. Mandal, Synthesis and catalytic application of nanostructured silver dendrites. J. Phys. Chem. C 111, 16750–16760 (2007)CrossRef M.H. Rashid, T.K. Mandal, Synthesis and catalytic application of nanostructured silver dendrites. J. Phys. Chem. C 111, 16750–16760 (2007)CrossRef
32.
Zurück zum Zitat F. Mohandes, M. Salavati-Niasari, Sonochemical synthesis of silver vanadium oxide micro/nanorods: solvent and surfactant effects. Ultrason. Sonochem. 20, 354–365 (2013)CrossRef F. Mohandes, M. Salavati-Niasari, Sonochemical synthesis of silver vanadium oxide micro/nanorods: solvent and surfactant effects. Ultrason. Sonochem. 20, 354–365 (2013)CrossRef
33.
Zurück zum Zitat T. Witten, L. Sander, Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett. 47, 1400–1403 (1981)CrossRef T. Witten, L. Sander, Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett. 47, 1400–1403 (1981)CrossRef
34.
Zurück zum Zitat T. Yang, Y.S. Han, J.H. Li, Manipulating silver dendritic structures via diffusion and reaction. Chem. Eng. Sci. 138, 457–464 (2015)CrossRef T. Yang, Y.S. Han, J.H. Li, Manipulating silver dendritic structures via diffusion and reaction. Chem. Eng. Sci. 138, 457–464 (2015)CrossRef
35.
Zurück zum Zitat T. Haxhimali, A. Karma, F. Gonzales, M. Rappaz, Orientation selection in dendritic evolution. Nat. Mater. 5, 660–664 (2006)CrossRef T. Haxhimali, A. Karma, F. Gonzales, M. Rappaz, Orientation selection in dendritic evolution. Nat. Mater. 5, 660–664 (2006)CrossRef
36.
Zurück zum Zitat Y.Q. Zheng, J. Zeng, A. Ruditskiy, M.C. Liu, Y.N. Xia, Oxidative etching and its role in manipulating the nucleation and growth of noble-metal nanocrystals. Chem. Mater. 26, 22–33 (2013)CrossRef Y.Q. Zheng, J. Zeng, A. Ruditskiy, M.C. Liu, Y.N. Xia, Oxidative etching and its role in manipulating the nucleation and growth of noble-metal nanocrystals. Chem. Mater. 26, 22–33 (2013)CrossRef
37.
Zurück zum Zitat A. Mayoral, C. Magen, M. Joseyacaman, High yield production of long branched Au nanoparticles characterized by atomic resolution transmission electron microscopy. Cryst. Growth Des. 11, 4538–4543 (2011)CrossRef A. Mayoral, C. Magen, M. Joseyacaman, High yield production of long branched Au nanoparticles characterized by atomic resolution transmission electron microscopy. Cryst. Growth Des. 11, 4538–4543 (2011)CrossRef
38.
Zurück zum Zitat X.G. Wen, Y.T. Xie, M.W.C. Mak, K.Y. Cheung, X.Y. Li, R. Renneberg, S. Yang, Dendritic nanostructures of silver: facile synthesis, structural characterizations, and sensing applications. Langmuir 22, 4836–4842 (2006)CrossRef X.G. Wen, Y.T. Xie, M.W.C. Mak, K.Y. Cheung, X.Y. Li, R. Renneberg, S. Yang, Dendritic nanostructures of silver: facile synthesis, structural characterizations, and sensing applications. Langmuir 22, 4836–4842 (2006)CrossRef
Metadaten
Titel
Green synthesis of dendritic silver nanostructure and its application in conductive ink
verfasst von
Hua Wang
Wenjia Xing
Jing Chen
Guixiang Liu
Guangliang Xu
Publikationsdatum
12.01.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 8/2017
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-016-6293-4

Weitere Artikel der Ausgabe 8/2017

Journal of Materials Science: Materials in Electronics 8/2017 Zur Ausgabe

Neuer Inhalt