Skip to main content
Erschienen in: Meccanica 13/2017

03.07.2017 | New Trends in Dynamics and Stability

Hybrid simulation of thunderstorm outflows and wind-excited response of structures

verfasst von: Giovanni Solari, Davide Rainisio, Patrizia De Gaetano

Erschienen in: Meccanica | Ausgabe 13/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Starting from the records detected by the monitoring network of the European Projects “Wind and Ports” and “Wind, Ports and Sea”, this paper proposes a novel strategy for simulating the wind velocity field of thunderstorm outflows. A model of the wind field along a vertical axis is first proposed. Its different ingredients and the inherent sources of randomness are then separated into five groups and a hybrid technique for the simulation of thunderstorm outflows is formulated. This technique is applied to generate artificial time-histories of the aerodynamic wind loading on three real slender vertical test structures whose dynamic response is evaluated by means of a time domain integration of the equations of motion. The results are analysed in a probabilistic frame aiming to inspect the distribution of the maximum value of the response, the role of the aerodynamic admittance, the relevance of the resonant part of the response, and the contribution of higher vibration modes in parallel with the classic analysis of the response of structures to synoptic extra-tropical cyclones. The conclusions draw some prospects on the joint calibration of the response spectrum technique and the time domain simulations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Letchford CW, Mans C, Chay MT (2002) Thunderstorms—their importance in wind engineering (a case for the next generation wind tunnel). J Wind Eng Ind Aerodyn 90:1415–1433CrossRef Letchford CW, Mans C, Chay MT (2002) Thunderstorms—their importance in wind engineering (a case for the next generation wind tunnel). J Wind Eng Ind Aerodyn 90:1415–1433CrossRef
2.
Zurück zum Zitat Solari G (2014) Emerging issues and new scenarios for wind loading on structures in mixed climates. Wind Struct 19:295–320CrossRef Solari G (2014) Emerging issues and new scenarios for wind loading on structures in mixed climates. Wind Struct 19:295–320CrossRef
3.
Zurück zum Zitat Choi ECC, Hidayat FA (2002) Dynamic response of structures to thunderstorm winds. Prog Struct Eng Mater 4:408–416CrossRef Choi ECC, Hidayat FA (2002) Dynamic response of structures to thunderstorm winds. Prog Struct Eng Mater 4:408–416CrossRef
4.
Zurück zum Zitat Chen L, Letchford CW (2004) Parametric study on the alongwind response of the CAARC building to downbursts in the time domain. J Wind Eng Ind Aerodyn 92:703–724CrossRef Chen L, Letchford CW (2004) Parametric study on the alongwind response of the CAARC building to downbursts in the time domain. J Wind Eng Ind Aerodyn 92:703–724CrossRef
5.
Zurück zum Zitat Chen L, Letchford CW (2007) Numerical simulation of extreme winds from thunderstorm downbursts. J Wind Eng Ind Aerodyn 95:977–990CrossRef Chen L, Letchford CW (2007) Numerical simulation of extreme winds from thunderstorm downbursts. J Wind Eng Ind Aerodyn 95:977–990CrossRef
6.
Zurück zum Zitat Chen X (2008) Analysis of alongwind tall building response to transient nonstationary winds. J Struct Eng ASCE 134:782–791CrossRef Chen X (2008) Analysis of alongwind tall building response to transient nonstationary winds. J Struct Eng ASCE 134:782–791CrossRef
7.
Zurück zum Zitat Kwon DK, Kareem A (2009) Gust-front factor: new framework for wind load effects on structures. J Struct Eng ASCE 135:717–732CrossRef Kwon DK, Kareem A (2009) Gust-front factor: new framework for wind load effects on structures. J Struct Eng ASCE 135:717–732CrossRef
8.
Zurück zum Zitat Huang G, Chen X, Liao H, Li M (2013) Predicting of tall building response to non-stationary winds using multiple wind speed samples. Wind Struct 17:227–244CrossRef Huang G, Chen X, Liao H, Li M (2013) Predicting of tall building response to non-stationary winds using multiple wind speed samples. Wind Struct 17:227–244CrossRef
9.
Zurück zum Zitat Le TH, Caracoglia L (2015) Reduced-order wavelet-Galerkin solution for the coupled, nonlinear stochastic response of slender buildings in transient winds. J Sound Vib 344:179–208ADSCrossRef Le TH, Caracoglia L (2015) Reduced-order wavelet-Galerkin solution for the coupled, nonlinear stochastic response of slender buildings in transient winds. J Sound Vib 344:179–208ADSCrossRef
10.
Zurück zum Zitat Aboshosha H, El Damatty A (2015) Engineering method for estimating the reactions of transmission line conductors under downburst winds. Eng Struct 99:272–284CrossRef Aboshosha H, El Damatty A (2015) Engineering method for estimating the reactions of transmission line conductors under downburst winds. Eng Struct 99:272–284CrossRef
11.
Zurück zum Zitat Davenport AG (1961) The application of statistical concepts to the wind loading of structures. Proc Inst Civ Eng 19:449–472 Davenport AG (1961) The application of statistical concepts to the wind loading of structures. Proc Inst Civ Eng 19:449–472
12.
Zurück zum Zitat Solari G, Repetto MP, Burlando M, De Gaetano P, Pizzo M, Tizzi M, Parodi M (2012) The wind forecast for safety and management of port areas. J Wind Eng Ind Aerodyn 104–106:266–277CrossRef Solari G, Repetto MP, Burlando M, De Gaetano P, Pizzo M, Tizzi M, Parodi M (2012) The wind forecast for safety and management of port areas. J Wind Eng Ind Aerodyn 104–106:266–277CrossRef
14.
Zurück zum Zitat De Gaetano P, Repetto MP, Repetto T, Solari G (2014) Separation and classification of extreme wind events from anemometric records. J Wind Eng Ind Aerodyn 126:132–143CrossRef De Gaetano P, Repetto MP, Repetto T, Solari G (2014) Separation and classification of extreme wind events from anemometric records. J Wind Eng Ind Aerodyn 126:132–143CrossRef
15.
Zurück zum Zitat Solari G, Burlando M, De Gaetano P, Repetto MP (2015) Characteristics of thunderstorms relevant to the wind loading of structures. Wind Struct 20:763–791CrossRef Solari G, Burlando M, De Gaetano P, Repetto MP (2015) Characteristics of thunderstorms relevant to the wind loading of structures. Wind Struct 20:763–791CrossRef
16.
Zurück zum Zitat Solari G, De Gaetano P, Repetto MP (2015) Thunderstorm response spectrum: fundamentals and case study. J Wind Eng Ind Aerodyn 143:62–77CrossRef Solari G, De Gaetano P, Repetto MP (2015) Thunderstorm response spectrum: fundamentals and case study. J Wind Eng Ind Aerodyn 143:62–77CrossRef
17.
Zurück zum Zitat Solari G (2016) Thunderstorm response spectrum technique: theory and applications. Eng Struct 108:28–46CrossRef Solari G (2016) Thunderstorm response spectrum technique: theory and applications. Eng Struct 108:28–46CrossRef
18.
Zurück zum Zitat Carassale L, Solari G (2006) Monte Carlo simulation of wind velocity fields on complex structures. J Wind Eng Ind Aerodyn 94:323–339CrossRef Carassale L, Solari G (2006) Monte Carlo simulation of wind velocity fields on complex structures. J Wind Eng Ind Aerodyn 94:323–339CrossRef
19.
Zurück zum Zitat Byers HR, Braham RR (1949) The thunderstorm: final report of the thunderstorm project. US Government Printing Office, Washington, DC Byers HR, Braham RR (1949) The thunderstorm: final report of the thunderstorm project. US Government Printing Office, Washington, DC
20.
Zurück zum Zitat Fujita TT (1985) Downburst: microburst and macroburst. University of Chicago Press, Chicago Fujita TT (1985) Downburst: microburst and macroburst. University of Chicago Press, Chicago
21.
Zurück zum Zitat Fujita TT (1990) Downburst: meteorological features and wind field characteristics. J Wind Eng Ind Aerodyn 36:75–86CrossRef Fujita TT (1990) Downburst: meteorological features and wind field characteristics. J Wind Eng Ind Aerodyn 36:75–86CrossRef
22.
Zurück zum Zitat Goff RG (1976) Vertical structure of thunderstorm outflows. Mon Weather Rev 104:1429–1440ADSCrossRef Goff RG (1976) Vertical structure of thunderstorm outflows. Mon Weather Rev 104:1429–1440ADSCrossRef
23.
Zurück zum Zitat Chen L, Letchford CW (2004) A deterministic-stochastic hybrid model of downbursts and its impact on a cantilevered structure. Eng Struct 26:619–629CrossRef Chen L, Letchford CW (2004) A deterministic-stochastic hybrid model of downbursts and its impact on a cantilevered structure. Eng Struct 26:619–629CrossRef
24.
Zurück zum Zitat Holmes JD, Hangan HM, Schroeder JL, Letchford CW, Orwig KD (2008) A forensic study of the Lubbock-Reese downdraft of 2002. Wind Struct 11:19–39CrossRef Holmes JD, Hangan HM, Schroeder JL, Letchford CW, Orwig KD (2008) A forensic study of the Lubbock-Reese downdraft of 2002. Wind Struct 11:19–39CrossRef
25.
Zurück zum Zitat McCullough M, Kwon DK, Kareem A, Wang L (2014) Efficacy of averaging interval for nonstationary winds. J Eng Mech ASCE 140:1–19CrossRef McCullough M, Kwon DK, Kareem A, Wang L (2014) Efficacy of averaging interval for nonstationary winds. J Eng Mech ASCE 140:1–19CrossRef
26.
Zurück zum Zitat Oseguera RM, Bowles RL (1988) A simple analytic 3-dimensional downburst model based on boundary layer stagnation flow. NASA Technical Memorandum 100632 Oseguera RM, Bowles RL (1988) A simple analytic 3-dimensional downburst model based on boundary layer stagnation flow. NASA Technical Memorandum 100632
27.
Zurück zum Zitat Vicroy DD (1992) Assessment of microburst models for downdraft estimation. J Aircraft 29:1043–1048CrossRef Vicroy DD (1992) Assessment of microburst models for downdraft estimation. J Aircraft 29:1043–1048CrossRef
28.
Zurück zum Zitat Wood GS, Kwok KCS (1998) An empirically derived estimate for the mean velocity profile of a thunderstorm downburst. In: Proc 7th Australian wind engineering society workshop, Auckland, New Zealand Wood GS, Kwok KCS (1998) An empirically derived estimate for the mean velocity profile of a thunderstorm downburst. In: Proc 7th Australian wind engineering society workshop, Auckland, New Zealand
29.
Zurück zum Zitat Ponte J Jr, Riera JD (2007) Wind velocity field during thunderstorms. Wind Struct 10:287–300CrossRef Ponte J Jr, Riera JD (2007) Wind velocity field during thunderstorms. Wind Struct 10:287–300CrossRef
30.
Zurück zum Zitat Xu Z, Hangan HM (2008) Scale, boundary and inlet condition effects on impinging jets. J Wind Eng Ind Aerodyn 96:2383–2402CrossRef Xu Z, Hangan HM (2008) Scale, boundary and inlet condition effects on impinging jets. J Wind Eng Ind Aerodyn 96:2383–2402CrossRef
31.
Zurück zum Zitat Li C, Li QS, Xiao YQ, Ou JP (2012) A revised empirical model and CFD simulations for 3D axi-symmetric steady-state flows of downbursts and impinging jets. J Wind Eng Ind Aerodyn 102:48–60CrossRef Li C, Li QS, Xiao YQ, Ou JP (2012) A revised empirical model and CFD simulations for 3D axi-symmetric steady-state flows of downbursts and impinging jets. J Wind Eng Ind Aerodyn 102:48–60CrossRef
32.
Zurück zum Zitat Abd-Elaal E, Mills JE, Ma X (2013) An analytical model for simulating steady state flows of downburst. J Wind Eng Ind Aerodyn 115:53–64CrossRef Abd-Elaal E, Mills JE, Ma X (2013) An analytical model for simulating steady state flows of downburst. J Wind Eng Ind Aerodyn 115:53–64CrossRef
33.
Zurück zum Zitat Duranona V, Sterling M, Baker CJ (2006) An analysis of extreme non-synoptic winds. J Wind Eng Ind Aerodyn 95:1007–1027CrossRef Duranona V, Sterling M, Baker CJ (2006) An analysis of extreme non-synoptic winds. J Wind Eng Ind Aerodyn 95:1007–1027CrossRef
34.
Zurück zum Zitat Lombardo FT, Smith DA, Schroeder JL, Mehta KC (2014) Thunderstorm characteristics of importance to wind engineering. J Wind Eng Ind Aerodyn 125:121–132CrossRef Lombardo FT, Smith DA, Schroeder JL, Mehta KC (2014) Thunderstorm characteristics of importance to wind engineering. J Wind Eng Ind Aerodyn 125:121–132CrossRef
35.
Zurück zum Zitat Gunter WS, Schroeder JL (2015) High-resolution full-scale measurements of thunderstorm outflow winds. J Wind Eng Ind Aerodyn 138:13–26CrossRef Gunter WS, Schroeder JL (2015) High-resolution full-scale measurements of thunderstorm outflow winds. J Wind Eng Ind Aerodyn 138:13–26CrossRef
36.
Zurück zum Zitat Li Y, Kareem A (1991) Simulation of multivariate nonstationary random processes by FFT. J Eng Mech ASCE 117:1037–1058CrossRef Li Y, Kareem A (1991) Simulation of multivariate nonstationary random processes by FFT. J Eng Mech ASCE 117:1037–1058CrossRef
37.
Zurück zum Zitat Deodatis G (1996) Non-stationary stochastic vector processes: seismic ground motion applications. Probab Eng Mech 11:149–168CrossRef Deodatis G (1996) Non-stationary stochastic vector processes: seismic ground motion applications. Probab Eng Mech 11:149–168CrossRef
38.
Zurück zum Zitat Sakamoto S, Ghanem R (2002) Simulation of multi-dimensional non-Gaussian non-stationary random fields. Probab Eng Mech 17:167–176CrossRef Sakamoto S, Ghanem R (2002) Simulation of multi-dimensional non-Gaussian non-stationary random fields. Probab Eng Mech 17:167–176CrossRef
39.
Zurück zum Zitat Wen YK, Gu P (2004) Description and simulation of nonstationary processes based on Hilbert spectra. J Eng Mech ASCE 130:942–951CrossRef Wen YK, Gu P (2004) Description and simulation of nonstationary processes based on Hilbert spectra. J Eng Mech ASCE 130:942–951CrossRef
40.
Zurück zum Zitat Nielsen M, Larsen GC, Hansen KS (2007) Simulation of inhomogeneous, non-stationary and non-Gaussian turbulent winds. J Phys 75:1–9 Nielsen M, Larsen GC, Hansen KS (2007) Simulation of inhomogeneous, non-stationary and non-Gaussian turbulent winds. J Phys 75:1–9
41.
Zurück zum Zitat Cacciola P, Deodatis G (2011) A method for generating fully non-stationary and spectrum-compatible ground motion vector processes. Soil Dyn Earthq Eng 31:351–360CrossRef Cacciola P, Deodatis G (2011) A method for generating fully non-stationary and spectrum-compatible ground motion vector processes. Soil Dyn Earthq Eng 31:351–360CrossRef
42.
Zurück zum Zitat Huang G (2014) An efficient simulation approach for multivariate nonstationary process: hybrid of wavelet and spectral representation method. Probab Eng Mech 37:74–83CrossRef Huang G (2014) An efficient simulation approach for multivariate nonstationary process: hybrid of wavelet and spectral representation method. Probab Eng Mech 37:74–83CrossRef
43.
Zurück zum Zitat Wood GS, Kwok KCS, Motteram NA, Fletcher DF (2001) Physical and numerical modelling of thunderstorm downburst. J Wind Eng Ind Aerodyn 89:535–552CrossRef Wood GS, Kwok KCS, Motteram NA, Fletcher DF (2001) Physical and numerical modelling of thunderstorm downburst. J Wind Eng Ind Aerodyn 89:535–552CrossRef
44.
Zurück zum Zitat Kim J, Hangan H (2007) Numerical simulations of impinging jets with application to downbursts. J Wind Eng Ind Aerodyn 95:279–298CrossRef Kim J, Hangan H (2007) Numerical simulations of impinging jets with application to downbursts. J Wind Eng Ind Aerodyn 95:279–298CrossRef
45.
Zurück zum Zitat Mason MS, Wood GS, Fletcher DF (2009) Numerical simulation of downburst winds. J Wind Eng Ind Aerodyn 97:523–539CrossRef Mason MS, Wood GS, Fletcher DF (2009) Numerical simulation of downburst winds. J Wind Eng Ind Aerodyn 97:523–539CrossRef
46.
Zurück zum Zitat Vermeire BC, Orf LG, Savory E (2011) Improved modeling of downburst outflows for wind engineering applications using a cooling source approach. J Wind Eng Ind Aerodyn 99:801–814CrossRef Vermeire BC, Orf LG, Savory E (2011) Improved modeling of downburst outflows for wind engineering applications using a cooling source approach. J Wind Eng Ind Aerodyn 99:801–814CrossRef
47.
Zurück zum Zitat Mason MS, Letchford CW, James DL (2005) Pulsed wall jet simulation of a stationary thunderstorm downburst. Part A: physical structure and flow field characterization. J Wind Eng Ind Aerodyn 93:557–580CrossRef Mason MS, Letchford CW, James DL (2005) Pulsed wall jet simulation of a stationary thunderstorm downburst. Part A: physical structure and flow field characterization. J Wind Eng Ind Aerodyn 93:557–580CrossRef
48.
Zurück zum Zitat Sengupta A, Sarkar PP (2008) Experimental measurement and numerical simulation of an impinging jet with application to thunderstorm microburst winds. J Wind Eng Ind Aerodyn 96:345–365CrossRef Sengupta A, Sarkar PP (2008) Experimental measurement and numerical simulation of an impinging jet with application to thunderstorm microburst winds. J Wind Eng Ind Aerodyn 96:345–365CrossRef
49.
Zurück zum Zitat McConville AC, Sterling M, Baker CJ (2009) The physical simulation of thunderstorm downbursts using an impinging jet. Wind Struct 12:133–149CrossRef McConville AC, Sterling M, Baker CJ (2009) The physical simulation of thunderstorm downbursts using an impinging jet. Wind Struct 12:133–149CrossRef
50.
Zurück zum Zitat Selvam RP, Holmes JD (1992) Numerical simulation of thunderstorm downdrafts. J Wind Eng Ind Aerodyn 41–44:2817–2825CrossRef Selvam RP, Holmes JD (1992) Numerical simulation of thunderstorm downdrafts. J Wind Eng Ind Aerodyn 41–44:2817–2825CrossRef
51.
Zurück zum Zitat Kim J, Hangan H (2007) Numerical simulations of impinging jets with application to downbursts. J Wind Eng Ind Aerodyn 95:279–298CrossRef Kim J, Hangan H (2007) Numerical simulations of impinging jets with application to downbursts. J Wind Eng Ind Aerodyn 95:279–298CrossRef
52.
Zurück zum Zitat Zhang Y, Hu H, Sarkar PP (2013) Modeling of microburst outflows using impinging jet and cooling source approaches and their comparison. Eng Struct 56:779–793CrossRef Zhang Y, Hu H, Sarkar PP (2013) Modeling of microburst outflows using impinging jet and cooling source approaches and their comparison. Eng Struct 56:779–793CrossRef
53.
Zurück zum Zitat Aboshosha H, Bitsuamlak G, El Damatty A (2015) Turbulence characterization of downbursts using LES. J Wind Eng Ind Aerodyn 136:44–61CrossRef Aboshosha H, Bitsuamlak G, El Damatty A (2015) Turbulence characterization of downbursts using LES. J Wind Eng Ind Aerodyn 136:44–61CrossRef
54.
Zurück zum Zitat Shinozuka M, Jan CM (1972) Digital simulation of random processes and its applications. J Sound Vib 25:111–128ADSCrossRef Shinozuka M, Jan CM (1972) Digital simulation of random processes and its applications. J Sound Vib 25:111–128ADSCrossRef
55.
Zurück zum Zitat Li Y, Kareem A (1995) Stochastic decomposition and application to probabilistic mechanics. J Eng Mech ASCE 121:162–174CrossRef Li Y, Kareem A (1995) Stochastic decomposition and application to probabilistic mechanics. J Eng Mech ASCE 121:162–174CrossRef
56.
Zurück zum Zitat Yang JN (1973) On the normality and accuracy of simulated random processes. J Sound Vib 26:417–428ADSCrossRefMATH Yang JN (1973) On the normality and accuracy of simulated random processes. J Sound Vib 26:417–428ADSCrossRefMATH
57.
Zurück zum Zitat Di Paola M (1998) Digital simulation of wind field velocity. J Wind Eng Ind Aerodyn 74–76:91–109ADSCrossRef Di Paola M (1998) Digital simulation of wind field velocity. J Wind Eng Ind Aerodyn 74–76:91–109ADSCrossRef
58.
Zurück zum Zitat Solari G, Carassale L, Tubino F (2007) Proper orthogonal decomposition in wind engineering. Part 1: a state-of-the-art and some prospects. Wind Struct 10:153–176CrossRef Solari G, Carassale L, Tubino F (2007) Proper orthogonal decomposition in wind engineering. Part 1: a state-of-the-art and some prospects. Wind Struct 10:153–176CrossRef
59.
Zurück zum Zitat Carassale L, Solari G, Tubino F (2007) Proper orthogonal decomposition in wind engineering. Part 2: theoretical aspects and some applications. Wind Struct 10:177–208CrossRef Carassale L, Solari G, Tubino F (2007) Proper orthogonal decomposition in wind engineering. Part 2: theoretical aspects and some applications. Wind Struct 10:177–208CrossRef
60.
Zurück zum Zitat Solari G, Piccardo G (2001) Probabilistic 3-D turbulence modeling for gust buffeting of structures. Probab Eng Mech 16:73–86CrossRef Solari G, Piccardo G (2001) Probabilistic 3-D turbulence modeling for gust buffeting of structures. Probab Eng Mech 16:73–86CrossRef
61.
Zurück zum Zitat Solari G, Tubino F (2002) A turbulence model based on principal components. Probab Eng Mech 17:327–335CrossRef Solari G, Tubino F (2002) A turbulence model based on principal components. Probab Eng Mech 17:327–335CrossRef
62.
Zurück zum Zitat CNR-DT 207/2008 (2009) Instructions for assessing wind actions and effects on structures. Rome, Italy CNR-DT 207/2008 (2009) Instructions for assessing wind actions and effects on structures. Rome, Italy
63.
Zurück zum Zitat Piccardo G, Solari G (1998) Closed form prediction of 3-D wind-excited response of slender structures. J Wind Eng Ind Aerodyn 74–76:697–708CrossRef Piccardo G, Solari G (1998) Closed form prediction of 3-D wind-excited response of slender structures. J Wind Eng Ind Aerodyn 74–76:697–708CrossRef
64.
Zurück zum Zitat Solari G (1997) Wind-excited response of structures with uncertain parameters. Probab Eng Mech 12:75–87CrossRef Solari G (1997) Wind-excited response of structures with uncertain parameters. Probab Eng Mech 12:75–87CrossRef
65.
Zurück zum Zitat Pagnini LC, Solari G (2002) Gust buffeting and turbulence uncertainties. J Wind Eng Ind Aerodyn 90:441–459CrossRef Pagnini LC, Solari G (2002) Gust buffeting and turbulence uncertainties. J Wind Eng Ind Aerodyn 90:441–459CrossRef
66.
Zurück zum Zitat Davenport AG (1964) Note on the distribution of the largest value of a random function with application to gust loading. In: Proc Inst Civ Eng, vol 24. London, UK, pp 187–196 Davenport AG (1964) Note on the distribution of the largest value of a random function with application to gust loading. In: Proc Inst Civ Eng, vol 24. London, UK, pp 187–196
67.
Zurück zum Zitat Solari G (1981) DAWROS: a computer program for calculating the dynamic along-wind response of structures. Istituto di Scienza delle Costruzioni, Università di Genova, IV, Genoa Solari G (1981) DAWROS: a computer program for calculating the dynamic along-wind response of structures. Istituto di Scienza delle Costruzioni, Università di Genova, IV, Genoa
68.
Zurück zum Zitat Piccardo G, Solari G (2002) 3-D gust effect factor for slender vertical structures. Probab Eng Mech 17:143–155CrossRef Piccardo G, Solari G (2002) 3-D gust effect factor for slender vertical structures. Probab Eng Mech 17:143–155CrossRef
69.
Zurück zum Zitat Repetto MP, Solari G (2004) Equivalent static wind actions on vertical structures. J Wind Eng Ind Aerodyn 92:335–357CrossRef Repetto MP, Solari G (2004) Equivalent static wind actions on vertical structures. J Wind Eng Ind Aerodyn 92:335–357CrossRef
70.
Zurück zum Zitat Solari G (1993) Gust buffeting. I: peak wind velocity and equivalent pressure. J Struct Eng ASCE 119(2):365–382CrossRef Solari G (1993) Gust buffeting. I: peak wind velocity and equivalent pressure. J Struct Eng ASCE 119(2):365–382CrossRef
71.
Zurück zum Zitat Solari G (1993) Gust buffeting. II: dynamic alongwind response. J Struct Eng, ASCE 119(2):383–398CrossRef Solari G (1993) Gust buffeting. II: dynamic alongwind response. J Struct Eng, ASCE 119(2):383–398CrossRef
72.
Zurück zum Zitat Huang G, Chen X, Li M, Peng L (2013) Extreme value of wind-excited response considering influence of bandwidth. J Mod Transp 21:125–134CrossRef Huang G, Chen X, Li M, Peng L (2013) Extreme value of wind-excited response considering influence of bandwidth. J Mod Transp 21:125–134CrossRef
73.
Zurück zum Zitat Holmes JD (1996) Along-wind response of lattice towers—III. Effective load distributions. Eng Struct 18:489–494CrossRef Holmes JD (1996) Along-wind response of lattice towers—III. Effective load distributions. Eng Struct 18:489–494CrossRef
Metadaten
Titel
Hybrid simulation of thunderstorm outflows and wind-excited response of structures
verfasst von
Giovanni Solari
Davide Rainisio
Patrizia De Gaetano
Publikationsdatum
03.07.2017
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 13/2017
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-017-0718-x

Weitere Artikel der Ausgabe 13/2017

Meccanica 13/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.