Skip to main content
Erschienen in: Journal of Nanoparticle Research 2/2017

01.02.2017 | Research Paper

Modeling drug release from functionalized magnetic nanoparticles actuated by non-heating low frequency magnetic field

verfasst von: Y. Golovin, D. Golovin, N. Klyachko, A. Majouga, A. Kabanov

Erschienen in: Journal of Nanoparticle Research | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Various plausible acceleration mechanisms of drug release from nanocarriers composed of a single-domain magnetic nanoparticle core with attached long macromolecule chains activated by low frequency non-heating alternating magnetic field (AMF) are discussed. The most important system characteristics affecting the AMF exposure impact are determined. Impact of several reasonable mechanisms is estimated analytically or obtained using numerical modeling. Some conditions providing manifold release acceleration as a result from exposure in AMF are found.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abakumov MA, Nukolova NV, Sokolsky-Papkov M, Shein SA, Sandalova TO, Vishwasrao HM, Grinenko NF, Gubsky IL, Abakumov AM, Kabanov AV, Chekhonin VP (2015) VEGF-targeted magnetic nanoparticles for MRI visualization of brain tumor. Nanomedicine: Nanotechnology, Biology, and Medicine 11:825–833. doi:10.1016/j.nano.2014.12.011 Abakumov MA, Nukolova NV, Sokolsky-Papkov M, Shein SA, Sandalova TO, Vishwasrao HM, Grinenko NF, Gubsky IL, Abakumov AM, Kabanov AV, Chekhonin VP (2015) VEGF-targeted magnetic nanoparticles for MRI visualization of brain tumor. Nanomedicine: Nanotechnology, Biology, and Medicine 11:825–833. doi:10.​1016/​j.​nano.​2014.​12.​011
Zurück zum Zitat Banchelli M, Nappini S, Montis C, Bonini M, Canton P, Berti D, Baglioni P (2014) Magnetic nanoparticle clusters as actuators of ssDNA release. Phys Chem Chem Phys 16:10023–10031. doi:10.1039/C3CP55470H CrossRef Banchelli M, Nappini S, Montis C, Bonini M, Canton P, Berti D, Baglioni P (2014) Magnetic nanoparticle clusters as actuators of ssDNA release. Phys Chem Chem Phys 16:10023–10031. doi:10.​1039/​C3CP55470H CrossRef
Zurück zum Zitat Cengelli F, Maysinger D, Tschudi-Monnet F, Montet X, Corot C, Petri-Fink A, Hofmann H, Juillerat-Jeanneret L (2006) Interaction of functionalized superparamagnetic iron oxide nanoparticles with brain structures. J Pharmacol Exp Ther 318(1):108–116. doi:10.1124/jpet.106.101915 CrossRef Cengelli F, Maysinger D, Tschudi-Monnet F, Montet X, Corot C, Petri-Fink A, Hofmann H, Juillerat-Jeanneret L (2006) Interaction of functionalized superparamagnetic iron oxide nanoparticles with brain structures. J Pharmacol Exp Ther 318(1):108–116. doi:10.​1124/​jpet.​106.​101915 CrossRef
Zurück zum Zitat Contreras MF, Sougrat R, Zaher A, Ravasi T, Kosel J (2015) Non-chemotoxic induction of cancer cell death using magnetic nanowires. Int J Nanomedicine 10:2141. doi:10.2147/IJN.S77081 CrossRef Contreras MF, Sougrat R, Zaher A, Ravasi T, Kosel J (2015) Non-chemotoxic induction of cancer cell death using magnetic nanowires. Int J Nanomedicine 10:2141. doi:10.​2147/​IJN.​S77081 CrossRef
Zurück zum Zitat Dobson J, Cartmell SH, Keramane A, El Haj AJ (2006) Principles and design of a novel magnetic force mechanical conditioning bioreactor for tissue engineering, stem cell conditioning, and dynamic in vitro screening. IEEE Trans Nanobioscience 5:173–177CrossRef Dobson J, Cartmell SH, Keramane A, El Haj AJ (2006) Principles and design of a novel magnetic force mechanical conditioning bioreactor for tissue engineering, stem cell conditioning, and dynamic in vitro screening. IEEE Trans Nanobioscience 5:173–177CrossRef
Zurück zum Zitat Gleich B (2014) Principles and applications of magnetic particle imaging. Springer Vieweg Gleich B (2014) Principles and applications of magnetic particle imaging. Springer Vieweg
Zurück zum Zitat Golovin YI, Gribanovskii SL, Golovin DY, Klyachko N, Kabanov A (2014) Single-domain magnetic nanoparticles in an alternating magnetic field as mediators of local deformation of the surrounding macromolecules. Phys Solid State 56:1342–1351. doi:10.1134/S1063783414070142 CrossRef Golovin YI, Gribanovskii SL, Golovin DY, Klyachko N, Kabanov A (2014) Single-domain magnetic nanoparticles in an alternating magnetic field as mediators of local deformation of the surrounding macromolecules. Phys Solid State 56:1342–1351. doi:10.​1134/​S106378341407014​2 CrossRef
Zurück zum Zitat Golovin YI, Gribanovsky SL, Golovin DY, Klyachko NL, Majouga AG, Master АM, Sokolsky M, Kabanov AV (2015) Towards nanomedicines of the future: remote magneto-mechanical actuation of nanomedicines by alternating magnetic fields. J Control Release 219:43–60. doi:10.1016/j.jconrel.2015.09.038 CrossRef Golovin YI, Gribanovsky SL, Golovin DY, Klyachko NL, Majouga AG, Master АM, Sokolsky M, Kabanov AV (2015) Towards nanomedicines of the future: remote magneto-mechanical actuation of nanomedicines by alternating magnetic fields. J Control Release 219:43–60. doi:10.​1016/​j.​jconrel.​2015.​09.​038 CrossRef
Zurück zum Zitat Golovin YI, Klyachko NL, Golovin DY, Efremova MV, Samodurov AA, Sokolski-Papkov M, Kabanov AV (2013) A new approach to the control of biochemical reactions in a magnetic nanosuspension using a low-frequency magnetic field. Tech Phys Lett 39:240–243. doi:10.1134/S106378501303005X CrossRef Golovin YI, Klyachko NL, Golovin DY, Efremova MV, Samodurov AA, Sokolski-Papkov M, Kabanov AV (2013) A new approach to the control of biochemical reactions in a magnetic nanosuspension using a low-frequency magnetic field. Tech Phys Lett 39:240–243. doi:10.​1134/​S106378501303005​X CrossRef
Zurück zum Zitat Golovin YI, Klyachko NL, Gribanovskii SL, Golovin DY, Majouga AG (2016) Model of controlled drug release from functionalized magnetic nanoparticles by a nonheating alternating-current magnetic field. Tech Phys Lett 42(3):267–270. doi:10.1134/S1063785016030056 CrossRef Golovin YI, Klyachko NL, Gribanovskii SL, Golovin DY, Majouga AG (2016) Model of controlled drug release from functionalized magnetic nanoparticles by a nonheating alternating-current magnetic field. Tech Phys Lett 42(3):267–270. doi:10.​1134/​S106378501603005​6 CrossRef
Zurück zum Zitat Handbook of biological effects of electromagnetic fields. Bioengineering and biophysical aspects of electromagnetic fields. Third edition (2007) Barnes FS and Greenebaum B (eds). Boca Raton. CRC Press Handbook of biological effects of electromagnetic fields. Bioengineering and biophysical aspects of electromagnetic fields. Third edition (2007) Barnes FS and Greenebaum B (eds). Boca Raton. CRC Press
Zurück zum Zitat Haney MJ, Suresh P, Zhao Y, Kanmogne GD, Kadiu I, Sokolsky-Papkov M, Klyachko NL, Mosley RL, Kabanov AV, Gendelman HE, Batrakova EV (2012) Blood-borne macrophage-neural cell interactions hitchhike endosome networks for cell-based nanozyme brain delivery. Nanomedicine (Lond) 7(6):815–833. doi:10.2217/nnm.11.156 CrossRef Haney MJ, Suresh P, Zhao Y, Kanmogne GD, Kadiu I, Sokolsky-Papkov M, Klyachko NL, Mosley RL, Kabanov AV, Gendelman HE, Batrakova EV (2012) Blood-borne macrophage-neural cell interactions hitchhike endosome networks for cell-based nanozyme brain delivery. Nanomedicine (Lond) 7(6):815–833. doi:10.​2217/​nnm.​11.​156 CrossRef
Zurück zum Zitat Hanus J, Ullrich M, Dohnal J, Singh M, Stepanek F (2013) Remotely controlled diffusion from magnetic liposome microgels. Langmuir 29:4381–4387. doi:10.1021/la4000318 CrossRef Hanus J, Ullrich M, Dohnal J, Singh M, Stepanek F (2013) Remotely controlled diffusion from magnetic liposome microgels. Langmuir 29:4381–4387. doi:10.​1021/​la4000318 CrossRef
Zurück zum Zitat Hoare T, Santamaria J, Goya GF, Irusta S, Lin D, Lau S, Padera R, Langer R, Kohane DS (2009) A magnetically triggered composite membrane for on-demand drug delivery. Nano Lett 9:3651–3657. doi:10.1021/nl9018935 CrossRef Hoare T, Santamaria J, Goya GF, Irusta S, Lin D, Lau S, Padera R, Langer R, Kohane DS (2009) A magnetically triggered composite membrane for on-demand drug delivery. Nano Lett 9:3651–3657. doi:10.​1021/​nl9018935 CrossRef
Zurück zum Zitat Hoare T, Timko BP, Santamaria J, Goya GF, Irusta S, Lau S, Stefanescu CF, Lin D, Langer R, Kohane DS (2011) Magnetically triggered nanocomposite membranes: a versatile platform for triggered drug release. Nano Lett 11:1395–1400. doi:10.1021/nl200494t CrossRef Hoare T, Timko BP, Santamaria J, Goya GF, Irusta S, Lau S, Stefanescu CF, Lin D, Langer R, Kohane DS (2011) Magnetically triggered nanocomposite membranes: a versatile platform for triggered drug release. Nano Lett 11:1395–1400. doi:10.​1021/​nl200494t CrossRef
Zurück zum Zitat Hu B, Dobson J, El Haj AJ (2014) Control of smooth muscle alpha-actin (SMA) up-regulation in HBMSCs using remote magnetic particle mechano-activation. Nanomedicine 10:45–55. doi:10.1016/j.nano.2013.06.014 Hu B, Dobson J, El Haj AJ (2014) Control of smooth muscle alpha-actin (SMA) up-regulation in HBMSCs using remote magnetic particle mechano-activation. Nanomedicine 10:45–55. doi:10.​1016/​j.​nano.​2013.​06.​014
Zurück zum Zitat Hu B, El Haj AJ, Dobson J (2013) Receptor-targeted, magneto-mechanical stimulation of osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. Int J Mol Sci 14:19276–19293. doi:10.3390/ijms140919276 CrossRef Hu B, El Haj AJ, Dobson J (2013) Receptor-targeted, magneto-mechanical stimulation of osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. Int J Mol Sci 14:19276–19293. doi:10.​3390/​ijms140919276 CrossRef
Zurück zum Zitat Jaiswal MK, De M, Chou SS, Vasavada S, Bleher R, Prasad PV, Bahadur D, Dravid VP VP (2014) Thermoresponsive magnetic hydrogels as theranostic nanoconstructs. ACS Appl Mater Interfaces 6:6237–6247. doi:10.1021/am501067j CrossRef Jaiswal MK, De M, Chou SS, Vasavada S, Bleher R, Prasad PV, Bahadur D, Dravid VP VP (2014) Thermoresponsive magnetic hydrogels as theranostic nanoconstructs. ACS Appl Mater Interfaces 6:6237–6247. doi:10.​1021/​am501067j CrossRef
Zurück zum Zitat Kanczler JM, Sura HS, Magnay J, Green D, Oreffo RO, Dobson JP, El Haj AJ (2010) Controlled differentiation of human bone marrow stromal cells using magnetic nanoparticle technology. Tissue Eng Part A 16:3241–3250. doi:10.1089/ten.TEA.2009.0638 CrossRef Kanczler JM, Sura HS, Magnay J, Green D, Oreffo RO, Dobson JP, El Haj AJ (2010) Controlled differentiation of human bone marrow stromal cells using magnetic nanoparticle technology. Tissue Eng Part A 16:3241–3250. doi:10.​1089/​ten.​TEA.​2009.​0638 CrossRef
Zurück zum Zitat Keblinski P, Cahill DG, Bodapati A, Sullivan CR, Taton TA (2006) Limits of localized heating by electromagnetically excited nanoparticles. J Appl Phys 100:054305. doi:10.1063/1.2335783 CrossRef Keblinski P, Cahill DG, Bodapati A, Sullivan CR, Taton TA (2006) Limits of localized heating by electromagnetically excited nanoparticles. J Appl Phys 100:054305. doi:10.​1063/​1.​2335783 CrossRef
Zurück zum Zitat Kim DH, Karavayev P, Rozhkova EA, Pearson J, Yefremenko V, Bader SD, Novosad V (2011) Mechanoresponsive system based on sub-micron chitosan-functionalized ferromagnetic disks. J Mater Chem 21:8422–8426. doi:10.1039/C1JM10272A CrossRef Kim DH, Karavayev P, Rozhkova EA, Pearson J, Yefremenko V, Bader SD, Novosad V (2011) Mechanoresponsive system based on sub-micron chitosan-functionalized ferromagnetic disks. J Mater Chem 21:8422–8426. doi:10.​1039/​C1JM10272A CrossRef
Zurück zum Zitat Kim DH, Rozhkova EA, Ulasov IV, Bader SD, Rajh T, Lesniak MS, Novosad V (2010) Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction. Nat Mater 9:165–171. doi:10.1038/nmat2591 CrossRef Kim DH, Rozhkova EA, Ulasov IV, Bader SD, Rajh T, Lesniak MS, Novosad V (2010) Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction. Nat Mater 9:165–171. doi:10.​1038/​nmat2591 CrossRef
Zurück zum Zitat Klyachko NL, Sokolsky-Papkov M, Pothayee N, Efremova MV, Gulin DA, Pothayee N, Kuznetsov AA, Majouga AG, Riffle JS, Golovin YI, Kabanov AV (2012) Changing the enzyme reaction rate in magnetic nanosuspensions by a non-heating magnetic field. Angewandte ChemieInt Edition 51(48):12016–12019. doi:10.1002/anie.201205905 CrossRef Klyachko NL, Sokolsky-Papkov M, Pothayee N, Efremova MV, Gulin DA, Pothayee N, Kuznetsov AA, Majouga AG, Riffle JS, Golovin YI, Kabanov AV (2012) Changing the enzyme reaction rate in magnetic nanosuspensions by a non-heating magnetic field. Angewandte ChemieInt Edition 51(48):12016–12019. doi:10.​1002/​anie.​201205905 CrossRef
Zurück zum Zitat Knopp T, Buzug TM (2012) Magnetic particle imaging. Springer-Verlag, An introduction to imaging principles and scanner instrumentationCrossRef Knopp T, Buzug TM (2012) Magnetic particle imaging. Springer-Verlag, An introduction to imaging principles and scanner instrumentationCrossRef
Zurück zum Zitat Kunjachan S, Ehling J, Storm G, Kiessling F, Lammers T (2015) Noninvasive imaging of nanomedicines and nanotheranostics: principles, progress, and prospects. Chem Rev 115(19):10907–10937. doi:10.1021/cr500314d CrossRef Kunjachan S, Ehling J, Storm G, Kiessling F, Lammers T (2015) Noninvasive imaging of nanomedicines and nanotheranostics: principles, progress, and prospects. Chem Rev 115(19):10907–10937. doi:10.​1021/​cr500314d CrossRef
Zurück zum Zitat Landau LD, Lifshitz EM (1987) Theoretical physics. V.6. Fluid mechanics. (2nd ed.). Butterworth-Heinemann. ISBN 978–0–08-033933-7 Landau LD, Lifshitz EM (1987) Theoretical physics. V.6. Fluid mechanics. (2nd ed.). Butterworth-Heinemann. ISBN 978–0–08-033933-7
Zurück zum Zitat Leulmi S, Chauchet X, Morcrette M, Ortiz G, Joisten H, Sabon P, Livache T, Hou Y, Carrière M, Lequiena S, Dieny B (2015) Triggering the apoptosis of targeted human renal cancer cells by the vibration of anisotropic magnetic particles attached to the cell membrane. Nanoscale 7:15904–15914. doi:10.1039/c5nr03518j CrossRef Leulmi S, Chauchet X, Morcrette M, Ortiz G, Joisten H, Sabon P, Livache T, Hou Y, Carrière M, Lequiena S, Dieny B (2015) Triggering the apoptosis of targeted human renal cancer cells by the vibration of anisotropic magnetic particles attached to the cell membrane. Nanoscale 7:15904–15914. doi:10.​1039/​c5nr03518j CrossRef
Zurück zum Zitat Lim EK, Kim T, Paik S, Haam S, Huh YM, Lee K (2015) Nanomaterials for theranostics: recent advances and future challenges. Chem Rev 115(1):327–394. doi:10.1021/cr300213b CrossRef Lim EK, Kim T, Paik S, Haam S, Huh YM, Lee K (2015) Nanomaterials for theranostics: recent advances and future challenges. Chem Rev 115(1):327–394. doi:10.​1021/​cr300213b CrossRef
Zurück zum Zitat Mannix RJ, Kumar S, Cassiola F, Montoya-Zavala M, Feinstein E, Prentiss M, Ingber DE (2008) Nanomagnetic actuation of receptor-mediated signal transduction. Nat Nanotechnol 3:36–40. doi:10.1038/nnano.2007.418 CrossRef Mannix RJ, Kumar S, Cassiola F, Montoya-Zavala M, Feinstein E, Prentiss M, Ingber DE (2008) Nanomagnetic actuation of receptor-mediated signal transduction. Nat Nanotechnol 3:36–40. doi:10.​1038/​nnano.​2007.​418 CrossRef
Zurück zum Zitat Mizuki T, Watanabe N, Nagaoka Y, Fukushima T, Morimoto H, Usami R, Maekawa T (2010) Activity of an enzyme immobilized on superparamagnetic particles in a rotational magnetic field. Biochem Biophys Res Commun 393:779–782. doi:10.1016/j.bbrc.2010.02.081 CrossRef Mizuki T, Watanabe N, Nagaoka Y, Fukushima T, Morimoto H, Usami R, Maekawa T (2010) Activity of an enzyme immobilized on superparamagnetic particles in a rotational magnetic field. Biochem Biophys Res Commun 393:779–782. doi:10.​1016/​j.​bbrc.​2010.​02.​081 CrossRef
Zurück zum Zitat Nappini S, Bombelli FB, Bonini M, Norden B, Baglioni P (2010) Magnetoliposomes for controlled drug release in the presence of low-frequency magnetic field. Soft Matter 6:154–162. doi:10.1039/B915651H CrossRef Nappini S, Bombelli FB, Bonini M, Norden B, Baglioni P (2010) Magnetoliposomes for controlled drug release in the presence of low-frequency magnetic field. Soft Matter 6:154–162. doi:10.​1039/​B915651H CrossRef
Zurück zum Zitat Nappini S, Bonini M, Ridi F, Baglioni P (2011) Structure and permeability of magnetoliposomes loaded with hydrophobic magnetic nanoparticles in the presence of a low frequency magnetic field. Soft Matter 7:4801–4811. doi:10.1039/C0SM01264E CrossRef Nappini S, Bonini M, Ridi F, Baglioni P (2011) Structure and permeability of magnetoliposomes loaded with hydrophobic magnetic nanoparticles in the presence of a low frequency magnetic field. Soft Matter 7:4801–4811. doi:10.​1039/​C0SM01264E CrossRef
Zurück zum Zitat Panagiotopoulos N, Duschka RL, Ahlborg M, Bringout G, Debbeler C, Graeser M, Kaethner C, Lüdtke-Buzug K, Medimagh H, Stelzner J, Buzug TM, Barkhausen J, Vogt FM, Haegele J (2015) Magnetic particle imaging: current developments and future directions. Int J Nanomedicine 10:3097–3114. doi:10.2147/IJN.S70488 CrossRef Panagiotopoulos N, Duschka RL, Ahlborg M, Bringout G, Debbeler C, Graeser M, Kaethner C, Lüdtke-Buzug K, Medimagh H, Stelzner J, Buzug TM, Barkhausen J, Vogt FM, Haegele J (2015) Magnetic particle imaging: current developments and future directions. Int J Nanomedicine 10:3097–3114. doi:10.​2147/​IJN.​S70488 CrossRef
Zurück zum Zitat Perigo EA, Hemery G, Sandre O, Ortega D, Garaio E, Plazaola F, Teran FJ (2015) Fundamentals and advances in magnetic hyperthermia. Applied Physics Reviews 2:041302. doi:10.1063/1.4935688 CrossRef Perigo EA, Hemery G, Sandre O, Ortega D, Garaio E, Plazaola F, Teran FJ (2015) Fundamentals and advances in magnetic hyperthermia. Applied Physics Reviews 2:041302. doi:10.​1063/​1.​4935688 CrossRef
Zurück zum Zitat Semkina AS, Abakumov MA, Abakumov AM, Nukolova NV, Chekhonin VP (2016) Relationship between the size of magnetic nanoparticles and efficiency of MRT imaging of cerebral glioma in rats. Bull Exp Biol Med 161(2):292–295. doi:10.1007/s10517-016-3398-y CrossRef Semkina AS, Abakumov MA, Abakumov AM, Nukolova NV, Chekhonin VP (2016) Relationship between the size of magnetic nanoparticles and efficiency of MRT imaging of cerebral glioma in rats. Bull Exp Biol Med 161(2):292–295. doi:10.​1007/​s10517-016-3398-y CrossRef
Zurück zum Zitat Vitol EA, Novosad V, Rozhkova EA (2012a) Microfabricated magnetic structures for future medicine: from sensors to cell actuators. Nanomedicine (Lond) 7:1611–1624. doi:10.2217/nnm.12.133 CrossRef Vitol EA, Novosad V, Rozhkova EA (2012a) Microfabricated magnetic structures for future medicine: from sensors to cell actuators. Nanomedicine (Lond) 7:1611–1624. doi:10.​2217/​nnm.​12.​133 CrossRef
Zurück zum Zitat Wang B, Bienvenu C, Mendez-Garza J, Madeira PA, Vierling P, Di Giorgio C, Bossis G (2013) Necrosis of HepG2 cancer cells induced by the vibration of magnetic particles. J of Magnetism and Magnetic Materials 344:193–201. doi:10.1016/j.jmmm.2013.05.043 CrossRef Wang B, Bienvenu C, Mendez-Garza J, Madeira PA, Vierling P, Di Giorgio C, Bossis G (2013) Necrosis of HepG2 cancer cells induced by the vibration of magnetic particles. J of Magnetism and Magnetic Materials 344:193–201. doi:10.​1016/​j.​jmmm.​2013.​05.​043 CrossRef
Zurück zum Zitat Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, Chan WCW (2016) Analysis of nanoparticle delivery to tumours. Nature Reviews Materials 1(16014):1–12. doi:10.1038/natrevmats.2016.14 Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, Chan WCW (2016) Analysis of nanoparticle delivery to tumours. Nature Reviews Materials 1(16014):1–12. doi:10.​1038/​natrevmats.​2016.​14
Zurück zum Zitat Zhang E, Kircher MF, Koch XM, Eliasson L, Goldberg SN, Renström E (2014) Dynamic magnetic fields remote-control apoptosis via nanoparticle rotation. ACS Nano 8(4):3192–3201. doi:10.1021/nn406302j CrossRef Zhang E, Kircher MF, Koch XM, Eliasson L, Goldberg SN, Renström E (2014) Dynamic magnetic fields remote-control apoptosis via nanoparticle rotation. ACS Nano 8(4):3192–3201. doi:10.​1021/​nn406302j CrossRef
Metadaten
Titel
Modeling drug release from functionalized magnetic nanoparticles actuated by non-heating low frequency magnetic field
verfasst von
Y. Golovin
D. Golovin
N. Klyachko
A. Majouga
A. Kabanov
Publikationsdatum
01.02.2017
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 2/2017
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-017-3754-5

Weitere Artikel der Ausgabe 2/2017

Journal of Nanoparticle Research 2/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.