Skip to main content
Erschienen in: Mechanics of Composite Materials 5/2016

07.11.2016

Experimental Study on the Mechanical, Creep, and Viscoelastic Behavior of TiO2/Glass/Epoxy Hybrid Nanocomposites

verfasst von: H. R. Salehi, M. Salehi

Erschienen in: Mechanics of Composite Materials | Ausgabe 5/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The mechanical and viscoelastic properties of hybrid glass/epoxy nanocomposites whose matrix was doped with 0.25, 0.5, and 1 vol.% of TiO2 nanoparticles were investigated in tension and bending. The nanoparticles were found to increase the strength of the composites by 20-30% and their stiffness by 10-20%. In addition, their creep resistance also grew. A SEM analysis of microstructure of the composites revealed that these improvements were caused by an increased adhesion between fibers and the matrix and enhanced properties of the matrix itself.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat B. Wetzela, F. Hauperta, and M. Q. Zhang, “Epoxy nanocomposites with high mechanical and tribological performance,” Compos. Sci. Technol., 63, 2055-2067 (2003).CrossRef B. Wetzela, F. Hauperta, and M. Q. Zhang, “Epoxy nanocomposites with high mechanical and tribological performance,” Compos. Sci. Technol., 63, 2055-2067 (2003).CrossRef
2.
Zurück zum Zitat R. Walter, K. Friedrich, V. Privalko, and A. Savadori, “On modulus and fracture toughness of rigid particulate filled high density polyethylene,” J. Adhes., 64, 87-109 (1997).CrossRef R. Walter, K. Friedrich, V. Privalko, and A. Savadori, “On modulus and fracture toughness of rigid particulate filled high density polyethylene,” J. Adhes., 64, 87-109 (1997).CrossRef
3.
Zurück zum Zitat L. Nicolais, G. Guerra, C. Migliaresi, L. Nicodemo, and A. T. Di-Benedetto “Viscoelastic behavior of glass-reinforced epoxy resin,” Polym. Compos., 2, No. 3, 116-120 (1981).CrossRef L. Nicolais, G. Guerra, C. Migliaresi, L. Nicodemo, and A. T. Di-Benedetto “Viscoelastic behavior of glass-reinforced epoxy resin,” Polym. Compos., 2, No. 3, 116-120 (1981).CrossRef
4.
Zurück zum Zitat W. N. Nkeuwa, B. Riedl, and V. Landry, “UV-cured clay/based nanocomposite topcoats for wood furniture. Part II: Dynamic viscoelastic behavior and effect of relative humidity on the mechanical properties,” Prog. Org. Coat., 77, No. 1, 12-23 (2014).CrossRef W. N. Nkeuwa, B. Riedl, and V. Landry, “UV-cured clay/based nanocomposite topcoats for wood furniture. Part II: Dynamic viscoelastic behavior and effect of relative humidity on the mechanical properties,” Prog. Org. Coat., 77, No. 1, 12-23 (2014).CrossRef
5.
Zurück zum Zitat B. Qi, Z. Yuan, S. Lu, K. Liu, S. Li, L. Yang, and J. Yu, “Mechanical and thermal properties of epoxy composites containing graphene oxide and liquid crystalline epoxy,” Fibers Polym., 15, No. 2, 326-333 (2014).CrossRef B. Qi, Z. Yuan, S. Lu, K. Liu, S. Li, L. Yang, and J. Yu, “Mechanical and thermal properties of epoxy composites containing graphene oxide and liquid crystalline epoxy,” Fibers Polym., 15, No. 2, 326-333 (2014).CrossRef
6.
Zurück zum Zitat C. E. S. Ueng, Creep modeling for composite structures, Contemporary Research in Engineering Science, Berlin, springer verlag, 563-575 (1995). C. E. S. Ueng, Creep modeling for composite structures, Contemporary Research in Engineering Science, Berlin, springer verlag, 563-575 (1995).
7.
Zurück zum Zitat L. Y. Lin, J. H. Lee, C. E. Hong, G. H. Yoo, and S. G. Advani, “Preparation and characterization of layered silicate/glass fiber/epoxy hybrid nanocomposites via vacuum-assisted resin transfer molding (VARTM),” Compos. Sci. Technol., 66, No. 13, 2116-2125 (2006).CrossRef L. Y. Lin, J. H. Lee, C. E. Hong, G. H. Yoo, and S. G. Advani, “Preparation and characterization of layered silicate/glass fiber/epoxy hybrid nanocomposites via vacuum-assisted resin transfer molding (VARTM),” Compos. Sci. Technol., 66, No. 13, 2116-2125 (2006).CrossRef
8.
Zurück zum Zitat C. M. Manjunatha, R. Bojja, N. Jagannathan, A. J. Kinloch, and A. C. Taylor, “Enhanced fatigue behavior of a glass fiber reinforced hybrid particles-modified epoxy nanocomposite under WISPERX spectrum load sequence,” Int. J. Fatigue, 54, 25-31 (2013).CrossRef C. M. Manjunatha, R. Bojja, N. Jagannathan, A. J. Kinloch, and A. C. Taylor, “Enhanced fatigue behavior of a glass fiber reinforced hybrid particles-modified epoxy nanocomposite under WISPERX spectrum load sequence,” Int. J. Fatigue, 54, 25-31 (2013).CrossRef
9.
Zurück zum Zitat N. H. MohdZulfli, A. AbuBakar, and W. S. Chow, “Mechanical and thermal properties improvement of nano calcium carbonate-filled epoxy/glass fiber composite laminates,” High Perform. Polym., 26, 223-229 (2014).CrossRef N. H. MohdZulfli, A. AbuBakar, and W. S. Chow, “Mechanical and thermal properties improvement of nano calcium carbonate-filled epoxy/glass fiber composite laminates,” High Perform. Polym., 26, 223-229 (2014).CrossRef
10.
Zurück zum Zitat S. Markkul, H. C. Malecki, and M. Zupan, “Uniaxial tension and compression characterization of hybrid CNS–glass fiber–epoxy composites,” Compos. Struct., 95, 337-345 (2013).CrossRef S. Markkul, H. C. Malecki, and M. Zupan, “Uniaxial tension and compression characterization of hybrid CNS–glass fiber–epoxy composites,” Compos. Struct., 95, 337-345 (2013).CrossRef
11.
Zurück zum Zitat P. Karapappas, P. Tsotra, and K. Scobbie, “Effect of nanofillers on the properties of a state of the art epoxy gelcoat,” EXPRESS Polym. Lett., 5, No. 3, 218-227 (2011).CrossRef P. Karapappas, P. Tsotra, and K. Scobbie, “Effect of nanofillers on the properties of a state of the art epoxy gelcoat,” EXPRESS Polym. Lett., 5, No. 3, 218-227 (2011).CrossRef
12.
Zurück zum Zitat M. Atarian, H. R. Salehi, M. Atarian, and A. Shoukohfar, “Effect of oxide and carbide nanoparticles on tribological properties of phenolic-based nanocomposites,” Iran. Polym. J., 21, No. 5, 297-305 (2012).CrossRef M. Atarian, H. R. Salehi, M. Atarian, and A. Shoukohfar, “Effect of oxide and carbide nanoparticles on tribological properties of phenolic-based nanocomposites,” Iran. Polym. J., 21, No. 5, 297-305 (2012).CrossRef
13.
Zurück zum Zitat A. Plaseied and A. Fatemi, “Tensile creep and deformation modeling of vinyl ester polymer and its nanocomposite,” J. Reinf. Plast. Compos., 28, No. 14, 1775-1788 (2009).CrossRef A. Plaseied and A. Fatemi, “Tensile creep and deformation modeling of vinyl ester polymer and its nanocomposite,” J. Reinf. Plast. Compos., 28, No. 14, 1775-1788 (2009).CrossRef
14.
Zurück zum Zitat F. Cortes and M. J. Elejabarrieta, “Modelling viscoelastic materials whose storage modulus is constant with frequency,” Int. J. Solids Struct., 43, 7721-7726 (2006).CrossRef F. Cortes and M. J. Elejabarrieta, “Modelling viscoelastic materials whose storage modulus is constant with frequency,” Int. J. Solids Struct., 43, 7721-7726 (2006).CrossRef
15.
Zurück zum Zitat R. S. Lakes, Viscoelastic Solids, CRC Press, Boca Raton, Florida, (1998). R. S. Lakes, Viscoelastic Solids, CRC Press, Boca Raton, Florida, (1998).
16.
Zurück zum Zitat H. R. Salehi and M. Salehi, “Synthesis and mechanical properties investigation of nano TiO2/glass/epoxy hybrid nanocomposite,” Iran. J. Polym. Sci. Technol., 28, No. 4, 263-276 (2015). H. R. Salehi and M. Salehi, “Synthesis and mechanical properties investigation of nano TiO2/glass/epoxy hybrid nanocomposite,” Iran. J. Polym. Sci. Technol., 28, No. 4, 263-276 (2015).
17.
Zurück zum Zitat Yu. J. Huan, W. J. Wei, and Yu. Jin, “Experimental study on FRP-reinforced PP ECC beams under reverse cyclic loading,” Mech. Compos. Mater., 50, No. 4, 447-456 (2014).CrossRef Yu. J. Huan, W. J. Wei, and Yu. Jin, “Experimental study on FRP-reinforced PP ECC beams under reverse cyclic loading,” Mech. Compos. Mater., 50, No. 4, 447-456 (2014).CrossRef
18.
Zurück zum Zitat R. D. Maksimov and E. Plume, “Long-term creep of hybrid aramid/glass-fiber-reinforced plastics,” Mech. Compos. Mater., 37, No. 4, 271-280 (2001).CrossRef R. D. Maksimov and E. Plume, “Long-term creep of hybrid aramid/glass-fiber-reinforced plastics,” Mech. Compos. Mater., 37, No. 4, 271-280 (2001).CrossRef
19.
Zurück zum Zitat I. Viktorova, B. Dandurand, S. Alekseeva, and M. Fronya, “Modeling the creep of polymer-based nanocomposites by using an alternative nonlinear optimization approach,” Mech. Compos. Mater., 48, No. 6, 693-704 (2013).CrossRef I. Viktorova, B. Dandurand, S. Alekseeva, and M. Fronya, “Modeling the creep of polymer-based nanocomposites by using an alternative nonlinear optimization approach,” Mech. Compos. Mater., 48, No. 6, 693-704 (2013).CrossRef
20.
Zurück zum Zitat Y. F. Zhang, S. L. Bai, X. K. Li, and Z. Zhang, “Viscoelastic properties of nanosilica-filled epoxy composites investigated by dynamic nanoindentation,” J. Polym. Sci. Part B: Polym. Phys., 47, 1030-1038 (2009).CrossRef Y. F. Zhang, S. L. Bai, X. K. Li, and Z. Zhang, “Viscoelastic properties of nanosilica-filled epoxy composites investigated by dynamic nanoindentation,” J. Polym. Sci. Part B: Polym. Phys., 47, 1030-1038 (2009).CrossRef
Metadaten
Titel
Experimental Study on the Mechanical, Creep, and Viscoelastic Behavior of TiO2/Glass/Epoxy Hybrid Nanocomposites
verfasst von
H. R. Salehi
M. Salehi
Publikationsdatum
07.11.2016
Verlag
Springer US
Erschienen in
Mechanics of Composite Materials / Ausgabe 5/2016
Print ISSN: 0191-5665
Elektronische ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-016-9612-1

Weitere Artikel der Ausgabe 5/2016

Mechanics of Composite Materials 5/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.