Skip to main content
Erschienen in: Measurement Techniques 3/2015

01.06.2015 | FUNDAMENTAL PROBLEMS IN METROLOGY

Entangled States for Improving Noise Immunity in Ultimate Measurements

verfasst von: L. N. Zherikhina, G. N. Izmailov, A. M. Tskhovrebov

Erschienen in: Measurement Techniques | Ausgabe 3/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We show that in some cases, in measurements at the level when quantum limits on accuracy begin to have an appreciable effect, we can use quantum entanglement of states in the studied system for extensive active suppression of background noise. We consider examples in which entanglement provides an “extra degree of freedom”, making it possible to select the desired events while rejecting the noise.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat X.-S. Ma et al., “Quantum teleportation over 143 kilometers using active feed-forward,” Nature, 489, 269–273 (2012).ADSCrossRef X.-S. Ma et al., “Quantum teleportation over 143 kilometers using active feed-forward,” Nature, 489, 269–273 (2012).ADSCrossRef
2.
Zurück zum Zitat S. J. Freedman and J. F. Clauser, “Experimental test of local hidden-variable theories,” Phys. Rev. Lett., 28, 938 (1972), DOI:http://dx.doi.org/10.1103/PhysRevLett.28.938.ADSCrossRef S. J. Freedman and J. F. Clauser, “Experimental test of local hidden-variable theories,” Phys. Rev. Lett., 28, 938 (1972), DOI:http://​dx.​doi.​org/​10.​1103/​PhysRevLett.​28.​938.​ADSCrossRef
3.
Zurück zum Zitat L. N. Zherikhina et al., “Measurement of nonlocality of a magnetic disturbance in a superconducting slit line,” Metrologiya, No. 7, 18–28 (2013); Measur. Techn., 56, No. 9, 981–987 (2013). L. N. Zherikhina et al., “Measurement of nonlocality of a magnetic disturbance in a superconducting slit line,” Metrologiya, No. 7, 18–28 (2013); Measur. Techn., 56, No. 9, 981–987 (2013).
4.
Zurück zum Zitat L. D. Duffy et al., “High resolution search for dark-matter axions,” Phys. Rev. D, 74, 012006-1-11 (2006), DOI:http://dx.doi.org/10.1103/PhysRevD.74.012006. L. D. Duffy et al., “High resolution search for dark-matter axions,” Phys. Rev. D, 74, 012006-1-11 (2006), DOI:http://​dx.​doi.​org/​10.​1103/​PhysRevD.​74.​012006.​
5.
Zurück zum Zitat G. G. Raffelt and L. Rosenberg, “Axions and similar particles,” Phys. Rev. D, 86, 010001 (2012), DOI:http://dx.doi.org/10.1103/PhysRevD.86.010001. G. G. Raffelt and L. Rosenberg, “Axions and similar particles,” Phys. Rev. D, 86, 010001 (2012), DOI:http://​dx.​doi.​org/​10.​1103/​PhysRevD.​86.​010001.​
6.
Zurück zum Zitat J. Jaeckel, J. Redondo, and A. Ringwald, “Hidden laser communications through matter. An application of meV-scale hidden photons,” Europhys. Lett., 87, 10010 (2009).ADSCrossRef J. Jaeckel, J. Redondo, and A. Ringwald, “Hidden laser communications through matter. An application of meV-scale hidden photons,” Europhys. Lett., 87, 10010 (2009).ADSCrossRef
7.
Zurück zum Zitat A. Ringwald, “Exploring the role of axions and other WISPs in the dark universe,” Phys. Dark Univ., 1, 116–135 (2012).CrossRef A. Ringwald, “Exploring the role of axions and other WISPs in the dark universe,” Phys. Dark Univ., 1, 116–135 (2012).CrossRef
8.
Zurück zum Zitat V. A. Ryabov, V. A. Tsarev, and A. M. Tskhovrebov, “Search for Dark Matter particles,” Usp. Fiz. Nauk, 178, No. 11, 1129–1164 (2008).CrossRef V. A. Ryabov, V. A. Tsarev, and A. M. Tskhovrebov, “Search for Dark Matter particles,” Usp. Fiz. Nauk, 178, No. 11, 1129–1164 (2008).CrossRef
9.
Zurück zum Zitat A. Friedland, M. Giannotti, and M. Wise, “Constraining the axion-photon coupling with massive stars,” Phys. Rev. Lett., 110, 061101 (2013), DOI:http://dx.doi.org/10.1103/PhysRev.110.061101. A. Friedland, M. Giannotti, and M. Wise, “Constraining the axion-photon coupling with massive stars,” Phys. Rev. Lett., 110, 061101 (2013), DOI:http://​dx.​doi.​org/​10.​1103/​PhysRev.​110.​061101.​
10.
Zurück zum Zitat G. G. Raffelt, Stars as Laboratories for Fundamental Physics: The Astrophysics of Neutrinos, Axions, and Other Weakly Interacting Particles, University of Chicago Press, Chicago (1996). G. G. Raffelt, Stars as Laboratories for Fundamental Physics: The Astrophysics of Neutrinos, Axions, and Other Weakly Interacting Particles, University of Chicago Press, Chicago (1996).
11.
Zurück zum Zitat J. Clarke and A. I. Braginski, The SQUID Handbook. Volumes 1 and 2, Wiley-VCH Verlag, Weinheim, ISBN: 3-527-40229-2 2004–200. J. Clarke and A. I. Braginski, The SQUID Handbook. Volumes 1 and 2, Wiley-VCH Verlag, Weinheim, ISBN: 3-527-40229-2 2004–200.
12.
Zurück zum Zitat C. Beck, “Possible resonance effect of axionic dark matter in Josephson junctions,” Phys. Rev. Lett., 111, 231801 (2013), DOI: http://dx.doi.org/10.1103/PhysRevLett.111.231801. C. Beck, “Possible resonance effect of axionic dark matter in Josephson junctions,” Phys. Rev. Lett., 111, 231801 (2013), DOI: http://​dx.​doi.​org/​10.​1103/​PhysRevLett.​111.​231801.​
13.
Zurück zum Zitat S. Andriamonje et al. (CAST Collaboration), “Search for 14.4 keV solar action emitted in M1-transition 57Fe nuclei with CAST,” J. Cosmol. Astropart. Phys., 12, 002 (2009), DOI:10.1088/1475-7516/2009/12/002. S. Andriamonje et al. (CAST Collaboration), “Search for 14.4 keV solar action emitted in M1-transition 57Fe nuclei with CAST,” J. Cosmol. Astropart. Phys., 12, 002 (2009), DOI:10.1088/1475-7516/2009/12/002.
14.
Zurück zum Zitat G. N. Izmailov, “Transverse cross section of gravitational antennas, the stiffness of the vacuum, and the weakness of gravitational waves,” Izmer. Tekhn., No. 5, 5–9 (2011); Measur. Techn., 54, No. 5, 479–485 (2011). G. N. Izmailov, “Transverse cross section of gravitational antennas, the stiffness of the vacuum, and the weakness of gravitational waves,” Izmer. Tekhn., No. 5, 5–9 (2011); Measur. Techn., 54, No. 5, 479–485 (2011).
15.
Zurück zum Zitat A. Aspect, P. Grangier, and G. Roger, “Experimental tests of realistic local theories via Bell’s theorem,” Phys. Rev. Lett., 47, 460 (1981), DOI:http://dx.doi.org/10.1103/Phys.RevLett. V.47.460. A. Aspect, P. Grangier, and G. Roger, “Experimental tests of realistic local theories via Bell’s theorem,” Phys. Rev. Lett., 47, 460 (1981), DOI:http://​dx.​doi.​org/​10.​1103/​Phys.​RevLett.​ V.47.460.
16.
Zurück zum Zitat A. Afanasev et al., “LIPSS Collaboration. Experimental limit on optical-photon coupling to light neutral scalar bosons,” Phys. Rev. Lett., 101, 120401 (2008), DOI:http:/dx/doi.org./10.1103/PhysRevLett.101.120401. A. Afanasev et al., “LIPSS Collaboration. Experimental limit on optical-photon coupling to light neutral scalar bosons,” Phys. Rev. Lett., 101, 120401 (2008), DOI:http:/dx/doi.org./10.1103/PhysRevLett.101.120401.
17.
Zurück zum Zitat M. Ahlers et al., “Laser experiments explore the hidden sector,” Phys. Rev. D, 77, 095001 (2008), DOI:http://dx.doi.org/10.1103/PhysRevD.77.095001. M. Ahlers et al., “Laser experiments explore the hidden sector,” Phys. Rev. D, 77, 095001 (2008), DOI:http://​dx.​doi.​org/​10.​1103/​PhysRevD.​77.​095001.​
18.
Zurück zum Zitat J. Jaeckel and A. Ringwald, “Search for hidden sector photons with the ADMX detector,” Phys. Rev. Lett., 105, 171801 (2010), DOI:http://dx.doi.org/10.1103/PhysRevD.77.095001. J. Jaeckel and A. Ringwald, “Search for hidden sector photons with the ADMX detector,” Phys. Rev. Lett., 105, 171801 (2010), DOI:http://​dx.​doi.​org/​10.​1103/​PhysRevD.​77.​095001.​
19.
Zurück zum Zitat J. K. Vogel et al., (IAXO Collaboration). “IAXO: The International Axion Observatory,” ArXiv: 1302.3273v1 [physics.ins-det]. J. K. Vogel et al., (IAXO Collaboration). “IAXO: The International Axion Observatory,” ArXiv: 1302.3273v1 [physics.ins-det].
20.
Zurück zum Zitat G. Mueller et al., “Detailed design of a resonantly enhanced axion-photon regeneration experiment,” Phys. Rev. D, 80, 072004 (2009), DOI: http://dx.doi.org/10.1103/PhysRevD.80.072004. G. Mueller et al., “Detailed design of a resonantly enhanced axion-photon regeneration experiment,” Phys. Rev. D, 80, 072004 (2009), DOI: http://​dx.​doi.​org/​10.​1103/​PhysRevD.​80.​072004.​
21.
Zurück zum Zitat V. S. Gorelik and G. N. Izmailov, “Stimulated conversion of photons into pseudoscalar bosons,” Krat. Soobsh. Fiz., 38, No. 6, 39–49 (2011). V. S. Gorelik and G. N. Izmailov, “Stimulated conversion of photons into pseudoscalar bosons,” Krat. Soobsh. Fiz., 38, No. 6, 39–49 (2011).
Metadaten
Titel
Entangled States for Improving Noise Immunity in Ultimate Measurements
verfasst von
L. N. Zherikhina
G. N. Izmailov
A. M. Tskhovrebov
Publikationsdatum
01.06.2015
Verlag
Springer US
Erschienen in
Measurement Techniques / Ausgabe 3/2015
Print ISSN: 0543-1972
Elektronische ISSN: 1573-8906
DOI
https://doi.org/10.1007/s11018-015-0691-5

Weitere Artikel der Ausgabe 3/2015

Measurement Techniques 3/2015 Zur Ausgabe