Skip to main content
Erschienen in: Water Resources Management 7/2019

07.05.2019

New Approach for Sediment Yield Forecasting with a Two-Phase Feedforward Neuron Network-Particle Swarm Optimization Model Integrated with the Gravitational Search Algorithm

Erschienen in: Water Resources Management | Ausgabe 7/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Predicting sediment yield is an important task for decision-makers in environmental monitoring and water management since the benefits of applying non-linear, artificial intelligence (AI) models for optimal prediction can be far reaching in real-life decision support systems. AI-based models are considered to be favorable predictive tools since the nonlinear nature of suspended sediment data series warrants the utilization of nonlinear predictive methods for feature extraction, and for accurate simulation of suspended sediment load. In this study, Artificial Neural Network (ANN) approaches are employed to estimate the monthly sediment load where the two-phase Feed-forward Neuron Network Particle Swarm Optimization Gravitational Search Algorithm (FNN-PSOGSA) is developed, and then evaluated in respect to 3 distinct algorithms: the Adaptive Neuro-Fuzzy Inference System (ANFIS), Feed-forward Neuron Network (FNN) and the single-phase Feed-forward Neuron Network Particle Swarm Optimization (FNN-PSO). The study is carried out using the monthly rainfall, runoff and sediment data spanning a 10 year period (2000–2009) where about 75% of data are used in model training phase, 25% in testing phase. Three statistical performance criteria namely: the mean absolute error (MAE), Nash-Sutcliffe coefficient (NSE) and the Willmott’s Index (WI) and diagnostic plots visualizing the tested results are used to evaluate the performance of four AI-based models. The results reveal that the objective model (the two-phase FNN-PSOGSA model) and the single-phase FNN-PSO model yielded more precise results compared to the other forecast models. This result accorded to an NSE value of 0.612 (for the FNN-PSOGSA model) vs. an NS value of 0.500, 0.331 and 0.244 for the FNN-PSO, FNN and ANFIS models, and WI = 0.832 vs. 0.771, 0.692 and 0.726, respectively The study also demonstrated that the FNN model generated slightly better results than the ANFIS model for the estimation of sediment load data but overall, the two-phase FNN-PSOGSA model outperformed all comparison models. In light of the superior performance, this research advocates that the fully-optimized two-phase FNN-PSOGSA model can be explored as a decision-support tool for monthly sediment load forecasting using the rainfall and runoff values as the predictor datasets.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Asadi S, Shahrabi J, Abbaszadeh P, Tabanmehr S (2013) A new hybrid artificial neural networks for rainfall–runoff process modeling. Neurocomputing 121:470–480CrossRef Asadi S, Shahrabi J, Abbaszadeh P, Tabanmehr S (2013) A new hybrid artificial neural networks for rainfall–runoff process modeling. Neurocomputing 121:470–480CrossRef
Zurück zum Zitat Aytek A, Asce M, Alp M (2008) An application of artificial intelligence for rainfall–runoff modeling. J Earth Syst Sci 117(2):145–155CrossRef Aytek A, Asce M, Alp M (2008) An application of artificial intelligence for rainfall–runoff modeling. J Earth Syst Sci 117(2):145–155CrossRef
Zurück zum Zitat Behrang M, Assareh E, Ghalambaz M, Assari M, Noghrehabadi A (2011) Forecasting future oil demand in Iran using GSA (gravitational search algorithm). Energy 36:5649–5654CrossRef Behrang M, Assareh E, Ghalambaz M, Assari M, Noghrehabadi A (2011) Forecasting future oil demand in Iran using GSA (gravitational search algorithm). Energy 36:5649–5654CrossRef
Zurück zum Zitat Besaw LE, Rizzo DM, Bierman PR, Hackett WR (2010) Advances in ungauged streamflow prediction using artificial neural networks. J Hydrol 386:27–37CrossRef Besaw LE, Rizzo DM, Bierman PR, Hackett WR (2010) Advances in ungauged streamflow prediction using artificial neural networks. J Hydrol 386:27–37CrossRef
Zurück zum Zitat Chai T, Draxler RRm (2014) Root mean square error (RMSE) or mean absolute error (MAE)? Arguments against avoiding RMSE in the literature; Geosci. Model Dev 7:1247–1250CrossRef Chai T, Draxler RRm (2014) Root mean square error (RMSE) or mean absolute error (MAE)? Arguments against avoiding RMSE in the literature; Geosci. Model Dev 7:1247–1250CrossRef
Zurück zum Zitat Chang FJ, Chang LC, Huang HL (2002) Real-time recurrent learning neural network for stream-flow forecasting. Hydrol Process 16(13):2577–2588CrossRef Chang FJ, Chang LC, Huang HL (2002) Real-time recurrent learning neural network for stream-flow forecasting. Hydrol Process 16(13):2577–2588CrossRef
Zurück zum Zitat Coulibaly P, Anctil F, Bobée B (2000) Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. J Hydrol 230(3–4):244–257CrossRef Coulibaly P, Anctil F, Bobée B (2000) Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. J Hydrol 230(3–4):244–257CrossRef
Zurück zum Zitat Diamantopoulou MJ, Papamichail DM, Antonopoulos VZ (2005) The use of a neural network technique for the prediction of water quality parameters. Oper Res 5(1):115–125 Diamantopoulou MJ, Papamichail DM, Antonopoulos VZ (2005) The use of a neural network technique for the prediction of water quality parameters. Oper Res 5(1):115–125
Zurück zum Zitat Eslamian SS, Gohari SA, Zareian MJ, Firoozfar A (2012) Estimating penman–Monteith reference evapotranspiration using artificial neural networks and genetic algorithm: a case study. Arab J Sci Eng 37(4):935–944CrossRef Eslamian SS, Gohari SA, Zareian MJ, Firoozfar A (2012) Estimating penman–Monteith reference evapotranspiration using artificial neural networks and genetic algorithm: a case study. Arab J Sci Eng 37(4):935–944CrossRef
Zurück zum Zitat Gaur S, Ch S, Graillot D, Chahar BR, Kumar DN (2013) Application of artificial neural networks and particle swarm optimization for the management of groundwater resources. Water Resour Manag 27:927–941CrossRef Gaur S, Ch S, Graillot D, Chahar BR, Kumar DN (2013) Application of artificial neural networks and particle swarm optimization for the management of groundwater resources. Water Resour Manag 27:927–941CrossRef
Zurück zum Zitat Houria B, Mahdi K, Zohra TF (2014) PSO-ANNs based suspended sediment concentration in Ksob basin, Algeria. J Eng Technol Res 6:129–136 Houria B, Mahdi K, Zohra TF (2014) PSO-ANNs based suspended sediment concentration in Ksob basin, Algeria. J Eng Technol Res 6:129–136
Zurück zum Zitat Huo Z, Feng S, Kang S, Dai X (2012) Artificial neural network models for reference evapotranspiration in an arid area of Northwest China. J Arid Environ 82:81–90CrossRef Huo Z, Feng S, Kang S, Dai X (2012) Artificial neural network models for reference evapotranspiration in an arid area of Northwest China. J Arid Environ 82:81–90CrossRef
Zurück zum Zitat Jain SK, Das D, Srivastava DK (1999) Application of ANN for reservoir inflow prediction and operation. J Water Resour Planning Mgmt ASCE 125(5):263–271CrossRef Jain SK, Das D, Srivastava DK (1999) Application of ANN for reservoir inflow prediction and operation. J Water Resour Planning Mgmt ASCE 125(5):263–271CrossRef
Zurück zum Zitat Jang JS (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665–685CrossRef Jang JS (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665–685CrossRef
Zurück zum Zitat Juan C, Genxu W, Tianxu M, Xiangyang S (2017) ANN model-based simulation of the runoff variation in response to climate change on the Qinghai-Tibet plateau, China. Advances in meteorology, volume 2017 article ID 9451802, 13 pages Juan C, Genxu W, Tianxu M, Xiangyang S (2017) ANN model-based simulation of the runoff variation in response to climate change on the Qinghai-Tibet plateau, China. Advances in meteorology, volume 2017 article ID 9451802, 13 pages
Zurück zum Zitat Khalil B, Ouarda TBMJ, St-Hilaire A (2011) Estimation of water quality characteristics at ungauged sites using artificial neural networks and canonical correlation analysis. J Hydrol 405:277–287CrossRef Khalil B, Ouarda TBMJ, St-Hilaire A (2011) Estimation of water quality characteristics at ungauged sites using artificial neural networks and canonical correlation analysis. J Hydrol 405:277–287CrossRef
Zurück zum Zitat Lal R (2001) Soil degradation by erosion. Land Degrad Dev 12(6):519–539CrossRef Lal R (2001) Soil degradation by erosion. Land Degrad Dev 12(6):519–539CrossRef
Zurück zum Zitat Lu WZ, Xue Y (2014) Prediction of particulate matter at street level using artificial neural networks coupling with chaotic particle swarm optimization algorithm. Build Environ 78:111–117CrossRef Lu WZ, Xue Y (2014) Prediction of particulate matter at street level using artificial neural networks coupling with chaotic particle swarm optimization algorithm. Build Environ 78:111–117CrossRef
Zurück zum Zitat Maier HR, Dandy GC (1996) The use of artificial neural networks for the prediction of water quality parameters. Water Resour Res 32(4):1013–1022CrossRef Maier HR, Dandy GC (1996) The use of artificial neural networks for the prediction of water quality parameters. Water Resour Res 32(4):1013–1022CrossRef
Zurück zum Zitat Marzband M, Ghadimi M, Sumper A, Domínguez-García JL (2014) Experimental validation of a real-time energy management system using multi-period gravitational search algorithm for microgrids in islanded mode. Appl Energy 128:164–174CrossRef Marzband M, Ghadimi M, Sumper A, Domínguez-García JL (2014) Experimental validation of a real-time energy management system using multi-period gravitational search algorithm for microgrids in islanded mode. Appl Energy 128:164–174CrossRef
Zurück zum Zitat Mehr AD, Kahya E, Şahin A, Nazemosadat MJ (2015) Successive-station monthly streamflow prediction using different artificial neural network algorithms. Int J Environ Sci Technol 12(7):2191–2200CrossRef Mehr AD, Kahya E, Şahin A, Nazemosadat MJ (2015) Successive-station monthly streamflow prediction using different artificial neural network algorithms. Int J Environ Sci Technol 12(7):2191–2200CrossRef
Zurück zum Zitat Melesse AM, Ahmad S, McClain ME, Wang X, Lim YH (2011) Suspended sediment load prediction of river systems: an artificial neural network approach. Agric Water Manag 98:855–866CrossRef Melesse AM, Ahmad S, McClain ME, Wang X, Lim YH (2011) Suspended sediment load prediction of river systems: an artificial neural network approach. Agric Water Manag 98:855–866CrossRef
Zurück zum Zitat Mirjalili S, Hashim SZM, Sardroudi HM (2012) Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm. Appl Math Comput 218:11125–11137 Mirjalili S, Hashim SZM, Sardroudi HM (2012) Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm. Appl Math Comput 218:11125–11137
Zurück zum Zitat Moon S, Kang B (2016) Terrestrial sediment yield projection under the bias-corrected nonstationary scenarios with hydrologic extremes. Water 8:433–455CrossRef Moon S, Kang B (2016) Terrestrial sediment yield projection under the bias-corrected nonstationary scenarios with hydrologic extremes. Water 8:433–455CrossRef
Zurück zum Zitat Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models, part I - a discussion of principles. J Hydrol 10:282–290CrossRef Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models, part I - a discussion of principles. J Hydrol 10:282–290CrossRef
Zurück zum Zitat Papa JP et al. (2011) Feature selection through gravitational search algorithm. Acoustics, speech and signal processing (ICASSP), 2011 IEEE international conference on, IEEE: 2052–2055 Papa JP et al. (2011) Feature selection through gravitational search algorithm. Acoustics, speech and signal processing (ICASSP), 2011 IEEE international conference on, IEEE: 2052–2055
Zurück zum Zitat Qasem SN, Ebtehaj I, Bonakdari H (2017) Potential of radial basis function network with particle swarm optimization for prediction of sediment transport at the limit of deposition in a clean pipe Sustainable, Water Resources Management: 1–11 Qasem SN, Ebtehaj I, Bonakdari H (2017) Potential of radial basis function network with particle swarm optimization for prediction of sediment transport at the limit of deposition in a clean pipe Sustainable, Water Resources Management: 1–11
Zurück zum Zitat Radosavljević J, Klimenta D, Jevtić M, Arsić N (2015) Optimal power flow using a hybrid optimization algorithm of particle swarm optimization and gravitational search algorithm. Electric Power Components Syst 43:1958–1970CrossRef Radosavljević J, Klimenta D, Jevtić M, Arsić N (2015) Optimal power flow using a hybrid optimization algorithm of particle swarm optimization and gravitational search algorithm. Electric Power Components Syst 43:1958–1970CrossRef
Zurück zum Zitat Rajurkar MP, Kothyari UC, Chaube UC (2002) Artificial neural networks for daily rainfall—runoff modelling. Hydrol Sci J 47(6):865–877CrossRef Rajurkar MP, Kothyari UC, Chaube UC (2002) Artificial neural networks for daily rainfall—runoff modelling. Hydrol Sci J 47(6):865–877CrossRef
Zurück zum Zitat Rashedi E, Pour HN, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179:2232–2248CrossRef Rashedi E, Pour HN, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179:2232–2248CrossRef
Zurück zum Zitat Saad M, Bigras P, Turgeon A, Duquette R (1996) Fuzzy learning decomposition for the scheduling of hydroelectric power systems. Water Resour Res 32(1):179–186CrossRef Saad M, Bigras P, Turgeon A, Duquette R (1996) Fuzzy learning decomposition for the scheduling of hydroelectric power systems. Water Resour Res 32(1):179–186CrossRef
Zurück zum Zitat Sattari MT, Yurekli K, Pal M (2012) Performance evaluation of artificial neural network approaches in forecasting reservoir inflow. Appl Math Model 36(6):2649–2657CrossRef Sattari MT, Yurekli K, Pal M (2012) Performance evaluation of artificial neural network approaches in forecasting reservoir inflow. Appl Math Model 36(6):2649–2657CrossRef
Zurück zum Zitat Tayebiyan A, Mohammad TA, Ghazali AH, Mashohor S (2016) Artificial neural network for modelling rainfall-runoff. Pertanika J Sci Technol 24(2):319–330 Tayebiyan A, Mohammad TA, Ghazali AH, Mashohor S (2016) Artificial neural network for modelling rainfall-runoff. Pertanika J Sci Technol 24(2):319–330
Zurück zum Zitat Xiong Y, Luo Y, Wang Y, Traore S, Xu J, Jiao X, Fipps G (2016) Forecasting daily reference evapotranspiration using the Blaney–Criddle model and temperature forecasts. J Arch Agro Soil Science 62(6):790–805CrossRef Xiong Y, Luo Y, Wang Y, Traore S, Xu J, Jiao X, Fipps G (2016) Forecasting daily reference evapotranspiration using the Blaney–Criddle model and temperature forecasts. J Arch Agro Soil Science 62(6):790–805CrossRef
Zurück zum Zitat Zealand CM, Burn DH, Simonovic SP (1999) Short term streamflow forecasting using artificial neural networks. J Hydrol 214(1–4):32–48CrossRef Zealand CM, Burn DH, Simonovic SP (1999) Short term streamflow forecasting using artificial neural networks. J Hydrol 214(1–4):32–48CrossRef
Metadaten
Titel
New Approach for Sediment Yield Forecasting with a Two-Phase Feedforward Neuron Network-Particle Swarm Optimization Model Integrated with the Gravitational Search Algorithm
Publikationsdatum
07.05.2019
Erschienen in
Water Resources Management / Ausgabe 7/2019
Print ISSN: 0920-4741
Elektronische ISSN: 1573-1650
DOI
https://doi.org/10.1007/s11269-019-02265-0

Weitere Artikel der Ausgabe 7/2019

Water Resources Management 7/2019 Zur Ausgabe