Skip to main content
Erschienen in: Wireless Personal Communications 2/2021

20.01.2021

Performance Analysis of Learning Rate Parameter on Prediction of Signal Power Loss for Network Optimization and Better Generalization

verfasst von: Virginia C. Ebhota, Viranjay M. Srivastava

Erschienen in: Wireless Personal Communications | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This research work explores the neural network learning capabilities by using a multi-layer perceptron artificial neural network to predict signal power loss by means of dataset from long term evolution network. The analysis of the effect of the learning rate parameter and the adoption of early stopping method during network training have been executed by using varied values of learning rate to ascertain the best learning rate during the neural network training. Also, there were neural network training without the application of learning rate and early stopping method and comparison have been made with the output results as shown in different tables. Output results comparisons have been performed using training regression and performance mean squared error. Two back propagation training algorithms, the Levenberg–Marquardt and the Bayesian Regularization algorithms were employed for the network training and comparison of their prediction abilities examined using same values of learning rates and on application of early stopping method as well as without learning rate and without early stopping method. The result shows an optimal performance of the neural network model on application of 0.005 learning rate and using 75%:15%:15% early stopping method with training regression 0.99267 and performance mean squared error 2.47 using Levenberg–Marquardt and training regression 0.99488 and performance mean squared error of 1.910 using Bayesian Regularization algorithms, respectively. Without application of learning rate and early stopping method, training the network using Levenberg–Marquardt algorithm gives training regression of 0.97111 and performance mean squared error of 7.38 using Levenberg–Marquart algorithm and training regression of 0.99248 and performance mean squared error of 4.42 using Bayesian Regularization algorithm. The margin between the two output results demonstrates the impact and importance of learning rate parameter as well as adopting early stopping method for neural network training for network optimization and better network generalization.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ebhota, V. C., Isabona, J., & Srivastava, V. M. (2018). Investigating signal power loss prediction in a metropolitan island using ADALINE and multi-layer perceptron back propagation networks. International Journal of Applied Engineering Research, 13, 13409–13420. Ebhota, V. C., Isabona, J., & Srivastava, V. M. (2018). Investigating signal power loss prediction in a metropolitan island using ADALINE and multi-layer perceptron back propagation networks. International Journal of Applied Engineering Research, 13, 13409–13420.
2.
Zurück zum Zitat Neskovic, N. N. (2010). Micro-cell electric field strength prediction model based upon artificial neural networks. International Journal of Electronics and Communication, 64, 733–738.CrossRef Neskovic, N. N. (2010). Micro-cell electric field strength prediction model based upon artificial neural networks. International Journal of Electronics and Communication, 64, 733–738.CrossRef
3.
Zurück zum Zitat Stergiou, C., & Siganos, D. (1996). Neural networks. Sunrise Journal, 4(11), 1–1.MathSciNet Stergiou, C., & Siganos, D. (1996). Neural networks. Sunrise Journal, 4(11), 1–1.MathSciNet
4.
Zurück zum Zitat Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. In The 3rd International Conference on Learning Representations (ICLR), 1–14. Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. In The 3rd International Conference on Learning Representations (ICLR), 1–14.
5.
Zurück zum Zitat Wei, J. (2019). Forget the learning rate, decay loss. International Journal of Machine Learning and Cybernetics, 9(3), 267–272. Wei, J. (2019). Forget the learning rate, decay loss. International Journal of Machine Learning and Cybernetics, 9(3), 267–272.
6.
Zurück zum Zitat Caruana, R., Lawrence, S., & Giles, C. L. (2001). Overfitting in neural nets: Backpropagation, conjugate gradient, and early stopping. In Neural information processing systems (pp. 402–408). Caruana, R., Lawrence, S., & Giles, C. L. (2001). Overfitting in neural nets: Backpropagation, conjugate gradient, and early stopping. In Neural information processing systems (pp. 402–408).
7.
Zurück zum Zitat De Veaux, R. D., Psichogios, D. C., & Ungar, L. H. (1993) A tale of two non parametric estimation schemes: MARS and neural networks. In Fourth international workshop on articial intelligence and statistics. De Veaux, R. D., Psichogios, D. C., & Ungar, L. H. (1993) A tale of two non parametric estimation schemes: MARS and neural networks. In Fourth international workshop on articial intelligence and statistics.
8.
Zurück zum Zitat Anyama, O. U., & Igiri, C. P. (2015). An application of linear regression & artificial neural network model in the NFL result prediction. International Journal of Engineering Research & Technology, 4, 457–461.CrossRef Anyama, O. U., & Igiri, C. P. (2015). An application of linear regression & artificial neural network model in the NFL result prediction. International Journal of Engineering Research & Technology, 4, 457–461.CrossRef
9.
Zurück zum Zitat Igiri, C. P., & Nwachukwu, E. O. (2014). An improved prediction system for football a match result. Journal of Engineering, 4, 12–20. Igiri, C. P., & Nwachukwu, E. O. (2014). An improved prediction system for football a match result. Journal of Engineering, 4, 12–20.
10.
Zurück zum Zitat Simon, H. (1998). Neural networks—A comprehensive foundation (2nd ed.). Englewood Cliffs: Prentice-Hall.MATH Simon, H. (1998). Neural networks—A comprehensive foundation (2nd ed.). Englewood Cliffs: Prentice-Hall.MATH
11.
Zurück zum Zitat Bengio, Y. (2012). Practical recommendations for gradient-based training of deep architectures. Neural Networks: Tricks of the Trade, 7700, 437–478. Bengio, Y. (2012). Practical recommendations for gradient-based training of deep architectures. Neural Networks: Tricks of the Trade, 7700, 437–478.
12.
Zurück zum Zitat White, H. (1989). Learning in neural networks: A statistical perspective. Neural Computation, 1, 425–464.CrossRef White, H. (1989). Learning in neural networks: A statistical perspective. Neural Computation, 1, 425–464.CrossRef
13.
Zurück zum Zitat Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations by error propagation (1st ed., Vol. 1). Cambridge, Massachusetts: MIT Press.MATH Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations by error propagation (1st ed., Vol. 1). Cambridge, Massachusetts: MIT Press.MATH
14.
Zurück zum Zitat Isabona, J., & Srivastava, V. M., (2016). “Hybrid neural network approach for predicting signal propagation loss in urban microcells. In Presented at the in proceedings of the 2016 IEEE region 10 humanitarian technology conference (R10-HTC), Agra, India. Isabona, J., & Srivastava, V. M., (2016). “Hybrid neural network approach for predicting signal propagation loss in urban microcells. In Presented at the in proceedings of the 2016 IEEE region 10 humanitarian technology conference (R10-HTC), Agra, India.
15.
Zurück zum Zitat Ebhota, V. C., Isabona, J., & Srivastava, V. M. (2019). Environment-adaptation based hybrid neural network predictor for signal propagation loss prediction in cluttered and open urban microcells. Wireless Personal Communication, 104(3), 935–948.CrossRef Ebhota, V. C., Isabona, J., & Srivastava, V. M. (2019). Environment-adaptation based hybrid neural network predictor for signal propagation loss prediction in cluttered and open urban microcells. Wireless Personal Communication, 104(3), 935–948.CrossRef
16.
Zurück zum Zitat Hopfield, J. J. (1987) Learning algorithms and probability distributions in feed-forward and feedback networks. In Proceedings of National Academy of Sciences, USA (Vol. 84, No. 23, pp. 8429–8433). Hopfield, J. J. (1987) Learning algorithms and probability distributions in feed-forward and feedback networks. In Proceedings of National Academy of Sciences, USA (Vol. 84, No. 23, pp. 8429–8433).
17.
Zurück zum Zitat Costa, M. A., Braga, A. P., & Menezes, B. R. (2007). Improving generation of MLPs with sliding mode control and the Levenberg–Marquardt algorithm. Neurocomputing, 70, 1342–1347.CrossRef Costa, M. A., Braga, A. P., & Menezes, B. R. (2007). Improving generation of MLPs with sliding mode control and the Levenberg–Marquardt algorithm. Neurocomputing, 70, 1342–1347.CrossRef
18.
Zurück zum Zitat Tetko, I. V., Livingstone, D. J., & Luik, A. I. (1995). Neural network studies: Comparison of overfitting and overtraining. Journal of Chemical Information and Computer Sciences, 35, 826–833.CrossRef Tetko, I. V., Livingstone, D. J., & Luik, A. I. (1995). Neural network studies: Comparison of overfitting and overtraining. Journal of Chemical Information and Computer Sciences, 35, 826–833.CrossRef
19.
Zurück zum Zitat Hornik, K., Stinchcombe, M., & White, H. (1989). Multi-layer feedforward networks are universal approximators. Neural Networks, 2, 359–366.CrossRef Hornik, K., Stinchcombe, M., & White, H. (1989). Multi-layer feedforward networks are universal approximators. Neural Networks, 2, 359–366.CrossRef
20.
Zurück zum Zitat Neskovic, A., & Neskovic, N. (2010). Microcell electric field strength prediction model based upon artificial neural networks. International Journal Electronics and Communication, 64, 733–738.CrossRef Neskovic, A., & Neskovic, N. (2010). Microcell electric field strength prediction model based upon artificial neural networks. International Journal Electronics and Communication, 64, 733–738.CrossRef
21.
Zurück zum Zitat Sotirios, P. S., & Siakavara, K. (2015). Mobile radio propagation path loss prediction using artificial neural networks with optimal input information for urban environments. International Journal of Electronics and Communications, 69, 1453–1463.CrossRef Sotirios, P. S., & Siakavara, K. (2015). Mobile radio propagation path loss prediction using artificial neural networks with optimal input information for urban environments. International Journal of Electronics and Communications, 69, 1453–1463.CrossRef
22.
Zurück zum Zitat Tammam, A. B., Rabie, A., & Mustafa, K. S. (2015). Neural network approach to model the propagation path loss for great tripoli area at 900, 1800, and 2100 MHz bands. In 16th International conference on sciences and techniques of automatic control & computer engineering (pp. 793–798). Tammam, A. B., Rabie, A., & Mustafa, K. S. (2015). Neural network approach to model the propagation path loss for great tripoli area at 900, 1800, and 2100 MHz bands. In 16th International conference on sciences and techniques of automatic control & computer engineering (pp. 793–798).
23.
Zurück zum Zitat MacKay, D. J. C. (1992). Bayesian interpolation. Neural Computation, 4(3), 415–447.CrossRef MacKay, D. J. C. (1992). Bayesian interpolation. Neural Computation, 4(3), 415–447.CrossRef
24.
Zurück zum Zitat Foresee, F. D., & Hagan, M. T. (1997). Gauss–Newton approximation to Bayesian regularization. In Proceedings of the international joint conference on neural networks. Foresee, F. D., & Hagan, M. T. (1997). Gauss–Newton approximation to Bayesian regularization. In Proceedings of the international joint conference on neural networks.
25.
Zurück zum Zitat Haykin, S. (1999). Neural networks. A comprehensive foundation (2nd ed.). Englewood Cliffs, NJ, USA: Prentice-Hall.MATH Haykin, S. (1999). Neural networks. A comprehensive foundation (2nd ed.). Englewood Cliffs, NJ, USA: Prentice-Hall.MATH
26.
Zurück zum Zitat Ebhota, V. C., Isabona, J., & Srivastava, V. M. (2017). Signal power loss prediction based on artificial neural networks in microcell environment. In 3rd IEEE international conference on electro-technology for national development (IEEE NIGERCON), Owerri, Nigeria, (pp. 250–257). Ebhota, V. C., Isabona, J., & Srivastava, V. M. (2017). Signal power loss prediction based on artificial neural networks in microcell environment. In 3rd IEEE international conference on electro-technology for national development (IEEE NIGERCON), Owerri, Nigeria, (pp. 250–257).
27.
Zurück zum Zitat Jin, W., Li, Z. J., Wei, L. S., & Zhen, H. (2000). The improvements of BP neural network learning algorithm. In 5th International conference on signal processing proceedings, Beijing (pp. 1647–1649). Jin, W., Li, Z. J., Wei, L. S., & Zhen, H. (2000). The improvements of BP neural network learning algorithm. In 5th International conference on signal processing proceedings, Beijing (pp. 1647–1649).
28.
Zurück zum Zitat Ebhota, V. C., Isabona, J., & Srivastava, V. M. (2018). Improved adaptive signal power loss prediction using combined vector statistics based smoothing and neural network approach. International Journal on Progress in Electromagnetics Research C (PIER C), 82, 155–169.CrossRef Ebhota, V. C., Isabona, J., & Srivastava, V. M. (2018). Improved adaptive signal power loss prediction using combined vector statistics based smoothing and neural network approach. International Journal on Progress in Electromagnetics Research C (PIER C), 82, 155–169.CrossRef
29.
Zurück zum Zitat Isabona, J., & Srivastava, V. M. (2017). Coverage and link quality trends in suburban mobile broadband HSPA network environments. Wireless Personal Communication (WPC), 95(4), 3955–3968.CrossRef Isabona, J., & Srivastava, V. M. (2017). Coverage and link quality trends in suburban mobile broadband HSPA network environments. Wireless Personal Communication (WPC), 95(4), 3955–3968.CrossRef
30.
Zurück zum Zitat Tetko, I. V., Livingstone, D. J., & Luik, A. I. (1995). Neural network studies. 1. Comparison of overfitting and overtraining. Journal of Chemical Information and Computer Sciences, 35(5), 826–833.CrossRef Tetko, I. V., Livingstone, D. J., & Luik, A. I. (1995). Neural network studies. 1. Comparison of overfitting and overtraining. Journal of Chemical Information and Computer Sciences, 35(5), 826–833.CrossRef
Metadaten
Titel
Performance Analysis of Learning Rate Parameter on Prediction of Signal Power Loss for Network Optimization and Better Generalization
verfasst von
Virginia C. Ebhota
Viranjay M. Srivastava
Publikationsdatum
20.01.2021
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 2/2021
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-08061-z

Weitere Artikel der Ausgabe 2/2021

Wireless Personal Communications 2/2021 Zur Ausgabe

Neuer Inhalt