Skip to main content
Erschienen in: Journal of Nanoparticle Research 2/2017

01.02.2017 | Research Paper

The dynamics of magnetic nanoparticles exposed to non-heating alternating magnetic field in biochemical applications: theoretical study

verfasst von: Yuri I. Golovin, Sergey L. Gribanovsky, Dmitry Y. Golovin, Alexander O. Zhigachev, Natalia L. Klyachko, Alexander G. Majouga, Marina Sokolsky, Alexander V. Kabanov

Erschienen in: Journal of Nanoparticle Research | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the past decade, magneto-nanomechanical approach to biochemical systems stimulation has been studied intensively. This method involves macromolecule structure local deformation via mechanical actuation of functionalized magnetic nanoparticles (f-MNPs) by non-heating low frequency (LF) alternating magnetic field (AMF). Specificity at cellular or molecular level and spatial locality in nanometer scale are its key advantages as compared to magnetic fluid hyperthermia. However, current experimental studies have weak theoretical basis. Several models of magneto-nanomechanical actuation of macromolecules and cells in non-heating uniform LF AMF are presented in the article. Single core-shell spherical, rod-like, and Janus MNPs, as well as dimers consisting of two f-MNPs with macromolecules immobilized on their surfaces are considered. AMF-induced rotational oscillations of MNPs can affect properties and functioning of macromolecules or cellular membranes attached to them via periodic deformations in nanometer scale. This could be widely used in therapy, in particular for targeted drug delivery, controlled drug release, and cancer cell killing. An aggregate composed of MNPs can affect associated macromolecules by force up to several hundreds of piconewton in the case of MNPs of tens of nanometers in diameter and LF AMF below 1 T. AMF parameters and MNP design requirements for effective in vitro and in vivo magneto-nanomechanical treatment are presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ansari C, Tikhomirov GA, Hong SH, Falconer RA, Loadman PM, Gill JH, Castaneda R, Hazard FK, Tong L, Lenkov OD, Felsher DW, Rao J, Daldrup-Link HE (2014) Development of novel tumor-targeted theranostic nanoparticles activated by membrane-type matrix metalloproteinases for combined cancer magnetic resonance imaging and therapy. Small 10:566–575. doi:10.1002/smll.201301456 CrossRef Ansari C, Tikhomirov GA, Hong SH, Falconer RA, Loadman PM, Gill JH, Castaneda R, Hazard FK, Tong L, Lenkov OD, Felsher DW, Rao J, Daldrup-Link HE (2014) Development of novel tumor-targeted theranostic nanoparticles activated by membrane-type matrix metalloproteinases for combined cancer magnetic resonance imaging and therapy. Small 10:566–575. doi:10.​1002/​smll.​201301456 CrossRef
Zurück zum Zitat Asin L, Ibarra MR, Tres A, Goya GF (2012) Controlled cell death by magnetic hyperthermia: effects of exposure time, field amplitude, and nanoparticle concentration. Pharm Res 29:1319–1327. doi:10.1007/s11095-012-0710-z CrossRef Asin L, Ibarra MR, Tres A, Goya GF (2012) Controlled cell death by magnetic hyperthermia: effects of exposure time, field amplitude, and nanoparticle concentration. Pharm Res 29:1319–1327. doi:10.​1007/​s11095-012-0710-z CrossRef
Zurück zum Zitat Betzer O, Ankri R, Motiei M, Popovtzer R (2015) Theranostic approach for cancer treatment: multifunctional gold nanorods for optical imaging and photothermal therapy. J Nanomater. doi:10.1155/2015/646713 Betzer O, Ankri R, Motiei M, Popovtzer R (2015) Theranostic approach for cancer treatment: multifunctional gold nanorods for optical imaging and photothermal therapy. J Nanomater. doi:10.​1155/​2015/​646713
Zurück zum Zitat Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33:941–951. doi:10.1038/nbt.3330 CrossRef Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33:941–951. doi:10.​1038/​nbt.​3330 CrossRef
Zurück zum Zitat Buzug TM, Borgert J (2012) Magnetic particle imaging. A novel SPIO nanoparticle imaging technique. Springer-Verlag Buzug TM, Borgert J (2012) Magnetic particle imaging. A novel SPIO nanoparticle imaging technique. Springer-Verlag
Zurück zum Zitat Carrey J, Mehdaoui B, Respaud M (2011) Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia optimization. J Appl Phys 109:083921. doi:10.1063/1.3551582 CrossRef Carrey J, Mehdaoui B, Respaud M (2011) Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia optimization. J Appl Phys 109:083921. doi:10.​1063/​1.​3551582 CrossRef
Zurück zum Zitat Cho MH, Lee EJ, Son M, Lee JH, Yoo D, Kim J et al (2012) A magnetic switch for the control of cell death signalling in in vitro and in vivo systems. Nat Mater 11:1038–1043. doi:10.1038/nmat3430 CrossRef Cho MH, Lee EJ, Son M, Lee JH, Yoo D, Kim J et al (2012) A magnetic switch for the control of cell death signalling in in vitro and in vivo systems. Nat Mater 11:1038–1043. doi:10.​1038/​nmat3430 CrossRef
Zurück zum Zitat Choi DS, Hopkins X, Kringel R, Park J, Jeon IT, Kim YK (2012) Magnetically driven spinning nanowires as effective materials for eradicating living cells. J Appl Phys 111:07B329. doi:10.1063/1.3678437 CrossRef Choi DS, Hopkins X, Kringel R, Park J, Jeon IT, Kim YK (2012) Magnetically driven spinning nanowires as effective materials for eradicating living cells. J Appl Phys 111:07B329. doi:10.​1063/​1.​3678437 CrossRef
Zurück zum Zitat Cihoric N, Tsikkinis A, van Rhoon G, Crezee H, Aebersold DM, Bodis S et al (2015) Hyperthermia-related clinical trials on cancer treatment within the ClinicalTrials.gov registry. Int J Hyperther 31:609–614. doi:10.3109/02656736.2015.1040471 CrossRef Cihoric N, Tsikkinis A, van Rhoon G, Crezee H, Aebersold DM, Bodis S et al (2015) Hyperthermia-related clinical trials on cancer treatment within the ClinicalTrials.gov registry. Int J Hyperther 31:609–614. doi:10.​3109/​02656736.​2015.​1040471 CrossRef
Zurück zum Zitat Contreras MF, Sougrat R, Zaher A, Ravasi T, Kosel J (2015) Non-chemotoxic induction of cancer cell death using magnetic nanowires. Int J Nanomedicine 10:2141. doi:10.2147/IJN.S77081 CrossRef Contreras MF, Sougrat R, Zaher A, Ravasi T, Kosel J (2015) Non-chemotoxic induction of cancer cell death using magnetic nanowires. Int J Nanomedicine 10:2141. doi:10.​2147/​IJN.​S77081 CrossRef
Zurück zum Zitat Creixell M, Bohorquez AC, Torres-Lugo M, Rinaldi C (2011) EGFR-targeted magnetic nanoparticle heaters kill cancer cells without a perceptible temperature rise. ACS Nano 5:7124–7129. doi:10.1021/nn201822b CrossRef Creixell M, Bohorquez AC, Torres-Lugo M, Rinaldi C (2011) EGFR-targeted magnetic nanoparticle heaters kill cancer cells without a perceptible temperature rise. ACS Nano 5:7124–7129. doi:10.​1021/​nn201822b CrossRef
Zurück zum Zitat de Vries AH, Krenn BE, van Driel R, Subramaniam V, Kanger JS (2007) Direct observation of nanomechanical properties of chromatin in living cells. Nano Lett 7:1424–1427. doi:10.1021/nl070603+ CrossRef de Vries AH, Krenn BE, van Driel R, Subramaniam V, Kanger JS (2007) Direct observation of nanomechanical properties of chromatin in living cells. Nano Lett 7:1424–1427. doi:10.​1021/​nl070603+ CrossRef
Zurück zum Zitat Demeric U, Khademhosseini A, Langer R, Blander J (2013) Microfluidic Technologies for Human Health. World Scientific, Singapore Demeric U, Khademhosseini A, Langer R, Blander J (2013) Microfluidic Technologies for Human Health. World Scientific, Singapore
Zurück zum Zitat Dobson J, Cartmell SH, Keramane A, El Haj AJ (2006) Principles and design of a novel magnetic force mechanical conditioning bioreactor for tissue engineering, stem cell conditioning, and dynamic in vitro screening. IEEE T Nanobiosci 5(3):173–177. doi:10.1109/tnb.2006.880823 CrossRef Dobson J, Cartmell SH, Keramane A, El Haj AJ (2006) Principles and design of a novel magnetic force mechanical conditioning bioreactor for tissue engineering, stem cell conditioning, and dynamic in vitro screening. IEEE T Nanobiosci 5(3):173–177. doi:10.​1109/​tnb.​2006.​880823 CrossRef
Zurück zum Zitat Dutz S, Hergt R (2013) Magnetic nanoparticle heating and heat transfer on a microscale: basic principles, realities and physical limitations of hyperthermia for tumour therapy. Int J Hyperther 29:790–800. doi:10.3109/02656736.2013.822993 CrossRef Dutz S, Hergt R (2013) Magnetic nanoparticle heating and heat transfer on a microscale: basic principles, realities and physical limitations of hyperthermia for tumour therapy. Int J Hyperther 29:790–800. doi:10.​3109/​02656736.​2013.​822993 CrossRef
Zurück zum Zitat Gilchrist RK, Medal R, Shorey WD, Hanselman RC, Parrott JC, Taylor CB (1957) Selective inductive heating of lymph nodes. Ann Surg 146:596CrossRef Gilchrist RK, Medal R, Shorey WD, Hanselman RC, Parrott JC, Taylor CB (1957) Selective inductive heating of lymph nodes. Ann Surg 146:596CrossRef
Zurück zum Zitat Gleich B (2014) Principles and applications of magnetic particle imaging. Springer Vieweg Gleich B (2014) Principles and applications of magnetic particle imaging. Springer Vieweg
Zurück zum Zitat Golovin YI, Gribanovskii SL, Golovin DY, Klyachko NL, Kabanov AV (2014) Single-domain magnetic nanoparticles in an alternating magnetic field as mediators of local deformation of the surrounding macromolecules. Phys Solid State 56:1342–1351CrossRef Golovin YI, Gribanovskii SL, Golovin DY, Klyachko NL, Kabanov AV (2014) Single-domain magnetic nanoparticles in an alternating magnetic field as mediators of local deformation of the surrounding macromolecules. Phys Solid State 56:1342–1351CrossRef
Zurück zum Zitat Golovin YI, Gribanovsky SL, Golovin DY, Klyachko NL, Majouga AG, Master АM, Sokolsky M, Kabanov AV (2015) Towards nanomedicines of the future: remote magneto-mechanical actuation of nanomedicines by alternating magnetic fields. J Control Release 219:43–60. doi:10.1016/j.jconrel.2015.09.038 CrossRef Golovin YI, Gribanovsky SL, Golovin DY, Klyachko NL, Majouga AG, Master АM, Sokolsky M, Kabanov AV (2015) Towards nanomedicines of the future: remote magneto-mechanical actuation of nanomedicines by alternating magnetic fields. J Control Release 219:43–60. doi:10.​1016/​j.​jconrel.​2015.​09.​038 CrossRef
Zurück zum Zitat Golovin YI, Klyachko NL, Golovin DY, Efremova MV, Samodurov AA, Sokolski-Papkov M, Kabanov AV (2013a) A new approach to the control of biochemical reactions in a magnetic nanosuspension using a low-frequency magnetic field. Tech Phys Lett 39:240–243. doi:10.1134/s106378501303005x CrossRef Golovin YI, Klyachko NL, Golovin DY, Efremova MV, Samodurov AA, Sokolski-Papkov M, Kabanov AV (2013a) A new approach to the control of biochemical reactions in a magnetic nanosuspension using a low-frequency magnetic field. Tech Phys Lett 39:240–243. doi:10.​1134/​s106378501303005​x CrossRef
Zurück zum Zitat Golovin YI, Klyachko NL, Sokolsky-Papkov M, Kabanov AV (2013b) Single-domain magnetic nanoparticles as force generators for the nanomechanical control of biochemical reactions by low-frequency magnetic fields. Bull Russ Acad Sci Phys 77(11):1350–1359. doi:10.3103/s1062873813110130 CrossRef Golovin YI, Klyachko NL, Sokolsky-Papkov M, Kabanov AV (2013b) Single-domain magnetic nanoparticles as force generators for the nanomechanical control of biochemical reactions by low-frequency magnetic fields. Bull Russ Acad Sci Phys 77(11):1350–1359. doi:10.​3103/​s106287381311013​0 CrossRef
Zurück zum Zitat Guo Q, He Y, Lu HP (2015) Interrogating the activities of conformational deformed enzyme by single-molecule fluorescence-magnetic tweezers microscopy. Proceedings of the National Academy of Sciences 112:13904–13909. doi: 10.1073/pnas.1506405112 Guo Q, He Y, Lu HP (2015) Interrogating the activities of conformational deformed enzyme by single-molecule fluorescence-magnetic tweezers microscopy. Proceedings of the National Academy of Sciences 112:13904–13909. doi: 10.​1073/​pnas.​1506405112
Zurück zum Zitat Golovin YI, Golovin DY, Klyachko NL, Majouga AG, Kabanov AV (2017) Modeling drug release from functionalized magnetic nanoparticles actuated by non-heating low frequency magnetic field. J Nanopart Res. doi:10.1007/s11051-017-3754-5 Golovin YI, Golovin DY, Klyachko NL, Majouga AG, Kabanov AV (2017) Modeling drug release from functionalized magnetic nanoparticles actuated by non-heating low frequency magnetic field. J Nanopart Res. doi:10.​1007/​s11051-017-3754-5
Zurück zum Zitat Hou Y, Yu J, Chu X (2016) Design of magnetic nanoparticles for MRI-based theranostics. In: Advances in nanotheranostics II. Springer Singapore. pp. 3–37 Hou Y, Yu J, Chu X (2016) Design of magnetic nanoparticles for MRI-based theranostics. In: Advances in nanotheranostics II. Springer Singapore. pp. 3–37
Zurück zum Zitat Hu B, Dobson J, El Haj AJ (2014) Control of smooth muscle α-actin (SMA) up-regulation in HBMSCs using remote magnetic particle mechano-activation. Nanomedicine: Nanotechnology, Biology and Medicine 10:45–55. doi:10.1016/j.nano.2013.06.014 Hu B, Dobson J, El Haj AJ (2014) Control of smooth muscle α-actin (SMA) up-regulation in HBMSCs using remote magnetic particle mechano-activation. Nanomedicine: Nanotechnology, Biology and Medicine 10:45–55. doi:10.​1016/​j.​nano.​2013.​06.​014
Zurück zum Zitat Hu SH, Gao X (2010) Nanocomposites with spatially separated functionalities for combined imaging and magnetolytic therapy. J Am Chem Soc 132:7234–7237. doi:10.1021/ja102489q CrossRef Hu SH, Gao X (2010) Nanocomposites with spatially separated functionalities for combined imaging and magnetolytic therapy. J Am Chem Soc 132:7234–7237. doi:10.​1021/​ja102489q CrossRef
Zurück zum Zitat Huang J, Zhong X, Wang L, Yang L, Mao H (2012) Improving the magnetic resonance imaging contrast and detection methods with engineered magnetic nanoparticles. Theranostics 2:86–102. doi:10.7150/thno.4006 CrossRef Huang J, Zhong X, Wang L, Yang L, Mao H (2012) Improving the magnetic resonance imaging contrast and detection methods with engineered magnetic nanoparticles. Theranostics 2:86–102. doi:10.​7150/​thno.​4006 CrossRef
Zurück zum Zitat Kamalapuram SK, Kanwar RK, Roy K, Chaudhary R, Sehgal R, Kanwar JR (2016) Theranostic multimodular potential of zinc-doped ferrite-saturated metal-binding protein-loaded novel nanocapsules in cancers. Int J Nanomedicine 11:1349–1366. doi:10.2147/IJN.S95253 Kamalapuram SK, Kanwar RK, Roy K, Chaudhary R, Sehgal R, Kanwar JR (2016) Theranostic multimodular potential of zinc-doped ferrite-saturated metal-binding protein-loaded novel nanocapsules in cancers. Int J Nanomedicine 11:1349–1366. doi:10.​2147/​IJN.​S95253
Zurück zum Zitat Kanczler JM, Sur HS, Magnay J, Green D, Oreffo RO, Dobson JP, El Haj AJ (2010) Controlled differentiation of human bone marrow stromal cells using magnetic nanoparticle technology. Tissue Eng Pt A 16:3241–3250. doi:10.1089/ten.tea.2009.0638 CrossRef Kanczler JM, Sur HS, Magnay J, Green D, Oreffo RO, Dobson JP, El Haj AJ (2010) Controlled differentiation of human bone marrow stromal cells using magnetic nanoparticle technology. Tissue Eng Pt A 16:3241–3250. doi:10.​1089/​ten.​tea.​2009.​0638 CrossRef
Zurück zum Zitat Kheirolomoom A, Lai CY, Tam SM, Mahakian LM, Ingham ES, Watson KD, Ferrara KW (2013) Complete regression of local cancer using temperature-sensitive liposomes combined with ultrasound-mediated hyperthermia. J Control Release 172:266–273. doi:10.1016/j.jconrel.2013.08.019 CrossRef Kheirolomoom A, Lai CY, Tam SM, Mahakian LM, Ingham ES, Watson KD, Ferrara KW (2013) Complete regression of local cancer using temperature-sensitive liposomes combined with ultrasound-mediated hyperthermia. J Control Release 172:266–273. doi:10.​1016/​j.​jconrel.​2013.​08.​019 CrossRef
Zurück zum Zitat Kim DH, Rozhkova EA, Ulasov IV, Bader SD, Rajh T, Lesniak MS, Novosad V (2010) Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction. Nat Mater 9:165–171. doi:10.1038/nmat2591 CrossRef Kim DH, Rozhkova EA, Ulasov IV, Bader SD, Rajh T, Lesniak MS, Novosad V (2010) Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction. Nat Mater 9:165–171. doi:10.​1038/​nmat2591 CrossRef
Zurück zum Zitat Klyachko NL, Sokolsky-Papkov M, Pothayee N, Efremova MV, Gulin DA, Pothayee N, Kuznetsov AA, Majouga AG, Riffle JS, Golovin YI, Kabanov AV (2012) Changing the enzyme reaction rate in magnetic nanosuspensions by a non-heating magnetic field. Angew Chem Int Edit 51:12016–12019. doi:10.1002/anie.201205905 CrossRef Klyachko NL, Sokolsky-Papkov M, Pothayee N, Efremova MV, Gulin DA, Pothayee N, Kuznetsov AA, Majouga AG, Riffle JS, Golovin YI, Kabanov AV (2012) Changing the enzyme reaction rate in magnetic nanosuspensions by a non-heating magnetic field. Angew Chem Int Edit 51:12016–12019. doi:10.​1002/​anie.​201205905 CrossRef
Zurück zum Zitat Kraff O, Fischer A, Nagel AM, Mönninghoff C, Ladd ME (2015) MRI at 7 tesla and above: demonstrated and potential capabilities. J Magn Reson Imaging 41:13–33. doi:10.1002/jmri.24573 CrossRef Kraff O, Fischer A, Nagel AM, Mönninghoff C, Ladd ME (2015) MRI at 7 tesla and above: demonstrated and potential capabilities. J Magn Reson Imaging 41:13–33. doi:10.​1002/​jmri.​24573 CrossRef
Zurück zum Zitat Kuda-Wedagedara AN, Allen MJ (2014) Enhancing magnetic resonance imaging with contrast agents for ultra-high field strengths. Analyst 139:4401–4410. doi:10.1039/C4AN00990H CrossRef Kuda-Wedagedara AN, Allen MJ (2014) Enhancing magnetic resonance imaging with contrast agents for ultra-high field strengths. Analyst 139:4401–4410. doi:10.​1039/​C4AN00990H CrossRef
Zurück zum Zitat Kumar CSS (2009) Magnetic nanomaterials. Wiley-VCH, Weinheim Kumar CSS (2009) Magnetic nanomaterials. Wiley-VCH, Weinheim
Zurück zum Zitat Luo S, Wang LF, Ding WJ, Wang H, Zhou JM, Jin HK et al (2014) Clinical trials of magnetic induction hyperthermia for treatment of tumours. OA Cancer 2:2 Luo S, Wang LF, Ding WJ, Wang H, Zhou JM, Jin HK et al (2014) Clinical trials of magnetic induction hyperthermia for treatment of tumours. OA Cancer 2:2
Zurück zum Zitat Majouga A, Sokolsky-Papkov M, Kuznetsov A, Lebedev D, Efremova M, Beloglazkina E, Rudakovskaya PG, Veselov M, Zyk N, Golovin YI, Klyachko NL, Kabanov AV (2015) Enzyme-functionalized gold-coated magnetite nanoparticles as novel hybrid nanomaterials: synthesis, purification and control of enzyme function by low-frequency magnetic field. Colloid Surface B 125:104–109. doi:10.1016/j.colsurfb.2014.11.012 CrossRef Majouga A, Sokolsky-Papkov M, Kuznetsov A, Lebedev D, Efremova M, Beloglazkina E, Rudakovskaya PG, Veselov M, Zyk N, Golovin YI, Klyachko NL, Kabanov AV (2015) Enzyme-functionalized gold-coated magnetite nanoparticles as novel hybrid nanomaterials: synthesis, purification and control of enzyme function by low-frequency magnetic field. Colloid Surface B 125:104–109. doi:10.​1016/​j.​colsurfb.​2014.​11.​012 CrossRef
Zurück zum Zitat Mehdaoui B, Meffre A, Carrey J, Lachaize S, Lacroix LM, Gougeon M et al (2011) Optimal size of nanoparticles for magnetic hyperthermia: a combined theoretical and experimental study. Adv Funct Mater 21:4573–4581. doi:10.1002/adfm.201101243 CrossRef Mehdaoui B, Meffre A, Carrey J, Lachaize S, Lacroix LM, Gougeon M et al (2011) Optimal size of nanoparticles for magnetic hyperthermia: a combined theoretical and experimental study. Adv Funct Mater 21:4573–4581. doi:10.​1002/​adfm.​201101243 CrossRef
Zurück zum Zitat Nappini S, Bonini M, Bombelli FB, Pineider F, Sangregorio C, Baglioni P, Nordèn B (2011) Controlled drug release under a low frequency magnetic field: effect of the citrate coating on magnetoliposomes stability. Soft Matter 7:1025–1037. doi:10.1039/C0SM00789G CrossRef Nappini S, Bonini M, Bombelli FB, Pineider F, Sangregorio C, Baglioni P, Nordèn B (2011) Controlled drug release under a low frequency magnetic field: effect of the citrate coating on magnetoliposomes stability. Soft Matter 7:1025–1037. doi:10.​1039/​C0SM00789G CrossRef
Zurück zum Zitat Noy A (2008) Handbook of molecular force spectroscopy. Springer, New YorkCrossRef Noy A (2008) Handbook of molecular force spectroscopy. Springer, New YorkCrossRef
Zurück zum Zitat Oberhauser AF (2013) Single-molecule studies of proteins. Springer, New YorkCrossRef Oberhauser AF (2013) Single-molecule studies of proteins. Springer, New YorkCrossRef
Zurück zum Zitat Panagiotopoulos N, Duschka RL, Ahlborg M, Bringout G, Debbeler C, Graeser M, Kaethner C, Lüdtke-Buzug K, Medimagh H, Stelzner J, Buzug TM, Barkhausen J, Vogt FM, Haegele J (2015) Magnetic particle imaging: current developments and future directions. Int J Nanomedicine 2015:3097–3114. doi:10.2147/IJN.S70488 CrossRef Panagiotopoulos N, Duschka RL, Ahlborg M, Bringout G, Debbeler C, Graeser M, Kaethner C, Lüdtke-Buzug K, Medimagh H, Stelzner J, Buzug TM, Barkhausen J, Vogt FM, Haegele J (2015) Magnetic particle imaging: current developments and future directions. Int J Nanomedicine 2015:3097–3114. doi:10.​2147/​IJN.​S70488 CrossRef
Zurück zum Zitat Reddy LH, Arias JL, Nicolas J, Couvreur P (2012) Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 112:5818–5878. doi:10.1021/cr300068p CrossRef Reddy LH, Arias JL, Nicolas J, Couvreur P (2012) Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 112:5818–5878. doi:10.​1021/​cr300068p CrossRef
Zurück zum Zitat Reeves DB, Weaver JB (2014) Approaches for modeling magnetic nanoparticle dynamics. Crit Rev Biomed Eng 42(1):85–93CrossRef Reeves DB, Weaver JB (2014) Approaches for modeling magnetic nanoparticle dynamics. Crit Rev Biomed Eng 42(1):85–93CrossRef
Zurück zum Zitat Rosensweig RE (2014) Ferrohydrodynamics. Dover Publications, Mineola, New York Rosensweig RE (2014) Ferrohydrodynamics. Dover Publications, Mineola, New York
Zurück zum Zitat Shah RR, Davis TP, Glover AL, Nikles DE, Brazel CS (2015) Impact of magnetic field parameters and iron oxide nanoparticle properties on heat generation for use in magnetic hyperthermia. J Magn Magn Mater 387:96–106. doi:10.1016/j.jmmm.2015.03.085 CrossRef Shah RR, Davis TP, Glover AL, Nikles DE, Brazel CS (2015) Impact of magnetic field parameters and iron oxide nanoparticle properties on heat generation for use in magnetic hyperthermia. J Magn Magn Mater 387:96–106. doi:10.​1016/​j.​jmmm.​2015.​03.​085 CrossRef
Zurück zum Zitat Thanh NTK (2012) Magnetic nanoparticles. From fabrication to clinical application. CRC Press, Boca RatonCrossRef Thanh NTK (2012) Magnetic nanoparticles. From fabrication to clinical application. CRC Press, Boca RatonCrossRef
Zurück zum Zitat Ware MJ, Alexander JF, Summers HD, Godin B (2016) The importance of particle geometry in design of therapeutic and imaging nanovectors. In: Nanomedicine Springer New York. pp. 157–200 Ware MJ, Alexander JF, Summers HD, Godin B (2016) The importance of particle geometry in design of therapeutic and imaging nanovectors. In: Nanomedicine Springer New York. pp. 157–200
Zurück zum Zitat Yanagida T, Ishii Y (2009) Single molecule dynamics in life science. Wiley-VCH, Weinheim Yanagida T, Ishii Y (2009) Single molecule dynamics in life science. Wiley-VCH, Weinheim
Zurück zum Zitat Zhang E, Kircher MF, Koch M, Eliasson L, Goldberg SN, Renström E (2014) Dynamic magnetic fields remote-control apoptosis via nanoparticle rotation. ACS Nano 8:3192–3201. doi:10.1021/nn406302j CrossRef Zhang E, Kircher MF, Koch M, Eliasson L, Goldberg SN, Renström E (2014) Dynamic magnetic fields remote-control apoptosis via nanoparticle rotation. ACS Nano 8:3192–3201. doi:10.​1021/​nn406302j CrossRef
Zurück zum Zitat Zhao Q, Wang L, Cheng R, Mao L, Arnold RD, Howerth EW, Chen ZG, Platt S (2012) Magnetic nanoparticle-based hyperthermia for head & neck cancer in mouse models. Theranostics 2:113–121. doi:10.7150/thno.3854 CrossRef Zhao Q, Wang L, Cheng R, Mao L, Arnold RD, Howerth EW, Chen ZG, Platt S (2012) Magnetic nanoparticle-based hyperthermia for head & neck cancer in mouse models. Theranostics 2:113–121. doi:10.​7150/​thno.​3854 CrossRef
Metadaten
Titel
The dynamics of magnetic nanoparticles exposed to non-heating alternating magnetic field in biochemical applications: theoretical study
verfasst von
Yuri I. Golovin
Sergey L. Gribanovsky
Dmitry Y. Golovin
Alexander O. Zhigachev
Natalia L. Klyachko
Alexander G. Majouga
Marina Sokolsky
Alexander V. Kabanov
Publikationsdatum
01.02.2017
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 2/2017
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-017-3753-6

Weitere Artikel der Ausgabe 2/2017

Journal of Nanoparticle Research 2/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.