Skip to main content
Erschienen in: The Journal of Supercomputing 3/2021

07.07.2020

A traffic prediction model based on multiple factors

verfasst von: Jingjuan Wang, Qingkui Chen

Erschienen in: The Journal of Supercomputing | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Traffic prediction is a vital part of intelligent transportation systems. The ability of traffic risk prediction is of great significance to prevent traffic accidents and reduce the damages in a proactive way. Because of the complexity, uncertainty and dynamics of spatiotemporal dependence of traffic flow, accurate traffic state prediction becomes a challenging issue. Most neural networks are compute intensive and memory intensive, making them hard to deploy on embedded systems with limited hardware resources. A real-time and high-compressed video object detection structure is proposed. For traffic prediction, many previous studies only explore the utility of a single factor in their prediction and a few multi-factor researches are conducted. Other studies focus on the temporal distribution of traffic flow, ignoring the spatial correlation. And some methods based on graph convolutional networks (GCNs) do not consider the dynamics of graph structure which is a crucial factor to traffic prediction. In this paper, we analyze and process the onboard video captured by the dashboard camera real time. A high accurate deep learning model called varying spatiotemporal graph-based convolution model (VSTGC) is proposed to express the spatiotemporal structures and forecast future traffic safety trends from previous traffic flow. The traffic detailed features (such as vehicle type, braking state, whether changing lanes or not) and external variables (such as weather, time and road condition) are extracted from our big datasets. We conduct extensive experiments to evaluate the VSTGC model on real-world traffic datasets. Experiments on our real traffic dataset show that the proposed model performs competitive performances over the other state-of-the-art approaches.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Park Sh, Kim Sm, Ha Yg (2016) Highway traffic accident prediction using VDS big data analysis. J Supercomput 72(7):2815CrossRef Park Sh, Kim Sm, Ha Yg (2016) Highway traffic accident prediction using VDS big data analysis. J Supercomput 72(7):2815CrossRef
3.
Zurück zum Zitat Keller CG, Dang T, Fritz H, Joos A, Rabe C, Gavrila DM (2011) Active pedestrian safety by automatic braking and evasive steering. IEEE Trans Intell Transp Syst 12(4):1292CrossRef Keller CG, Dang T, Fritz H, Joos A, Rabe C, Gavrila DM (2011) Active pedestrian safety by automatic braking and evasive steering. IEEE Trans Intell Transp Syst 12(4):1292CrossRef
4.
Zurück zum Zitat Journet BA, Bazin G (1998) Laser rangefinders for autonomous intelligent cruise control systems. In: Intelligent transportation systems, vol 3207. International Society for Optics and Photonics, Bellingham, pp 65–71CrossRef Journet BA, Bazin G (1998) Laser rangefinders for autonomous intelligent cruise control systems. In: Intelligent transportation systems, vol 3207. International Society for Optics and Photonics, Bellingham, pp 65–71CrossRef
5.
Zurück zum Zitat Pilutti T, Ulsoy AG (1999) Identification of driver state for lane-keeping tasks. IEEE Trans Syst Man Cybern Part A Syst Hum 29(5):486CrossRef Pilutti T, Ulsoy AG (1999) Identification of driver state for lane-keeping tasks. IEEE Trans Syst Man Cybern Part A Syst Hum 29(5):486CrossRef
6.
Zurück zum Zitat Gandhi T, Trivedi MM (2007) Pedestrian protection systems: issues, survey, and challenges. IEEE Trans Intell Transp Syst 8(3):413CrossRef Gandhi T, Trivedi MM (2007) Pedestrian protection systems: issues, survey, and challenges. IEEE Trans Intell Transp Syst 8(3):413CrossRef
7.
Zurück zum Zitat Geronimo D, Lopez AM, Sappa AD, Graf T (2009) Survey of pedestrian detection for advanced driver assistance systems. IEEE Trans Pattern Anal Mach Intell 7:1239 Geronimo D, Lopez AM, Sappa AD, Graf T (2009) Survey of pedestrian detection for advanced driver assistance systems. IEEE Trans Pattern Anal Mach Intell 7:1239
8.
Zurück zum Zitat Hariyono J, Hoang VD, Jo KH (2014) Moving object localization using optical flow for pedestrian detection from a moving vehicle. Sci World J 2014:196415CrossRef Hariyono J, Hoang VD, Jo KH (2014) Moving object localization using optical flow for pedestrian detection from a moving vehicle. Sci World J 2014:196415CrossRef
10.
Zurück zum Zitat Olutayo V, Eludire A (2014) Traffic accident analysis using decision trees and neural networks. Int J Inf Technol Comput Sci 2:22 Olutayo V, Eludire A (2014) Traffic accident analysis using decision trees and neural networks. Int J Inf Technol Comput Sci 2:22
11.
Zurück zum Zitat Lin L, Wang Q, Sadek AW (2015) A novel variable selection method based on frequent pattern tree for real-time traffic accident risk prediction. Transp Res Part C Emerg Technol 55:444CrossRef Lin L, Wang Q, Sadek AW (2015) A novel variable selection method based on frequent pattern tree for real-time traffic accident risk prediction. Transp Res Part C Emerg Technol 55:444CrossRef
12.
Zurück zum Zitat Bergel-Hayat R, Debbarh M, Antoniou C, Yannis G (2013) Explaining the road accident risk: weather effects. Accid Anal Prev 60:456CrossRef Bergel-Hayat R, Debbarh M, Antoniou C, Yannis G (2013) Explaining the road accident risk: weather effects. Accid Anal Prev 60:456CrossRef
13.
Zurück zum Zitat Caliendo C, Guida M, Parisi A (2007) A crash-prediction model for multilane roads. Accid Anal Prev 39(4):657CrossRef Caliendo C, Guida M, Parisi A (2007) A crash-prediction model for multilane roads. Accid Anal Prev 39(4):657CrossRef
14.
Zurück zum Zitat Oh J, Washington SP, Nam D (2006) Accident prediction model for railway-highway interfaces. Accid Anal Prev 38(2):346CrossRef Oh J, Washington SP, Nam D (2006) Accident prediction model for railway-highway interfaces. Accid Anal Prev 38(2):346CrossRef
15.
Zurück zum Zitat Zeng Z, Liang N, Yang X, Hoi S (2018) Multi-target deep neural networks: theoretical analysis and implementation. Neurocomputing 273:634CrossRef Zeng Z, Liang N, Yang X, Hoi S (2018) Multi-target deep neural networks: theoretical analysis and implementation. Neurocomputing 273:634CrossRef
16.
Zurück zum Zitat Zhang J, Zheng Y, Qi D, Li R, Yi X, Li T (2018) Predicting citywide crowd flows using deep spatio-temporal residual networks. Artif Intell 259:147MathSciNetCrossRef Zhang J, Zheng Y, Qi D, Li R, Yi X, Li T (2018) Predicting citywide crowd flows using deep spatio-temporal residual networks. Artif Intell 259:147MathSciNetCrossRef
17.
Zurück zum Zitat Yao H, Wu F, Ke J, Tang X, Jia Y, Lu S, Gong P, Ye J, Li Z (2018) Deep multi-view spatial-temporal network for taxi demand prediction. In: Thirty-Second AAAI Conference on Artificial Intelligence Yao H, Wu F, Ke J, Tang X, Jia Y, Lu S, Gong P, Ye J, Li Z (2018) Deep multi-view spatial-temporal network for taxi demand prediction. In: Thirty-Second AAAI Conference on Artificial Intelligence
18.
Zurück zum Zitat Xia D, Wang B, Li H, Li Y, Zhang Z (2016) A distributed spatial–temporal weighted model on MapReduce for short-term traffic flow forecasting. Neurocomputing 179:246CrossRef Xia D, Wang B, Li H, Li Y, Zhang Z (2016) A distributed spatial–temporal weighted model on MapReduce for short-term traffic flow forecasting. Neurocomputing 179:246CrossRef
19.
Zurück zum Zitat Hong WC (2011) Traffic flow forecasting by seasonal SVR with chaotic simulated annealing algorithm. Neurocomputing 74(12–13):2096CrossRef Hong WC (2011) Traffic flow forecasting by seasonal SVR with chaotic simulated annealing algorithm. Neurocomputing 74(12–13):2096CrossRef
20.
Zurück zum Zitat Wu C, Peng L, Huang Z, Zhong M, Chu D (2014) A method of vehicle motion prediction and collision risk assessment with a simulated vehicular cyber physical system. Transp Res Part C Emerg Technol 47:179CrossRef Wu C, Peng L, Huang Z, Zhong M, Chu D (2014) A method of vehicle motion prediction and collision risk assessment with a simulated vehicular cyber physical system. Transp Res Part C Emerg Technol 47:179CrossRef
21.
Zurück zum Zitat Ba Y, Zhang W, Wang Q, Zhou R, Ren C (2017) Crash prediction with behavioral and physiological features for advanced vehicle collision avoidance system. Transp Res Part C Emerg Technol 74:22CrossRef Ba Y, Zhang W, Wang Q, Zhou R, Ren C (2017) Crash prediction with behavioral and physiological features for advanced vehicle collision avoidance system. Transp Res Part C Emerg Technol 74:22CrossRef
22.
Zurück zum Zitat Coughlin JF, Reimer B, Mehler B (2011) Monitoring, managing, and motivating driver safety and well-being. IEEE Pervas Comput 10(3):14CrossRef Coughlin JF, Reimer B, Mehler B (2011) Monitoring, managing, and motivating driver safety and well-being. IEEE Pervas Comput 10(3):14CrossRef
23.
Zurück zum Zitat Arbabzadeh N, Jafari M (2017) A data-driven approach for driving safety risk prediction using driver behavior and roadway information data. IEEE Trans Intell Transp Syst 19(2):446CrossRef Arbabzadeh N, Jafari M (2017) A data-driven approach for driving safety risk prediction using driver behavior and roadway information data. IEEE Trans Intell Transp Syst 19(2):446CrossRef
24.
Zurück zum Zitat Meiring G, Myburgh H (2015) A review of intelligent driving style analysis systems and related artificial intelligence algorithms. Sensors 15(12):30653CrossRef Meiring G, Myburgh H (2015) A review of intelligent driving style analysis systems and related artificial intelligence algorithms. Sensors 15(12):30653CrossRef
25.
Zurück zum Zitat Jafari SA, Jahandideh S, Jahandideh M, Asadabadi EB (2015) Prediction of road traffic death rate using neural networks optimised by genetic algorithm. Int J Inj Contr Saf Promot 22(2):153CrossRef Jafari SA, Jahandideh S, Jahandideh M, Asadabadi EB (2015) Prediction of road traffic death rate using neural networks optimised by genetic algorithm. Int J Inj Contr Saf Promot 22(2):153CrossRef
26.
Zurück zum Zitat Dunne S, Ghosh B (2013) Weather adaptive traffic prediction using neurowavelet models. IEEE Trans Intell Transp Syst 14(1):370CrossRef Dunne S, Ghosh B (2013) Weather adaptive traffic prediction using neurowavelet models. IEEE Trans Intell Transp Syst 14(1):370CrossRef
27.
Zurück zum Zitat Davis GA, Nihan NL, Hamed MM, Jacobson LN (1990) Adaptive forecasting of freeway traffic congestion. Transportation Research Record 1287 Davis GA, Nihan NL, Hamed MM, Jacobson LN (1990) Adaptive forecasting of freeway traffic congestion. Transportation Research Record 1287
28.
Zurück zum Zitat Leshem G, Ritov Y (2007) Traffic flow prediction using adaboost algorithm with random forests as a weak learner. In: Proceedings of World Academy of Science, Engineering and Technology, vol 19. Citeseer, pp 193–198 Leshem G, Ritov Y (2007) Traffic flow prediction using adaboost algorithm with random forests as a weak learner. In: Proceedings of World Academy of Science, Engineering and Technology, vol 19. Citeseer, pp 193–198
29.
Zurück zum Zitat Jin X, Zhang Y, Yao D (2007) Simultaneously prediction of network traffic flow based on PCA-SVR. In: International Symposium on Neural Networks, Springer, pp 1022–1031 Jin X, Zhang Y, Yao D (2007) Simultaneously prediction of network traffic flow based on PCA-SVR. In: International Symposium on Neural Networks, Springer, pp 1022–1031
30.
Zurück zum Zitat Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, Hubert T, Baker L, Lai M, Bolton A et al (2017) Mastering the game of go without human knowledge. Nature 550(7676):354CrossRef Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, Hubert T, Baker L, Lai M, Bolton A et al (2017) Mastering the game of go without human knowledge. Nature 550(7676):354CrossRef
31.
Zurück zum Zitat Lv Y, Duan Y, Kang W, Li Z, Wang FY (2014) Traffic flow prediction with big data: a deep learning approach. IEEE Trans Intell Transp Syst 16(2):865 Lv Y, Duan Y, Kang W, Li Z, Wang FY (2014) Traffic flow prediction with big data: a deep learning approach. IEEE Trans Intell Transp Syst 16(2):865
32.
Zurück zum Zitat Ma X, Dai Z, He Z, Ma J, Wang Y, Wang Y (2017) Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction. Sensors 17(4):818CrossRef Ma X, Dai Z, He Z, Ma J, Wang Y, Wang Y (2017) Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction. Sensors 17(4):818CrossRef
33.
Zurück zum Zitat Huang W, Song G, Hong H, Xie K (2014) Deep architecture for traffic flow prediction: deep belief networks with multitask learning. IEEE Trans Intell Transp Syst 15(5):2191CrossRef Huang W, Song G, Hong H, Xie K (2014) Deep architecture for traffic flow prediction: deep belief networks with multitask learning. IEEE Trans Intell Transp Syst 15(5):2191CrossRef
34.
Zurück zum Zitat Ma X, Tao Z, Wang Y, Yu H, Wang Y (2015) Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transp Res Part C Emerg Technol 54:187CrossRef Ma X, Tao Z, Wang Y, Yu H, Wang Y (2015) Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transp Res Part C Emerg Technol 54:187CrossRef
35.
Zurück zum Zitat Kamarianakis Y, Shen W, Wynter L (2012) Real-time road traffic forecasting using regime-switching space-time models and adaptive LASSO. Appl Stoch Models Bus Ind 28(4):297MathSciNetCrossRef Kamarianakis Y, Shen W, Wynter L (2012) Real-time road traffic forecasting using regime-switching space-time models and adaptive LASSO. Appl Stoch Models Bus Ind 28(4):297MathSciNetCrossRef
36.
Zurück zum Zitat Polson NG, Sokolov VO (2017) Deep learning for short-term traffic flow prediction. Transp Res Part C Emerg Technol 79:1CrossRef Polson NG, Sokolov VO (2017) Deep learning for short-term traffic flow prediction. Transp Res Part C Emerg Technol 79:1CrossRef
37.
Zurück zum Zitat Yu R, Li Y, Shahabi C, Demiryurek U, Liu Y (2017) Deep learning: a generic approach for extreme condition traffic forecasting. In: Proceedings of the 2017 SIAM International Conference on Data Mining. SIAM, pp 777–785 Yu R, Li Y, Shahabi C, Demiryurek U, Liu Y (2017) Deep learning: a generic approach for extreme condition traffic forecasting. In: Proceedings of the 2017 SIAM International Conference on Data Mining. SIAM, pp 777–785
38.
Zurück zum Zitat Yu H, Wu Z, Wang S, Wang Y, Ma X (2017) Spatiotemporal recurrent convolutional networks for traffic prediction in transportation networks. Sensors 17(7):1501CrossRef Yu H, Wu Z, Wang S, Wang Y, Ma X (2017) Spatiotemporal recurrent convolutional networks for traffic prediction in transportation networks. Sensors 17(7):1501CrossRef
40.
Zurück zum Zitat Zhou S, Wu Y, Ni Z, Zhou X, Wen H, Zou Y (2016) DoReFa-Net: training low bitwidth convolutional neural networks with low bitwidth gradients. arXiv:1606.06160 Zhou S, Wu Y, Ni Z, Zhou X, Wen H, Zou Y (2016) DoReFa-Net: training low bitwidth convolutional neural networks with low bitwidth gradients. arXiv:​1606.​06160
41.
Zurück zum Zitat Hubara I, Courbariaux M, Soudry D, El-Yaniv R, Bengio Y (2017) Quantized neural networks: training neural networks with low precision weights and activations. J Mach Learn Res 18(1):6869MathSciNetMATH Hubara I, Courbariaux M, Soudry D, El-Yaniv R, Bengio Y (2017) Quantized neural networks: training neural networks with low precision weights and activations. J Mach Learn Res 18(1):6869MathSciNetMATH
42.
Zurück zum Zitat De Brabandere B, Neven D, Van Gool L (2017) Semantic instance segmentation with a discriminative loss function. arXiv:1708.02551 De Brabandere B, Neven D, Van Gool L (2017) Semantic instance segmentation with a discriminative loss function. arXiv:​1708.​02551
43.
Zurück zum Zitat Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H (2017) MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv:1704.04861 Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H (2017) MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv:​1704.​04861
45.
Zurück zum Zitat Defferrard M, Bresson X, Vandergheynst P (2016) Convolutional neural networks on graphs with fast localized spectral filtering. In: Advances in Neural Information Processing Systems, pp 844–3852 Defferrard M, Bresson X, Vandergheynst P (2016) Convolutional neural networks on graphs with fast localized spectral filtering. In: Advances in Neural Information Processing Systems, pp 844–3852
46.
Zurück zum Zitat Hammond DK, Vandergheynst P, Gribonval R (2011) Wavelets on graphs via spectral graph theory. Appl Comput Harmon Anal 30(2):129MathSciNetCrossRef Hammond DK, Vandergheynst P, Gribonval R (2011) Wavelets on graphs via spectral graph theory. Appl Comput Harmon Anal 30(2):129MathSciNetCrossRef
47.
Zurück zum Zitat Jain A, Zamir AR, Savarese S, Saxena A (2016) Structural-RNN: deep learning on spatio-temporal graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 5308–5317 Jain A, Zamir AR, Savarese S, Saxena A (2016) Structural-RNN: deep learning on spatio-temporal graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 5308–5317
48.
Zurück zum Zitat Dai X, Fu R, Lin Y, Liv L, Wang FY (2017) DeepTrend: a deep hierarchical neural network for traffic flow prediction. arXiv:1707.03213 Dai X, Fu R, Lin Y, Liv L, Wang FY (2017) DeepTrend: a deep hierarchical neural network for traffic flow prediction. arXiv:​1707.​03213
49.
Zurück zum Zitat Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, pp 3104–3112 Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, pp 3104–3112
50.
Zurück zum Zitat Yu B, Yin H, Zhu Z (2017) Spatio-temporal graph convolutional neural network: a deep learning framework for traffic forecasting. arXiv:1709.04875 Yu B, Yin H, Zhu Z (2017) Spatio-temporal graph convolutional neural network: a deep learning framework for traffic forecasting. arXiv:​1709.​04875
Metadaten
Titel
A traffic prediction model based on multiple factors
verfasst von
Jingjuan Wang
Qingkui Chen
Publikationsdatum
07.07.2020
Verlag
Springer US
Erschienen in
The Journal of Supercomputing / Ausgabe 3/2021
Print ISSN: 0920-8542
Elektronische ISSN: 1573-0484
DOI
https://doi.org/10.1007/s11227-020-03373-0

Weitere Artikel der Ausgabe 3/2021

The Journal of Supercomputing 3/2021 Zur Ausgabe

Premium Partner