Skip to main content
Erschienen in: Telecommunication Systems 3/2021

15.10.2020

Probabilistic distribution learning algorithm based transmit antenna selection and precoding for millimeter wave massive MIMO systems

verfasst von: Salman Khalid, Rashid Mehmood, Waqas bin Abbas, Farhan Khalid, Muhammad Naeem

Erschienen in: Telecommunication Systems | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In modern day communication systems, the massive MIMO architecture plays a pivotal role in enhancing the spatial multiplexing gain, but vice versa the system energy efficiency is compromised. Consequently, resource allocation in-terms of antenna selection becomes inevitable to increase energy efficiency without having any obvious effect or compromising the system spectral efficiency. Optimal antenna selection can be performed using exhaustive search. However, for a massive MIMO architecture, exhaustive search is not a feasible option due to the exponential growth in computational complexity with an increase in the number of antennas. We have proposed a computationally efficient and optimum algorithm based on the probability distribution learning for transmit antenna selection. An estimation of the distribution algorithm is a learning algorithm which learns from the probability distribution of best possible solutions. The proposed solution is computationally efficient and can obtain an optimum solution for the real time antenna selection problem. Since precoding and beamforming are also considered essential techniques to combat path loss incurred due to high frequency communications, so after antenna selection, successive interference cancellation algorithm is adopted for precoding with selected antennas. Simulation results verify that the proposed joint antenna selection and precoding solution is computationally efficient and near optimal in terms of spectral efficiency with respect to exhaustive search scheme. Furthermore, the energy efficiency of the system is also optimized by the proposed algorithm, resulting in performance enhancement of massive MIMO systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rangan, S., Rappaport, T. S., & Erkip, E. (2014) Millimeter-wave cellular wireless networks: Potentials and challenges. In Proceedings of the IEEE (pp. 366–385). Rangan, S., Rappaport, T. S., & Erkip, E. (2014) Millimeter-wave cellular wireless networks: Potentials and challenges. In Proceedings of the IEEE (pp. 366–385).
2.
Zurück zum Zitat Akdeniz, M. R., Liu, Y., Samimi, M. K., et al. (2014). Millimeter wave channel modeling and cellular capacity evaluation. The IEEE Journal on Selected Areas in Communications, 32(6), 1164–1179.CrossRef Akdeniz, M. R., Liu, Y., Samimi, M. K., et al. (2014). Millimeter wave channel modeling and cellular capacity evaluation. The IEEE Journal on Selected Areas in Communications, 32(6), 1164–1179.CrossRef
3.
Zurück zum Zitat Heath, R. W., Gonzlez-Prelcic, N., Rangan, S., et al. (2016). An overview of signal processing techniques for millimeter wave MIMO systems. IEEE Journal of Selected Topics in Signal Processing (JSTSP), 10(3), 436–453.CrossRef Heath, R. W., Gonzlez-Prelcic, N., Rangan, S., et al. (2016). An overview of signal processing techniques for millimeter wave MIMO systems. IEEE Journal of Selected Topics in Signal Processing (JSTSP), 10(3), 436–453.CrossRef
4.
Zurück zum Zitat Han, S., Chih-Lin, I., Xu, Z., et al. (2015). Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G. The IEEE Communications Magazine, 53(1), 186–194.CrossRef Han, S., Chih-Lin, I., Xu, Z., et al. (2015). Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G. The IEEE Communications Magazine, 53(1), 186–194.CrossRef
5.
Zurück zum Zitat El Ayach, O., Rajagopal, S., Abu-Surra, S., Pi, Z., & Heath, R. (2014). Spatially sparse precoding in millimeter wave MIMO systems. IEEE Transactions on Wireless Communications, 13(3), 1499–1513.CrossRef El Ayach, O., Rajagopal, S., Abu-Surra, S., Pi, Z., & Heath, R. (2014). Spatially sparse precoding in millimeter wave MIMO systems. IEEE Transactions on Wireless Communications, 13(3), 1499–1513.CrossRef
6.
Zurück zum Zitat Yu, X., Shen, J., Zhang, J., & Letaief, K. B. (2016). Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems. IEEE Journal of Selected Topics in Signal Processing, 10(3), 485–500.CrossRef Yu, X., Shen, J., Zhang, J., & Letaief, K. B. (2016). Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems. IEEE Journal of Selected Topics in Signal Processing, 10(3), 485–500.CrossRef
7.
Zurück zum Zitat Khan, I., et al. (2019). An efficient precoding algorithm for mmWave massive MIMO systems. Symmetry, 11(9), 1099.CrossRef Khan, I., et al. (2019). An efficient precoding algorithm for mmWave massive MIMO systems. Symmetry, 11(9), 1099.CrossRef
8.
Zurück zum Zitat Gao, X., et al. (2016). Energy-efficient hybrid analog and digital precoding for mmWave MIMO systems with large antenna arrays. IEEE Journal on Selected Areas in Communications, 34(4), 998–1009.CrossRef Gao, X., et al. (2016). Energy-efficient hybrid analog and digital precoding for mmWave MIMO systems with large antenna arrays. IEEE Journal on Selected Areas in Communications, 34(4), 998–1009.CrossRef
9.
Zurück zum Zitat Alluhaibi, O., Ahmed, Q. Z., Wang, J. & Zhu, H. (2017). Hybrid digital-to-analog precoding design for mm-wave systems. In IEEE International Conference on Communications (ICC), Paris (pp. 1–6). Alluhaibi, O., Ahmed, Q. Z., Wang, J. & Zhu, H. (2017). Hybrid digital-to-analog precoding design for mm-wave systems. In IEEE International Conference on Communications (ICC), Paris (pp. 1–6).
10.
Zurück zum Zitat Yi, X., Bo, L., Zhongjiang, Y., Jiancun, F., & Mao, Y. (2019). A general hybrid precoding method for mmWave massive MIMO systems. Radio Engineering, 29(2), 1. Yi, X., Bo, L., Zhongjiang, Y., Jiancun, F., & Mao, Y. (2019). A general hybrid precoding method for mmWave massive MIMO systems. Radio Engineering, 29(2), 1.
11.
Zurück zum Zitat Zhang, D., Wang, Y., Li, X., & Xiang, W. (2017). Hybridly connected structure for hybrid beamforming in mmWave massive MIMO systems. IEEE Transactions on Communications, 66(2), 662674. Zhang, D., Wang, Y., Li, X., & Xiang, W. (2017). Hybridly connected structure for hybrid beamforming in mmWave massive MIMO systems. IEEE Transactions on Communications, 66(2), 662674.
12.
Zurück zum Zitat Liu, X., et al. (2019). Hybrid Precoding for Massive mmWave MIMO Systems. IEEE Access, 7, 3357733586. Liu, X., et al. (2019). Hybrid Precoding for Massive mmWave MIMO Systems. IEEE Access, 7, 3357733586.
13.
Zurück zum Zitat Asaad, S., Rabiei, A. M., & Mller, R. R. (2018). Massive MIMO with antenna selection: Fundamental limits and applications. IEEE Transactions on Wireless Communications, 17(12), 8502–8516.CrossRef Asaad, S., Rabiei, A. M., & Mller, R. R. (2018). Massive MIMO with antenna selection: Fundamental limits and applications. IEEE Transactions on Wireless Communications, 17(12), 8502–8516.CrossRef
14.
Zurück zum Zitat Molisch, A., et al. (2005). Capacity of MIMO systems with antenna selection. IEEE Transaction on Wireless Communication, 4(4), 1759–1772.CrossRef Molisch, A., et al. (2005). Capacity of MIMO systems with antenna selection. IEEE Transaction on Wireless Communication, 4(4), 1759–1772.CrossRef
15.
Zurück zum Zitat Uchida, D., Arai, H., Inoue, Y., & Cho, K. (2010). Antenna selection based on minimum Eigenvalue in dual-polarized directional MIMO antenna. In Proceedings of the IEEE Vehicular Technology Conference (VTC2010-Spring) IEEE (Vol.71, pp. 1–5). Uchida, D., Arai, H., Inoue, Y., & Cho, K. (2010). Antenna selection based on minimum Eigenvalue in dual-polarized directional MIMO antenna. In Proceedings of the IEEE Vehicular Technology Conference (VTC2010-Spring) IEEE (Vol.71, pp. 1–5).
16.
Zurück zum Zitat Yangyang, Z., Gan, Z., Chunlin, J., Kai-Kit, W., Edwards, D. J., & Tiejun, C. (2010). Near-optimal joint antenna selection for amplify-and-forward relay networks. IEEE Transactions on Wireless Communications, 9(8), 2401–2407.CrossRef Yangyang, Z., Gan, Z., Chunlin, J., Kai-Kit, W., Edwards, D. J., & Tiejun, C. (2010). Near-optimal joint antenna selection for amplify-and-forward relay networks. IEEE Transactions on Wireless Communications, 9(8), 2401–2407.CrossRef
17.
Zurück zum Zitat Naeem, M., & Lee, D. C. (2011). Low-complexity joint transmit and receive antenna selection for MIMO systems. Engineering Applications of Artificial Intelligence, 24, 1046–1051.CrossRef Naeem, M., & Lee, D. C. (2011). Low-complexity joint transmit and receive antenna selection for MIMO systems. Engineering Applications of Artificial Intelligence, 24, 1046–1051.CrossRef
18.
Zurück zum Zitat Naeem, M., & Lee, D. C. (2014). A joint antenna and user selection scheme for multiuser MIMO system. Applied Soft Computing, 23, 366–374.CrossRef Naeem, M., & Lee, D. C. (2014). A joint antenna and user selection scheme for multiuser MIMO system. Applied Soft Computing, 23, 366–374.CrossRef
19.
Zurück zum Zitat Hsu, K. N., Wang, C. H., Lee, Y. Y., & Huang, Y. H. (2015). Low complexity hybrid beamforming and precoding for 2D planar antenna array mmWave systems. In IEEE Workshop on Signal Processing Systems (SiPS) (p. 16). Hsu, K. N., Wang, C. H., Lee, Y. Y., & Huang, Y. H. (2015). Low complexity hybrid beamforming and precoding for 2D planar antenna array mmWave systems. In IEEE Workshop on Signal Processing Systems (SiPS) (p. 16).
20.
Zurück zum Zitat Naeem, M., & Lee, D. C. (2009). Near-optimal joint selection of transmit and receive antennas for MIMO systems. 9th International Symposium on Communications and Information Technology (p. 572577). Icheon: South Korea. Naeem, M., & Lee, D. C. (2009). Near-optimal joint selection of transmit and receive antennas for MIMO systems. 9th International Symposium on Communications and Information Technology (p. 572577). Icheon: South Korea.
21.
Zurück zum Zitat Maimaiti, S., Chuai, G., Gao, W. et al. (2019). A low-complexity algorithm for the joint antenna selection and user scheduling in multi-cell multi-user downlink massive MIMO systems. Journal Wireless Communication Network Maimaiti, S., Chuai, G., Gao, W. et al. (2019). A low-complexity algorithm for the joint antenna selection and user scheduling in multi-cell multi-user downlink massive MIMO systems. Journal Wireless Communication Network
22.
Zurück zum Zitat Rajashekar, R., et al. (2019). Transmit antenna subset selection in generalized spatial modulation systems. IEEE Transactions on Vehicular Technology, 68(2), 1979–1983.CrossRef Rajashekar, R., et al. (2019). Transmit antenna subset selection in generalized spatial modulation systems. IEEE Transactions on Vehicular Technology, 68(2), 1979–1983.CrossRef
23.
Zurück zum Zitat Tan, B. S., Li, K. H., & Teh, K. C. (2013). Transmit antenna selection systems: A performance comparison of different types of receiver schemes. IEEE Vehicular Technology Magazine, 8(3), 104–112.CrossRef Tan, B. S., Li, K. H., & Teh, K. C. (2013). Transmit antenna selection systems: A performance comparison of different types of receiver schemes. IEEE Vehicular Technology Magazine, 8(3), 104–112.CrossRef
24.
Zurück zum Zitat Jang, S., Ahn, M., Lee, H., & Lee, I. (2016). Antenna selection schemes in bidirectional full-duplex MIMO systems. IEEE Transactions on Vehicular Technology, 65(12), 10097–10100.CrossRef Jang, S., Ahn, M., Lee, H., & Lee, I. (2016). Antenna selection schemes in bidirectional full-duplex MIMO systems. IEEE Transactions on Vehicular Technology, 65(12), 10097–10100.CrossRef
25.
Zurück zum Zitat Naeem, M., & Lee, D. C. (2013). EDA-based scheduling of users in the MIMO multiple access channel. Wireless Personal Communications, 71, 467–490.CrossRef Naeem, M., & Lee, D. C. (2013). EDA-based scheduling of users in the MIMO multiple access channel. Wireless Personal Communications, 71, 467–490.CrossRef
26.
Zurück zum Zitat Naeem, M., Khwaja, A. S., Anpalagan, A., & Jaseemuddin, M. (2014). Cross entropy optimization for constrained green cooperative cognitive radio network. In IEEE 79th Vehicular Technology Conference (VTC Spring) (pp. 1–5). Seoul. Naeem, M., Khwaja, A. S., Anpalagan, A., & Jaseemuddin, M. (2014). Cross entropy optimization for constrained green cooperative cognitive radio network. In IEEE 79th Vehicular Technology Conference (VTC Spring) (pp. 1–5). Seoul.
27.
Zurück zum Zitat Ahmad, M., Naeem, M., & Iqbal, M. (2019). Estimation of distribution algorithm for joint resource management in D2D communication. Wireless Personal Communication, 1, 1113–1129.CrossRef Ahmad, M., Naeem, M., & Iqbal, M. (2019). Estimation of distribution algorithm for joint resource management in D2D communication. Wireless Personal Communication, 1, 1113–1129.CrossRef
28.
Zurück zum Zitat Abbas, W. B., Gomez-Cuba, F., & Zorzi, M. (2017). Millimeter wave receiver efficiency: A comprehensive comparison of beamforming schemes with low resolution ADCs. IEEE Transactions on Wireless Communications, 16(12), 8131–8146.CrossRef Abbas, W. B., Gomez-Cuba, F., & Zorzi, M. (2017). Millimeter wave receiver efficiency: A comprehensive comparison of beamforming schemes with low resolution ADCs. IEEE Transactions on Wireless Communications, 16(12), 8131–8146.CrossRef
29.
Zurück zum Zitat Alkhateeb, A., et al. (2014). Channel estimation and hybrid precoding for millimeter wave cellular systems. IEEE Journal of Selected Topics in Signal Processing, 8(5), 831–846.CrossRef Alkhateeb, A., et al. (2014). Channel estimation and hybrid precoding for millimeter wave cellular systems. IEEE Journal of Selected Topics in Signal Processing, 8(5), 831–846.CrossRef
30.
Zurück zum Zitat Huang, H., et al. (2019). Deep-learning-based millimeter-wave massive MIMO for hybrid precoding. IEEE Transactions on Vehicular Technology, 68(3), 3027–3032.CrossRef Huang, H., et al. (2019). Deep-learning-based millimeter-wave massive MIMO for hybrid precoding. IEEE Transactions on Vehicular Technology, 68(3), 3027–3032.CrossRef
Metadaten
Titel
Probabilistic distribution learning algorithm based transmit antenna selection and precoding for millimeter wave massive MIMO systems
verfasst von
Salman Khalid
Rashid Mehmood
Waqas bin Abbas
Farhan Khalid
Muhammad Naeem
Publikationsdatum
15.10.2020
Verlag
Springer US
Erschienen in
Telecommunication Systems / Ausgabe 3/2021
Print ISSN: 1018-4864
Elektronische ISSN: 1572-9451
DOI
https://doi.org/10.1007/s11235-020-00728-z

Weitere Artikel der Ausgabe 3/2021

Telecommunication Systems 3/2021 Zur Ausgabe

Neuer Inhalt