Skip to main content
Erschienen in: Wireless Personal Communications 3/2022

19.04.2022

Machine Learning Techniques and Breast Cancer Prediction: A Review

verfasst von: Gagandeep Kaur, Ruchika Gupta, Nistha Hooda, Nidhi Rani Gupta

Erschienen in: Wireless Personal Communications | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cancer is one of the most prevalent diseases in humans, both in terms of incidence and fatality. Cancer care is a growing area of focus for developing interventions to improve the overall quality of life and longevity. Physical exercise has been continuously identified as a critical component of rehabilitation for a variety of chronic conditions and has been shown to improve first-class lifestyles and decrease all-cause mortality. Recent observational research suggests that moderate amounts of physical activity may also reduce the probability of dying from cancer, implying that exercise may be a beneficial strategy to improve not only exceptional but also standard survival. The classification of cancer modalities using machine learning modeling has been extensively discussed in this research work. This work helps contemporary and future researchers to build a foundation and conceptualize the technological factors involved in cancer research.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Latest global cancer data, World Health Organization (IARC), 2018. Latest global cancer data, World Health Organization (IARC), 2018.
2.
Zurück zum Zitat World Health Organization. Global Health Observatory. Geneva: World Health Organi- zation; 2018. who.int/gho/database/en/. Accessed June 21, 2018. World Health Organization. Global Health Observatory. Geneva: World Health Organi- zation; 2018. who.int/gho/database/en/. Accessed June 21, 2018.
5.
Zurück zum Zitat Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality world- wide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394–424. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality world- wide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394–424.
6.
Zurück zum Zitat Kaur, R., & Sinha, A. K. (2013). Green revolution and its impact on health: An analysis. Global warming, human factors and environment: Anthropological perspectives, pp. 264–273. Kaur, R., & Sinha, A. K. (2013). Green revolution and its impact on health: An analysis. Global warming, human factors and environment: Anthropological perspectives, pp. 264–273.
7.
Zurück zum Zitat Bharathi, A. K. (2014). Investigation on Cancer Classification Using Machine Learning Approaches. Journal of biomaterials and tissue engineering, 4, 492–500.CrossRef Bharathi, A. K. (2014). Investigation on Cancer Classification Using Machine Learning Approaches. Journal of biomaterials and tissue engineering, 4, 492–500.CrossRef
8.
Zurück zum Zitat Saleh, D. T., Attia, A. & Shaker, O. (2016) Studying Combined Breast Cancer biomarkers using Machine Learning techniques. In 2016 IEEE 14TH International symposium on applied machine intelligence and informatics (SAMI) (pp. 247-251.) Saleh, D. T., Attia, A. & Shaker, O. (2016) Studying Combined Breast Cancer biomarkers using Machine Learning techniques. In 2016 IEEE 14TH International symposium on applied machine intelligence and informatics (SAMI) (pp. 247-251.)
9.
Zurück zum Zitat Jin, X., Xu, A., Bie, R., Guo, P., Li, J., Yang, Q., & Tan, A. H. (Eds.) (2006). Machine learning techniques and Chi-square feature selection for cancer classification using SAGE gene expression profiles. In Data mining for biomedical applications, proceedings (vol. 3916, pp. 106–115). Jin, X., Xu, A., Bie, R., Guo, P., Li, J., Yang, Q., & Tan, A. H. (Eds.) (2006). Machine learning techniques and Chi-square feature selection for cancer classification using SAGE gene expression profiles. In Data mining for biomedical applications, proceedings (vol. 3916, pp. 106–115).
10.
Zurück zum Zitat Yoo, C., & Gernaey, K. V. (2008). Classification and diagnostic output prediction of cancer using gene expression profiling and supervised machine learning algorithms. Journal of Chemical Engineering of Japan, 41, 898–914.CrossRef Yoo, C., & Gernaey, K. V. (2008). Classification and diagnostic output prediction of cancer using gene expression profiling and supervised machine learning algorithms. Journal of Chemical Engineering of Japan, 41, 898–914.CrossRef
11.
Zurück zum Zitat Firoozbakht, F., Rezaeian, I., Porter, L. & Rueda, L. (2014). Breast cancer subtype identifi- cation using machine learning techniques. In 2014 IEEE 4TH International conference on computational advances in bio and medical sciences (ICCABS). Firoozbakht, F., Rezaeian, I., Porter, L. & Rueda, L. (2014). Breast cancer subtype identifi- cation using machine learning techniques. In 2014 IEEE 4TH International conference on computational advances in bio and medical sciences (ICCABS).
12.
Zurück zum Zitat Jeon, J., Nim, S., Teyra, J., Datti, A., Wrana, J. L., Sidhu, S. S., et al. (2014). A systematic approach to identify novel cancer drug targets using machine learning, inhibitor design and high-throughput screening. Genome Medicine, 6, 1–18. CrossRef Jeon, J., Nim, S., Teyra, J., Datti, A., Wrana, J. L., Sidhu, S. S., et al. (2014). A systematic approach to identify novel cancer drug targets using machine learning, inhibitor design and high-throughput screening. Genome Medicine, 6, 1–18. CrossRef
13.
Zurück zum Zitat Asri, H., Mousannif, H., Al Moatassime, H., & Noel, T. (2016). Using machine learning algorithms for breast cancer risk prediction and diagnosis. Procedia Computer Science, 83, 1064–1069.CrossRef Asri, H., Mousannif, H., Al Moatassime, H., & Noel, T. (2016). Using machine learning algorithms for breast cancer risk prediction and diagnosis. Procedia Computer Science, 83, 1064–1069.CrossRef
14.
Zurück zum Zitat Eshlaghy, A. T., Poorebrahimi, A., Ebrahimi, M., Razavi, A. R., & Ahmad, L. G. (2013). Using three ma- chine learning techniques for predicting breast cancer recurrence. Journal of Health and Medical Informatics, 4, 124. Eshlaghy, A. T., Poorebrahimi, A., Ebrahimi, M., Razavi, A. R., & Ahmad, L. G. (2013). Using three ma- chine learning techniques for predicting breast cancer recurrence. Journal of Health and Medical Informatics, 4, 124.
17.
Zurück zum Zitat Fadzil, A., Isa, N. A. M., Hussain, Z., Osman, M. K., & Sulaiman, S. N. (2015). A GA-based feature selection and parameter optimization of an ANN in diagnosing breast cancer. Pattern Analysis and Applications, 18(4), 861–870.MathSciNetCrossRef Fadzil, A., Isa, N. A. M., Hussain, Z., Osman, M. K., & Sulaiman, S. N. (2015). A GA-based feature selection and parameter optimization of an ANN in diagnosing breast cancer. Pattern Analysis and Applications, 18(4), 861–870.MathSciNetCrossRef
18.
Zurück zum Zitat Dubey, A. K., Gupta, U., & Jain, S. (2016). Analysis of k-means clustering approach on the breast cancer Wisconsin dataset. International journal of computer assisted radiology and surgery, 11(11), 2033–2047.CrossRef Dubey, A. K., Gupta, U., & Jain, S. (2016). Analysis of k-means clustering approach on the breast cancer Wisconsin dataset. International journal of computer assisted radiology and surgery, 11(11), 2033–2047.CrossRef
19.
Zurück zum Zitat Ding, C., & He, X. (2004, July). K-means clustering via principal component analysis. In Proceedings of the twenty-first international conference on Machine learning (p. 29). ACM. Ding, C., & He, X. (2004, July). K-means clustering via principal component analysis. In Proceedings of the twenty-first international conference on Machine learning (p. 29). ACM.
20.
Zurück zum Zitat Kramer, M. A. (1992). Autoassociative neural networks. Computers & chemical engi- neering, 16(4), 313–328.CrossRef Kramer, M. A. (1992). Autoassociative neural networks. Computers & chemical engi- neering, 16(4), 313–328.CrossRef
21.
Zurück zum Zitat Paterek, A. (2007, August). Improving regularized singular value decomposition for collaborative filtering. In Proceedings of KDD cup and workshop (Vol. 2007, pp. 5-8). Paterek, A. (2007, August). Improving regularized singular value decomposition for collaborative filtering. In Proceedings of KDD cup and workshop (Vol. 2007, pp. 5-8).
22.
Zurück zum Zitat Scholkopf, B., Smola, A., & Müller, K. R. (1997, October). Kernel principal component analysis. In International conference on artificial neural networks (pp. 583-588). Springer, Berlin, Heidelberg. Scholkopf, B., Smola, A., & Müller, K. R. (1997, October). Kernel principal component analysis. In International conference on artificial neural networks (pp. 583-588). Springer, Berlin, Heidelberg.
23.
Zurück zum Zitat Sutton, R. S., & Barto, A. G. (1998). Introduction to reinforcement learning (Vol. 2(4)). Cambridge: MIT press.MATH Sutton, R. S., & Barto, A. G. (1998). Introduction to reinforcement learning (Vol. 2(4)). Cambridge: MIT press.MATH
24.
Zurück zum Zitat Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine Learning, 8(3–4), 279–292.MATH Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine Learning, 8(3–4), 279–292.MATH
26.
Zurück zum Zitat Kourou, K., Exarchos, T. P., Exarchos, K. P., Karamouzis, M. V., & Fotiadis, D. I. (2015). Machine learning applications in cancer prognosis and prediction. Computational and Structural Biotechnology Journal, 13, 8–17.CrossRef Kourou, K., Exarchos, T. P., Exarchos, K. P., Karamouzis, M. V., & Fotiadis, D. I. (2015). Machine learning applications in cancer prognosis and prediction. Computational and Structural Biotechnology Journal, 13, 8–17.CrossRef
27.
Zurück zum Zitat Abonyi, J., & Szeifert, F. (2003). Supervised fuzzy clustering for the identification of fuzzy classifiers. Pattern Recognition Letters, 24(14), 2195–2207.MATHCrossRef Abonyi, J., & Szeifert, F. (2003). Supervised fuzzy clustering for the identification of fuzzy classifiers. Pattern Recognition Letters, 24(14), 2195–2207.MATHCrossRef
28.
Zurück zum Zitat Listgarten, J., Damaraju, S., Poulin, B., Cook, L., Dufour, J., Driga, A., et al. (2004). Predictive models for breast cancer susceptibility from multiple single nucleotide polymorphisms. Clinical Cancer Research, 10, 2725–37.CrossRef Listgarten, J., Damaraju, S., Poulin, B., Cook, L., Dufour, J., Driga, A., et al. (2004). Predictive models for breast cancer susceptibility from multiple single nucleotide polymorphisms. Clinical Cancer Research, 10, 2725–37.CrossRef
29.
Zurück zum Zitat Polat, K., & Güneş, S. (2007). Breast cancer diagnosis using least square support vector machine. Digital Signal Processing, 17(4), 694–701.CrossRef Polat, K., & Güneş, S. (2007). Breast cancer diagnosis using least square support vector machine. Digital Signal Processing, 17(4), 694–701.CrossRef
30.
Zurück zum Zitat Khan, M. U., Choi, J. P., Shin, H., & Kim, M. (2008, August). Predicting breast cancer survivability using fuzzy decision trees for personalized healthcare. In 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 5148-5151). IEEE. Khan, M. U., Choi, J. P., Shin, H., & Kim, M. (2008, August). Predicting breast cancer survivability using fuzzy decision trees for personalized healthcare. In 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 5148-5151). IEEE.
31.
Zurück zum Zitat Akay, M. F. (2009). Support vector machines combined with feature selection for breast cancer diagnosis. Expert Systems with Applications, 36(2), 3240–3247.CrossRef Akay, M. F. (2009). Support vector machines combined with feature selection for breast cancer diagnosis. Expert Systems with Applications, 36(2), 3240–3247.CrossRef
32.
Zurück zum Zitat Jerez, J. M., Molina, I., Garcia-Laencina, P. J., Alba, E., Ribelles, N., Martin, M., & Franco, L. (2010). Missing data imputation using statistical and machine learning methods in a real breast cancer problem. Artificial Intelligence in Medicine, 50, 105–115.CrossRef Jerez, J. M., Molina, I., Garcia-Laencina, P. J., Alba, E., Ribelles, N., Martin, M., & Franco, L. (2010). Missing data imputation using statistical and machine learning methods in a real breast cancer problem. Artificial Intelligence in Medicine, 50, 105–115.CrossRef
33.
Zurück zum Zitat Osareh, A., & Shadgar, B. (2010). Machine learning techniques to diagnose breast cancer. In 2010 5th International Symposium on Health Informatics and Bioinformatics (pp. 114-120). IEEE. Osareh, A., & Shadgar, B. (2010). Machine learning techniques to diagnose breast cancer. In 2010 5th International Symposium on Health Informatics and Bioinformatics (pp. 114-120). IEEE.
34.
Zurück zum Zitat Ayer, T., Alagoz, O., Chhatwal, J., Shavlik, J. W., Kahn, C. E., & Burnside, E. S. (2010). Breast cancer risk es- timation with artifical neural networks revisited. Cancer, 116, 3310–21.CrossRef Ayer, T., Alagoz, O., Chhatwal, J., Shavlik, J. W., Kahn, C. E., & Burnside, E. S. (2010). Breast cancer risk es- timation with artifical neural networks revisited. Cancer, 116, 3310–21.CrossRef
35.
Zurück zum Zitat Hsieh, S. L., Hsieh, S. H., Cheng, P. H., Chen, C. H., Hsu, K. P., Lee, I. S., & Lai, F. (2012). Design ensemble machine learning model for breast cancer diagnosis. Journal of Medical Systems, 36(5), 2841–2847.CrossRef Hsieh, S. L., Hsieh, S. H., Cheng, P. H., Chen, C. H., Hsu, K. P., Lee, I. S., & Lai, F. (2012). Design ensemble machine learning model for breast cancer diagnosis. Journal of Medical Systems, 36(5), 2841–2847.CrossRef
36.
Zurück zum Zitat Kim, W., Kim, K. S., Lee, J. E., Noh, D.-Y., Kim, S.-W., Jung, Y. S., et al. (2012). Development of novel breast cancer recurrence prediction model using support vector machine. Journal of Breast Cancer, 15, 230–8.CrossRef Kim, W., Kim, K. S., Lee, J. E., Noh, D.-Y., Kim, S.-W., Jung, Y. S., et al. (2012). Development of novel breast cancer recurrence prediction model using support vector machine. Journal of Breast Cancer, 15, 230–8.CrossRef
37.
Zurück zum Zitat Nguyen, T., Khosravi, A., Creighton, D., & Nahavandi, S. (2015). Medical data classification using interval type-2 fuzzy logic system and wavelets. Applied Soft Computing, 30, 812–822.CrossRef Nguyen, T., Khosravi, A., Creighton, D., & Nahavandi, S. (2015). Medical data classification using interval type-2 fuzzy logic system and wavelets. Applied Soft Computing, 30, 812–822.CrossRef
38.
Zurück zum Zitat Zheng, B., Yoon, S. W., & Lam, S. S. (2014). Breast cancer diagnosis based on feature extraction using a hybrid of K-means and support vector machine algorithms. Expert Systems with Applications, 41(4), 1476–1482.CrossRef Zheng, B., Yoon, S. W., & Lam, S. S. (2014). Breast cancer diagnosis based on feature extraction using a hybrid of K-means and support vector machine algorithms. Expert Systems with Applications, 41(4), 1476–1482.CrossRef
39.
Zurück zum Zitat Ahmad, F., Isa, N. A. M., Hussain, Z., Osman, M. K., & Sulaiman, S. N. (2015). A GA-based feature selection and parameter optimization of an ANN in diagnosing breast cancer. Pattern Analysis and Applications, 18(4), 861–870.MathSciNetCrossRef Ahmad, F., Isa, N. A. M., Hussain, Z., Osman, M. K., & Sulaiman, S. N. (2015). A GA-based feature selection and parameter optimization of an ANN in diagnosing breast cancer. Pattern Analysis and Applications, 18(4), 861–870.MathSciNetCrossRef
40.
Zurück zum Zitat Montazeri, M., Montazeri, M., Montazeri, M., & Beigzadeh, A. (2016). Machine learn- ing models in breast cancer survival prediction. Technology and Health Care, 24(1), 31–42.CrossRef Montazeri, M., Montazeri, M., Montazeri, M., & Beigzadeh, A. (2016). Machine learn- ing models in breast cancer survival prediction. Technology and Health Care, 24(1), 31–42.CrossRef
41.
Zurück zum Zitat Karabatak, M. (2015). A new classifier for breast cancer detection based on Näıve Bayesian. Measurement, 72, 32–36.CrossRef Karabatak, M. (2015). A new classifier for breast cancer detection based on Näıve Bayesian. Measurement, 72, 32–36.CrossRef
42.
Zurück zum Zitat Pawar, M. M., & Talbar, S. N. (2016). Genetic fuzzy system (GFS) based wavelet co- occurrence feature selection in mammogram classification for breast cancer diagnosis. Perspectives in Science, 8, 247–250.CrossRef Pawar, M. M., & Talbar, S. N. (2016). Genetic fuzzy system (GFS) based wavelet co- occurrence feature selection in mammogram classification for breast cancer diagnosis. Perspectives in Science, 8, 247–250.CrossRef
43.
Zurück zum Zitat Mohebian, M. R., Marateb, H. R., Mansourian, M., Mañanas, M. A., & Mokarian, F. (2017). A hybrid computer-aided-diagnosis system for prediction of breast cancer recurrence (HPBCR) using optimized ensemble learning. Computational and Structural Biotechnology Journal, 15, 75–85.CrossRef Mohebian, M. R., Marateb, H. R., Mansourian, M., Mañanas, M. A., & Mokarian, F. (2017). A hybrid computer-aided-diagnosis system for prediction of breast cancer recurrence (HPBCR) using optimized ensemble learning. Computational and Structural Biotechnology Journal, 15, 75–85.CrossRef
44.
Zurück zum Zitat Shirazi, A. Z., Chabok, S. J. S. M., & Mohammadi, Z. (2018). A novel and reliable computational intelligence system for breast cancer detection. Medical & Biological Engineering & Computing, 56(5), 721–732.CrossRef Shirazi, A. Z., Chabok, S. J. S. M., & Mohammadi, Z. (2018). A novel and reliable computational intelligence system for breast cancer detection. Medical & Biological Engineering & Computing, 56(5), 721–732.CrossRef
45.
Zurück zum Zitat Amrane, M., Oukid, S., Gagaoua, I., & Ensari, T. (2018). Breast cancer classifica- tion using machine learning. In 2018 Electric Electronics, Computer Science, Biomedical Engineerings’ Meeting (EBBT) (pp. 1–4). IEEE. Amrane, M., Oukid, S., Gagaoua, I., & Ensari, T. (2018). Breast cancer classifica- tion using machine learning. In 2018 Electric Electronics, Computer Science, Biomedical Engineerings’ Meeting (EBBT) (pp. 1–4). IEEE.
46.
Zurück zum Zitat Khuriwal, N., & Mishra, N. (2018, March). Breast cancer diagnosis using adaptive vot- ing ensemble machine learning algorithm. In 2018 IEEMA Engineer Infinite Conference (eTechNxT) (pp. 1–5). IEEE. Khuriwal, N., & Mishra, N. (2018, March). Breast cancer diagnosis using adaptive vot- ing ensemble machine learning algorithm. In 2018 IEEMA Engineer Infinite Conference (eTechNxT) (pp. 1–5). IEEE.
47.
Zurück zum Zitat Alickovic, E., & Subasi, A. (2019). Normalized Neural Networks for Breast Cancer Classification. In International Conference on Medical and Biological Engineering (pp. 519-524). Springer, Cham. Alickovic, E., & Subasi, A. (2019). Normalized Neural Networks for Breast Cancer Classification. In International Conference on Medical and Biological Engineering (pp. 519-524). Springer, Cham.
48.
Zurück zum Zitat Ferroni, P., Zanzotto, F. M., Riondino, S., Scarpato, N., Guadagni, F., & Roselli, M. (2019). Breast cancer Prognosis using a machine learning approach. Cancers, 11(3), 328.CrossRef Ferroni, P., Zanzotto, F. M., Riondino, S., Scarpato, N., Guadagni, F., & Roselli, M. (2019). Breast cancer Prognosis using a machine learning approach. Cancers, 11(3), 328.CrossRef
49.
Zurück zum Zitat Goyal, K., Sodhi, P., Aggarwal, P., & Kumar, M. (2019). Comparative Analysis of Machine Learning Algorithms for Breast Cancer Prognosis. In Proceedings of 2nd In- ternational Conference on Communication, Computing and Networking (pp. 727-734). Springer, Singapore. Goyal, K., Sodhi, P., Aggarwal, P., & Kumar, M. (2019). Comparative Analysis of Machine Learning Algorithms for Breast Cancer Prognosis. In Proceedings of 2nd In- ternational Conference on Communication, Computing and Networking (pp. 727-734). Springer, Singapore.
50.
Zurück zum Zitat Khan, S., Islam, N., Jan, Z., Din, I. U., & Rodrigues, J. J. C. (2019). A novel deep learning based framework for the detection and classification of breast cancer using trans- fer learning. Pattern Recognition Letters, 125, 1–6.CrossRef Khan, S., Islam, N., Jan, Z., Din, I. U., & Rodrigues, J. J. C. (2019). A novel deep learning based framework for the detection and classification of breast cancer using trans- fer learning. Pattern Recognition Letters, 125, 1–6.CrossRef
51.
Zurück zum Zitat Omondiagbe, D. A., Veeramani, S., and Sidhu, A. S. (2019). Machine learning classification techniques for breast cancer diagnosis. In IOP Conference Series: Mate- rials Science and Engineering (Vol. 495, No. 1, p. 012033). IOP Publishing. Omondiagbe, D. A., Veeramani, S., and Sidhu, A. S. (2019). Machine learning classification techniques for breast cancer diagnosis. In IOP Conference Series: Mate- rials Science and Engineering (Vol. 495, No. 1, p. 012033). IOP Publishing.
52.
Zurück zum Zitat Nematzadeh, Z., Ibrahim, R., & Selamat, A. (2015). Comparative studies on breast cancer classifications with K-fold cross validations using machine learning techniques. In 2015 10TH Asian control conference (ASCC), IEEE. Nematzadeh, Z., Ibrahim, R., & Selamat, A. (2015). Comparative studies on breast cancer classifications with K-fold cross validations using machine learning techniques. In 2015 10TH Asian control conference (ASCC), IEEE.
53.
Zurück zum Zitat Polat, K., & Sentürk, U. (2018). A novel ML approach to prediction of breast cancer: combining of mad normalization, KMC based feature weighting and Ad- aBoostM1 classifier. In 2018 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT) (pp. 1–4). IEEE. Polat, K., & Sentürk, U. (2018). A novel ML approach to prediction of breast cancer: combining of mad normalization, KMC based feature weighting and Ad- aBoostM1 classifier. In 2018 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT) (pp. 1–4). IEEE.
54.
Zurück zum Zitat Criz, J. A., & Wishart, D. S. (2006). Applications of machine learning in cancer prediction and prog- nosis. Cancer Informat, 2, 59. Criz, J. A., & Wishart, D. S. (2006). Applications of machine learning in cancer prediction and prog- nosis. Cancer Informat, 2, 59.
55.
Zurück zum Zitat Park, C., Ahn, J., Kim, H., & Park, S. (2014). Integrative gene network construction to analyze cancer recurrence using semi-supervised learning. PLoS One, 9, e86309.CrossRef Park, C., Ahn, J., Kim, H., & Park, S. (2014). Integrative gene network construction to analyze cancer recurrence using semi-supervised learning. PLoS One, 9, e86309.CrossRef
56.
Zurück zum Zitat Dheeba, J., Singh, N. A., & Selvi, S. T. (2014). Computer-aided detection of breast cancer on mammograms: A swarm intelligence optimized wavelet neural network approach. Journal of Biomedical Informatics, 49, 45–52.CrossRef Dheeba, J., Singh, N. A., & Selvi, S. T. (2014). Computer-aided detection of breast cancer on mammograms: A swarm intelligence optimized wavelet neural network approach. Journal of Biomedical Informatics, 49, 45–52.CrossRef
57.
Zurück zum Zitat Alarabeyyat, A., & Alhanahnah, M. (2016). Breast cancer detection using k-nearest neighbor machine learning algorithm. In 2016 9th International Conference on Developments in eSystems Engineering (DeSE) (pp. 35-39). IEEE. Alarabeyyat, A., & Alhanahnah, M. (2016). Breast cancer detection using k-nearest neighbor machine learning algorithm. In 2016 9th International Conference on Developments in eSystems Engineering (DeSE) (pp. 35-39). IEEE.
58.
Zurück zum Zitat Togacar, M., & Ergen, B. (2018, September). Deep learning approach for classification of breast cancer. In 2018 International Conference on Artificial Intelligence and Data Processing (IDAP) (pp. 1–5). IEEE. Togacar, M., & Ergen, B. (2018, September). Deep learning approach for classification of breast cancer. In 2018 International Conference on Artificial Intelligence and Data Processing (IDAP) (pp. 1–5). IEEE.
59.
Zurück zum Zitat Hamilton, H. J., Cercone, N., & Shan, N. (1996). RIAC: a rule induction algorithm based on approximate classification. Computer Science Department, University of Regina. Hamilton, H. J., Cercone, N., & Shan, N. (1996). RIAC: a rule induction algorithm based on approximate classification. Computer Science Department, University of Regina.
60.
Zurück zum Zitat Nauck, D., & Kruse, R. (1997). A neuro-fuzzy method to learn fuzzy classification rules from data. Fuzzy Sets and Systems, 89(3), 277–288.MathSciNetCrossRef Nauck, D., & Kruse, R. (1997). A neuro-fuzzy method to learn fuzzy classification rules from data. Fuzzy Sets and Systems, 89(3), 277–288.MathSciNetCrossRef
61.
Zurück zum Zitat Örkcü, H., & Bal, H. (2011). Comparing performances of backpropagation and genetic algorithms in the data classification. Expert Systems with Applications, 38(4), 3703–3709.CrossRef Örkcü, H., & Bal, H. (2011). Comparing performances of backpropagation and genetic algorithms in the data classification. Expert Systems with Applications, 38(4), 3703–3709.CrossRef
62.
Zurück zum Zitat Stoean, R., & Stoean, C. (2013). Modeling medical decision making by support vector ma chines, explaining by rules of evolutionary algorithms with feature selection. Expert Systems with Applications, 40(7), 2677–2686.MathSciNetCrossRef Stoean, R., & Stoean, C. (2013). Modeling medical decision making by support vector ma chines, explaining by rules of evolutionary algorithms with feature selection. Expert Systems with Applications, 40(7), 2677–2686.MathSciNetCrossRef
63.
Zurück zum Zitat Malmir, H., Farokhi, F. & Sabbaghi-nadooshan, R. (2013). Optimization of data mining with evolutionary algorithms for cloud computing application. In Computer and Knowledge Engineering (ICCKE), 2013 3th International eConference on. IEEE (pp. 343-347). Malmir, H., Farokhi, F. & Sabbaghi-nadooshan, R. (2013). Optimization of data mining with evolutionary algorithms for cloud computing application. In Computer and Knowledge Engineering (ICCKE), 2013 3th International eConference on. IEEE (pp. 343-347).
64.
Zurück zum Zitat Nemissi, M., Salah, H., & Seridi, H. (2018). Breast cancer diagnosis using an enhanced Extreme Learning Machine based-Neural Network. In 2018 International Conference on Signal, Image, Vision and their Applications (SIVA) (pp. 1–4). IEEE. Nemissi, M., Salah, H., & Seridi, H. (2018). Breast cancer diagnosis using an enhanced Extreme Learning Machine based-Neural Network. In 2018 International Conference on Signal, Image, Vision and their Applications (SIVA) (pp. 1–4). IEEE.
65.
Zurück zum Zitat Osareh, A., & Shadgar, B. (2010). Machine learning techniques to diagnose breast cancer. In 2010 5th International Symposium on Health Informatics and Bioinformatics (pp. 114–120). IEEE. Osareh, A., & Shadgar, B. (2010). Machine learning techniques to diagnose breast cancer. In 2010 5th International Symposium on Health Informatics and Bioinformatics (pp. 114–120). IEEE.
66.
Zurück zum Zitat Saranyaraj, D., Manikandan, M., & Maheswari, S. (2020). A deep convolutional neural network for the early detection of breast carcinoma with respect to hyper-parameter tuning. Multimedia Tools and Applications, 79(15–16), 11013–11038. Saranyaraj, D., Manikandan, M., & Maheswari, S. (2020). A deep convolutional neural network for the early detection of breast carcinoma with respect to hyper-parameter tuning. Multimedia Tools and Applications, 79(15–16), 11013–11038.
68.
Zurück zum Zitat Lotsch, J., Sipila, R., Tasmuth, T., Kringel, D., Estlander, A. M., Meretoja, T., & Ultsch, A. (2018). Machine-learning-derived classifier predicts absence of persistent pain after breast cancer surgery with high accuracy. Breast Cancer Research and Treatment, 171(2), 399–411.CrossRef Lotsch, J., Sipila, R., Tasmuth, T., Kringel, D., Estlander, A. M., Meretoja, T., & Ultsch, A. (2018). Machine-learning-derived classifier predicts absence of persistent pain after breast cancer surgery with high accuracy. Breast Cancer Research and Treatment, 171(2), 399–411.CrossRef
69.
Zurück zum Zitat Yadav, A., Jamir, I., Jain, R. R. & Sohani, M. (2019). Comparative study of machine learning algorithms for breast cancer prediction–a review. International Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCSEIT), ISSN : 2456-3307, Volume 5 Issue 2, pp. 979–985, March–April 2019 Yadav, A., Jamir, I., Jain, R. R. & Sohani, M. (2019). Comparative study of machine learning algorithms for breast cancer prediction–a review. International Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCSEIT), ISSN : 2456-3307, Volume 5 Issue 2, pp. 979–985, March–April 2019
70.
Zurück zum Zitat Singireddy, S., Alkhateeb, A., Rezaeian, I., Rueda, L., Cavallo-Medved, D., & Porter, L. (2015). Identifying differentially expressed transcripts associated with prostate cancer progression using RNA-Seq and machine learning techniques. In IEEE Conference on computational intelligence in bioinformatics and computational biology (CIBCB), (pp. 369–373) Singireddy, S., Alkhateeb, A., Rezaeian, I., Rueda, L., Cavallo-Medved, D., & Porter, L. (2015). Identifying differentially expressed transcripts associated with prostate cancer progression using RNA-Seq and machine learning techniques. In IEEE Conference on computational intelligence in bioinformatics and computational biology (CIBCB), (pp. 369–373)
71.
Zurück zum Zitat Zhang, X., Li, Y., & Liu, D. (2019). Effects of exercise on the quality of life in breast cancer patients: a systematic review of randomized controlled trials. Supportive Care in Cancer, 27, 9–21.CrossRef Zhang, X., Li, Y., & Liu, D. (2019). Effects of exercise on the quality of life in breast cancer patients: a systematic review of randomized controlled trials. Supportive Care in Cancer, 27, 9–21.CrossRef
72.
Zurück zum Zitat Anastasi, N., & Lusher, J. (2019). The impact of breast cancer awareness interventions on breast screening uptake among women in the United Kingdom: A systematic review. Journal of Health Psychology, 24, 113–124.CrossRef Anastasi, N., & Lusher, J. (2019). The impact of breast cancer awareness interventions on breast screening uptake among women in the United Kingdom: A systematic review. Journal of Health Psychology, 24, 113–124.CrossRef
73.
Zurück zum Zitat Ganju, R. G., TenNapel, M., Chen, A. M., & Mitchell, M. (2019). Impact of peer review on use of hypofractionated regimens for early-stage breast cancer for patients at a tertiary care academic medical center and its community-based affiliates. Journal of Oncology Practice, 15, e153–e161.CrossRef Ganju, R. G., TenNapel, M., Chen, A. M., & Mitchell, M. (2019). Impact of peer review on use of hypofractionated regimens for early-stage breast cancer for patients at a tertiary care academic medical center and its community-based affiliates. Journal of Oncology Practice, 15, e153–e161.CrossRef
74.
Zurück zum Zitat Zhang, Q., Zhao, H., & Zheng, Y. (2019). Effectiveness of mindfulness-based stress reduction (MBSR) on symptom variables and health-related quality of life in breast cancer patientsa systematic review and meta-analysis. Supportive Care in Cancer, 27, 771–781.CrossRef Zhang, Q., Zhao, H., & Zheng, Y. (2019). Effectiveness of mindfulness-based stress reduction (MBSR) on symptom variables and health-related quality of life in breast cancer patientsa systematic review and meta-analysis. Supportive Care in Cancer, 27, 771–781.CrossRef
75.
Zurück zum Zitat Vaka, A. R., Soni, B., & Reddy, S. (2020). Breast cancer detection by leveraging Machine Learning. ICT Express, 6(4), 320–324.CrossRef Vaka, A. R., Soni, B., & Reddy, S. (2020). Breast cancer detection by leveraging Machine Learning. ICT Express, 6(4), 320–324.CrossRef
76.
Zurück zum Zitat Islam, M. M., et al. (2020). Breast cancer prediction: A comparative study using machine learning techniques. SN Computer Science, 1(5), 1–14. Islam, M. M., et al. (2020). Breast cancer prediction: A comparative study using machine learning techniques. SN Computer Science, 1(5), 1–14.
77.
Zurück zum Zitat Chaurasia, Vikas, & Pal, Saurabh. (2020). Applications of machine learning techniques to predict diagnostic breast cancer. SN Computer Science, 1(5), 1–11. Chaurasia, Vikas, & Pal, Saurabh. (2020). Applications of machine learning techniques to predict diagnostic breast cancer. SN Computer Science, 1(5), 1–11.
78.
Zurück zum Zitat Mohammed, S. A. et al. (2020). Analysis of breast cancer detection using different machine learning techniques. In International Conference on Data Mining and Big Data. Springer, Singapore Mohammed, S. A. et al. (2020). Analysis of breast cancer detection using different machine learning techniques. In International Conference on Data Mining and Big Data. Springer, Singapore
79.
Zurück zum Zitat Hooda, N., Gupta, R., & Gupta, N. R. (2022). Prediction of malignant breast cancer cases using ensemble machine learning: A case study of pesticides prone area. In IEEE/ACM Transactions on Computational Biology and Bioinformatics, 19(20), 1096–1104. https://doi.org/10.1109/TCBB.2020.3033214. Hooda, N., Gupta, R., & Gupta, N. R. (2022). Prediction of malignant breast cancer cases using ensemble machine learning: A case study of pesticides prone area. In IEEE/ACM Transactions on Computational Biology and Bioinformatics, 19(20), 1096–1104. https://​doi.​org/​10.​1109/​TCBB.​2020.​3033214.
80.
Zurück zum Zitat Houssein, E. H., et al. (2021). Deep and machine learning techniques for medical imaging-based breast cancer: A comprehensive review. Expert Systems with Applications, 167, 114161.CrossRef Houssein, E. H., et al. (2021). Deep and machine learning techniques for medical imaging-based breast cancer: A comprehensive review. Expert Systems with Applications, 167, 114161.CrossRef
81.
Zurück zum Zitat Li, J., et al. (2021). Predicting breast cancer 5-year survival using machine learning: A systematic review. PloS one, 16(4), e0250370.CrossRef Li, J., et al. (2021). Predicting breast cancer 5-year survival using machine learning: A systematic review. PloS one, 16(4), e0250370.CrossRef
82.
Zurück zum Zitat Wu, J., & Hicks, C. (2021). Breast cancer type classification using machine learning. Journal of Personalized Medicine, 11(2), 61.CrossRef Wu, J., & Hicks, C. (2021). Breast cancer type classification using machine learning. Journal of Personalized Medicine, 11(2), 61.CrossRef
84.
Zurück zum Zitat Alzu’bi, A., et al. (2021). Predicting the recurrence of breast cancer using machine learning algorithms. Multimedia Tools and Applications, 80(9), 13787–13800.CrossRef Alzu’bi, A., et al. (2021). Predicting the recurrence of breast cancer using machine learning algorithms. Multimedia Tools and Applications, 80(9), 13787–13800.CrossRef
85.
Zurück zum Zitat Boumaraf, S., et al. (2021). Conventional machine learning versus deep learning for magnification dependent histopathological breast cancer image classification: A comparative study with visual explanation. Diagnostics, 11(3), 528.CrossRef Boumaraf, S., et al. (2021). Conventional machine learning versus deep learning for magnification dependent histopathological breast cancer image classification: A comparative study with visual explanation. Diagnostics, 11(3), 528.CrossRef
86.
Zurück zum Zitat Meenalochini, G., & Ramkumar, S. (2021). Survey of machine learning algorithms for breast cancer detection using mammogram images. Materials Today: Proceedings, 37, 2738–2743. Meenalochini, G., & Ramkumar, S. (2021). Survey of machine learning algorithms for breast cancer detection using mammogram images. Materials Today: Proceedings, 37, 2738–2743.
87.
Zurück zum Zitat Khorshid, S. F., & Abdulazeez, A. M. (2021). Breast cancer diagnosis based on k-nearest neighbors: A review. PalArch’s Journal of Archaeology of Egypt/Egyptology, 18(4), 1927–1951. Khorshid, S. F., & Abdulazeez, A. M. (2021). Breast cancer diagnosis based on k-nearest neighbors: A review. PalArch’s Journal of Archaeology of Egypt/Egyptology, 18(4), 1927–1951.
88.
Zurück zum Zitat Nadarajan, R., & Sulaiman, N. (2021). Comparative analysis in execution of machine learning in breast cancer identification: A review. In Journal of Physics: Conference Series. Vol. 1874(1). IOP Publishing Nadarajan, R., & Sulaiman, N. (2021). Comparative analysis in execution of machine learning in breast cancer identification: A review. In Journal of Physics: Conference Series. Vol. 1874(1). IOP Publishing
Metadaten
Titel
Machine Learning Techniques and Breast Cancer Prediction: A Review
verfasst von
Gagandeep Kaur
Ruchika Gupta
Nistha Hooda
Nidhi Rani Gupta
Publikationsdatum
19.04.2022
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 3/2022
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-022-09673-3

Weitere Artikel der Ausgabe 3/2022

Wireless Personal Communications 3/2022 Zur Ausgabe

Neuer Inhalt