Skip to main content
Erschienen in: Telecommunication Systems 4/2018

09.08.2017

Power allocation and relay selection for network-coded D2D communication underlay heterogeneous cellular networks

verfasst von: Hashem Kalbkhani, Mahrokh G. Shayesteh

Erschienen in: Telecommunication Systems | Ausgabe 4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Underlay device-to-device (D2D) communication is an attractive technology enabling nearby cellular users to communicate with each other directly in order to increase data rate and spectral efficiency. The current cellular heterogeneous networks consist of macrocell base stations and small cell base stations with different transmit powers and coverage areas. Femtocell is the most popular small cell which is expected to be utilized in dense and ultra-dense scenarios in the future. Network coding in relay-assisted multi-hop communications improves achievable transmission rate and coverage of D2D communications. In this paper, two-hop random linear network coding network in cooperative D2D communication (RLNC-CDC) is considered. We propose to use femtocell base station (FBS) as a relay. We assume that the D2D pair and relay operate in the frequency band which is allocated to femtocell network. Therefore, there would be interference from the relay node and the D2D communication on the femtocell network users. To reduce the interference, the sum of transmit powers of the D2D pair and selected relay FBS should be minimized in a way that the highest transmission rate for the D2D pair is achieved. The constraints on the bounds of transmit powers of the D2D and relay node as well as the minimum required transmission rate for D2D communication are considered and the optimum solution is obtained. Simulation results indicate that the proposed RLNC-CDC achieves higher data rate and smaller outage probability than the direct D2D transmission.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Doppler, K., Rinne, M., Wijting, C., Ribeiro, C. B., & Hugl, K. (2009). Device-to-device communication as an underlay to LTE-advanced networks. IEEE Communications Magazine, 47, 42–49.CrossRef Doppler, K., Rinne, M., Wijting, C., Ribeiro, C. B., & Hugl, K. (2009). Device-to-device communication as an underlay to LTE-advanced networks. IEEE Communications Magazine, 47, 42–49.CrossRef
2.
Zurück zum Zitat Asadi, A., Wang, Q., & Mancuso, V. (2014). A survey on device-to-device communication in cellular networks. IEEE Communications Surveys and Tutorials, 16, 1801–1819.CrossRef Asadi, A., Wang, Q., & Mancuso, V. (2014). A survey on device-to-device communication in cellular networks. IEEE Communications Surveys and Tutorials, 16, 1801–1819.CrossRef
3.
Zurück zum Zitat Tehrani, M. N., Uysal, M., & Yanikomeroglu, H. (2014). Device-to-device communication in 5G cellular networks: Challenges, solutions, and future directions. IEEE Communications Magazine, 52, 86–92.CrossRef Tehrani, M. N., Uysal, M., & Yanikomeroglu, H. (2014). Device-to-device communication in 5G cellular networks: Challenges, solutions, and future directions. IEEE Communications Magazine, 52, 86–92.CrossRef
4.
Zurück zum Zitat Boccardi, F., Heath, R. W., Lozano, A., Marzetta, T. L., & Popovski, P. (2014). Five disruptive technology directions for 5G. IEEE Communications Magazine, 52, 74–80.CrossRef Boccardi, F., Heath, R. W., Lozano, A., Marzetta, T. L., & Popovski, P. (2014). Five disruptive technology directions for 5G. IEEE Communications Magazine, 52, 74–80.CrossRef
5.
Zurück zum Zitat Keller, L., Le, A., Cici, B., Seferoglu, H., Fragouli, C., & Markopoulou, A. (2012) MicroCast: Cooperative video streaming on smartphones. In Proceedings of the 10th international conference on mobile systems, applications, and services (pp. 57–70). Keller, L., Le, A., Cici, B., Seferoglu, H., Fragouli, C., & Markopoulou, A. (2012) MicroCast: Cooperative video streaming on smartphones. In Proceedings of the 10th international conference on mobile systems, applications, and services (pp. 57–70).
6.
Zurück zum Zitat Chandrasekhar, V., Andrews, J. G., & Gatherer, A. (2008). Femtocell networks: A survey. IEEE Communications Magazine, 46, 59–67.CrossRef Chandrasekhar, V., Andrews, J. G., & Gatherer, A. (2008). Femtocell networks: A survey. IEEE Communications Magazine, 46, 59–67.CrossRef
7.
Zurück zum Zitat Kim, R. Y., Kwak, J. S., & Etemad, K. (2009). WiMAX femtocell: Requirements, challenges, and solutions. IEEE Communications Magazine, 47, 84–91.CrossRef Kim, R. Y., Kwak, J. S., & Etemad, K. (2009). WiMAX femtocell: Requirements, challenges, and solutions. IEEE Communications Magazine, 47, 84–91.CrossRef
8.
Zurück zum Zitat Condoluci, M., Dohler, M., Araniti, G., Molinaro, A., & Zheng, K. (2015). Toward 5G densenets: architectural advances for effective machine-type communications over femtocells. IEEE Communications Magazine, 53, 134–141.CrossRef Condoluci, M., Dohler, M., Araniti, G., Molinaro, A., & Zheng, K. (2015). Toward 5G densenets: architectural advances for effective machine-type communications over femtocells. IEEE Communications Magazine, 53, 134–141.CrossRef
9.
Zurück zum Zitat Ge, X., Tu, S., Mao, G., Wang, C.-X., & Han, T. (2016). 5G ultra-dense cellular networks. IEEE Wireless Communications, 23, 72–79.CrossRef Ge, X., Tu, S., Mao, G., Wang, C.-X., & Han, T. (2016). 5G ultra-dense cellular networks. IEEE Wireless Communications, 23, 72–79.CrossRef
10.
Zurück zum Zitat Zhang, H., Jiang, C., Beaulieu, N. C., Chu, X., Wang, X., & Quek, T. Q. (2015). Resource allocation for cognitive small cell networks: A cooperative bargaining game theoretic approach. IEEE Transactions on Wireless Communications, 14, 3481–3493.CrossRef Zhang, H., Jiang, C., Beaulieu, N. C., Chu, X., Wang, X., & Quek, T. Q. (2015). Resource allocation for cognitive small cell networks: A cooperative bargaining game theoretic approach. IEEE Transactions on Wireless Communications, 14, 3481–3493.CrossRef
11.
Zurück zum Zitat Zhang, H., Jiang, C., Mao, X., & Chen, H.-H. (2016). Interference-limited resource optimization in cognitive femtocells with fairness and imperfect spectrum sensing. IEEE Transactions on Vehicular Technology, 65, 1761–1771.CrossRef Zhang, H., Jiang, C., Mao, X., & Chen, H.-H. (2016). Interference-limited resource optimization in cognitive femtocells with fairness and imperfect spectrum sensing. IEEE Transactions on Vehicular Technology, 65, 1761–1771.CrossRef
12.
Zurück zum Zitat Okati, N., Razeghi, B., & Mosavi, M. R. (2015) On relay selection to maximize coverage region for cooperative cellular networks with multiple fixed and unfixed relays. In 2015 6th international conference on computing, communication and networking technologies (ICCCNT) (pp. 1–6). Okati, N., Razeghi, B., & Mosavi, M. R. (2015) On relay selection to maximize coverage region for cooperative cellular networks with multiple fixed and unfixed relays. In 2015 6th international conference on computing, communication and networking technologies (ICCCNT) (pp. 1–6).
13.
Zurück zum Zitat Li, Y., Liao, C., Wang, Y., & Wang, C. (2015). Energy-efficient optimal relay selection in cooperative cellular networks based on double auction. IEEE Transactions on Wireless Communications, 14, 4093–4104.CrossRef Li, Y., Liao, C., Wang, Y., & Wang, C. (2015). Energy-efficient optimal relay selection in cooperative cellular networks based on double auction. IEEE Transactions on Wireless Communications, 14, 4093–4104.CrossRef
14.
Zurück zum Zitat Wang, Q., Wang, W., Jin, S., Zhu, H., & Zhang, N. T. (2015). Joint coding mode and multi-path selection for video transmission in D2D-underlaid cellular network with shared relays. In IEEE global communications conference (GLOBECOM) (pp. 1–6). Wang, Q., Wang, W., Jin, S., Zhu, H., & Zhang, N. T. (2015). Joint coding mode and multi-path selection for video transmission in D2D-underlaid cellular network with shared relays. In IEEE global communications conference (GLOBECOM) (pp. 1–6).
15.
Zurück zum Zitat Yan, C., Yiyang, N., & Hongbo, Z. (2015). Performance for device-to-device communication with three-time-slot two-way amplify-and-forward relay protocol. China Communications, 12, 1–11.CrossRef Yan, C., Yiyang, N., & Hongbo, Z. (2015). Performance for device-to-device communication with three-time-slot two-way amplify-and-forward relay protocol. China Communications, 12, 1–11.CrossRef
16.
Zurück zum Zitat Naderi, S., Javan, M. R. & Aref, A. (2016) Secrecy outage analysis of cooperative amplify and forward relaying in device to device communications. In 2016 24th Iranian conference on electrical engineering (ICEE) (pp. 40–44). Naderi, S., Javan, M. R. & Aref, A. (2016) Secrecy outage analysis of cooperative amplify and forward relaying in device to device communications. In 2016 24th Iranian conference on electrical engineering (ICEE) (pp. 40–44).
17.
Zurück zum Zitat Ni, Y., Jin, S., Zhu, H., Shao, S., & Wong, K.-K. (2013). Pareto-optimal power allocation of device-to-device communication with two-way decode-and-forward helping relay. In International conference on wireless communications and signal processing (wcsp) (pp. 1–6). Ni, Y., Jin, S., Zhu, H., Shao, S., & Wong, K.-K. (2013). Pareto-optimal power allocation of device-to-device communication with two-way decode-and-forward helping relay. In International conference on wireless communications and signal processing (wcsp) (pp. 1–6).
18.
Zurück zum Zitat Ni, Y., Jin, S., Tian, R., Wong, K.-K., Zhu, H., & Shao, S. (2013). Outage analysis for device-to-device communication assisted by two-way decode-and-forward relaying. In International conference on wireless communications and signal processing (WCSP) (pp. 1–6). Ni, Y., Jin, S., Tian, R., Wong, K.-K., Zhu, H., & Shao, S. (2013). Outage analysis for device-to-device communication assisted by two-way decode-and-forward relaying. In International conference on wireless communications and signal processing (WCSP) (pp. 1–6).
19.
Zurück zum Zitat Shalmashi, S., & Slimane, S. B. (2014). Cooperative device-to-device communications in the downlink of cellular networks. In IEEE wireless communications and networking conference (WCNC) (Vol. 2014, pp. 2265–2270). Shalmashi, S., & Slimane, S. B. (2014). Cooperative device-to-device communications in the downlink of cellular networks. In IEEE wireless communications and networking conference (WCNC) (Vol. 2014, pp. 2265–2270).
20.
Zurück zum Zitat Ma, C., Sun, G., Tian, X., Ying, K., Yu, H., & Wang, X. (2013). Cooperative relaying schemes for device-to-device communication underlaying cellular networks. In IEEE global communications conference (GLOBECOM) (Vol. 2013, pp. 3890–3895) Ma, C., Sun, G., Tian, X., Ying, K., Yu, H., & Wang, X. (2013). Cooperative relaying schemes for device-to-device communication underlaying cellular networks. In IEEE global communications conference (GLOBECOM) (Vol. 2013, pp. 3890–3895)
21.
Zurück zum Zitat Ahlswede, R., Cai, N., Li, S.-Y., & Yeung, R. W. (2000). Network information flow. IEEE Transactions on Information Theory, 46, 1204–1216.CrossRef Ahlswede, R., Cai, N., Li, S.-Y., & Yeung, R. W. (2000). Network information flow. IEEE Transactions on Information Theory, 46, 1204–1216.CrossRef
22.
Zurück zum Zitat Moubayed, A., Sorour, S., Al-Naffouri, T., & Alouini, M.-S. (2015) Collaborative multi-layer network coding in hybrid cellular cognitive radio networks. In 2015 IEEE 81st vehicular technology conference (VTC Spring) (pp. 1–6). Moubayed, A., Sorour, S., Al-Naffouri, T., & Alouini, M.-S. (2015) Collaborative multi-layer network coding in hybrid cellular cognitive radio networks. In 2015 IEEE 81st vehicular technology conference (VTC Spring) (pp. 1–6).
23.
Zurück zum Zitat Chen, Y., & Sung, C. W. (2014). Resource allocation for two-way relay cellular networks with and without network coding. In IEEE international conference on communication systems (ICCS) (Vol. 2014, pp. 600–604). Chen, Y., & Sung, C. W. (2014). Resource allocation for two-way relay cellular networks with and without network coding. In IEEE international conference on communication systems (ICCS) (Vol. 2014, pp. 600–604).
24.
Zurück zum Zitat Ke, X., Pingyi, F., Su, Y., & Ming, L. (2013). Network coding-aware cooperative relaying for downlink cellular relay networks. China Communications, 10, 44–56. Ke, X., Pingyi, F., Su, Y., & Ming, L. (2013). Network coding-aware cooperative relaying for downlink cellular relay networks. China Communications, 10, 44–56.
25.
Zurück zum Zitat Thampi, A., Liew, S.-C., Armour, S., Fan, Z., You, L., & Kaleshi, D. (2016). Physical-layer network coding in two-way heterogeneous cellular networks with power imbalance. IEEE Transactions on Vehicular Technology, 65, 9072–9084.CrossRef Thampi, A., Liew, S.-C., Armour, S., Fan, Z., You, L., & Kaleshi, D. (2016). Physical-layer network coding in two-way heterogeneous cellular networks with power imbalance. IEEE Transactions on Vehicular Technology, 65, 9072–9084.CrossRef
26.
Zurück zum Zitat Zhao, Y., Li, Y., Chen, X., & Ge, N. (2015). Joint optimization of resource allocation and relay selection for network coding aided device-to-device communications. IEEE Communications Letters, 19, 807–810.CrossRef Zhao, Y., Li, Y., Chen, X., & Ge, N. (2015). Joint optimization of resource allocation and relay selection for network coding aided device-to-device communications. IEEE Communications Letters, 19, 807–810.CrossRef
27.
Zurück zum Zitat Zhao, Y., Li, Y., Ding, Z., Ge, N., & Poor, H. V. (2016). A coalitional graph game framework for network coding-aided D2D communication. EURASIP Journal on Advances in Signal Processing, 2016, 1–14.CrossRef Zhao, Y., Li, Y., Ding, Z., Ge, N., & Poor, H. V. (2016). A coalitional graph game framework for network coding-aided D2D communication. EURASIP Journal on Advances in Signal Processing, 2016, 1–14.CrossRef
28.
Zurück zum Zitat Douik, A., Sorour, S., Tembine, H., Al-Naffouri, T. Y., & Alouini, M. S. (2016). A game-theoretic framework for network coding based device-to-device communications. IEEE Transactions on Mobile Computing, 16, 901–917.CrossRef Douik, A., Sorour, S., Tembine, H., Al-Naffouri, T. Y., & Alouini, M. S. (2016). A game-theoretic framework for network coding based device-to-device communications. IEEE Transactions on Mobile Computing, 16, 901–917.CrossRef
29.
Zurück zum Zitat Jeon, S. W., Choi, S. W., Kim, J., & Shin, W. Y. (2016). Cellular-aided device-to-device communication: The benefit of physical layer network coding. IEEE Communications Letters, 20, 2324–2327.CrossRef Jeon, S. W., Choi, S. W., Kim, J., & Shin, W. Y. (2016). Cellular-aided device-to-device communication: The benefit of physical layer network coding. IEEE Communications Letters, 20, 2324–2327.CrossRef
30.
Zurück zum Zitat Lee, J. Y., Bae, S. J., Kwon, Y. M., & Chung, M. Y. (2011). Interference analysis for femtocell deployment in OFDMA systems based on fractional frequency reuse. IEEE Communications Letters, 15, 425–427.CrossRef Lee, J. Y., Bae, S. J., Kwon, Y. M., & Chung, M. Y. (2011). Interference analysis for femtocell deployment in OFDMA systems based on fractional frequency reuse. IEEE Communications Letters, 15, 425–427.CrossRef
31.
Zurück zum Zitat Series, M. (2009). Guidelines for evaluation of radio interface technologies for IMT-Advanced, ed. Series, M. (2009). Guidelines for evaluation of radio interface technologies for IMT-Advanced, ed.
32.
Zurück zum Zitat Xu, C., Song, L., Han, Z., Zhao, Q., Wang, X., Cheng, X., et al. (2013). Efficiency resource allocation for device-to-device underlay communication systems: A reverse iterative combinatorial auction based approach. IEEE Journal on Selected Areas in Communications, 31, 348–358.CrossRef Xu, C., Song, L., Han, Z., Zhao, Q., Wang, X., Cheng, X., et al. (2013). Efficiency resource allocation for device-to-device underlay communication systems: A reverse iterative combinatorial auction based approach. IEEE Journal on Selected Areas in Communications, 31, 348–358.CrossRef
33.
Zurück zum Zitat Castura, J., & Mao, Y. (2007). Rateless coding for wireless relay channels. IEEE transactions on wireless communications, 6, 1638–1642.CrossRef Castura, J., & Mao, Y. (2007). Rateless coding for wireless relay channels. IEEE transactions on wireless communications, 6, 1638–1642.CrossRef
34.
Zurück zum Zitat Luo, Z.-Q., & Yu, W. (2006). An introduction to convex optimization for communications and signal processing. IEEE Journal on selected areas in communications, 24, 1426–1438.CrossRef Luo, Z.-Q., & Yu, W. (2006). An introduction to convex optimization for communications and signal processing. IEEE Journal on selected areas in communications, 24, 1426–1438.CrossRef
35.
Zurück zum Zitat Kalbkhani, H., Solouk, V., & Shayesteh, M. G. (2015). Resource allocation in integrated femto-macrocell networks based on location awareness. IET Communications, 9, 917–932. Kalbkhani, H., Solouk, V., & Shayesteh, M. G. (2015). Resource allocation in integrated femto-macrocell networks based on location awareness. IET Communications, 9, 917–932.
36.
Zurück zum Zitat Kyösti, P., Meinilä, J., & Hentilä, L. (2008). WINNER II channel models, deliverable d1. 1.2 v1. 2. Information Society Technologies (September 30, 2007). Kyösti, P., Meinilä, J., & Hentilä, L. (2008). WINNER II channel models, deliverable d1. 1.2 v1. 2. Information Society Technologies (September 30, 2007).
Metadaten
Titel
Power allocation and relay selection for network-coded D2D communication underlay heterogeneous cellular networks
verfasst von
Hashem Kalbkhani
Mahrokh G. Shayesteh
Publikationsdatum
09.08.2017
Verlag
Springer US
Erschienen in
Telecommunication Systems / Ausgabe 4/2018
Print ISSN: 1018-4864
Elektronische ISSN: 1572-9451
DOI
https://doi.org/10.1007/s11235-017-0367-3

Weitere Artikel der Ausgabe 4/2018

Telecommunication Systems 4/2018 Zur Ausgabe

Neuer Inhalt