Skip to main content
Erschienen in: Experimental Mechanics 8/2010

01.10.2010

An Experimental and Numerical Study of Calliphora Wing Structure

verfasst von: R. Ganguli, S. Gorb, F.-O. Lehmann, S. Mukherjee, S. Mukherjee

Erschienen in: Experimental Mechanics | Ausgabe 8/2010

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Experiments are performed to determine the mass and stiffness variations along the wing of the blowfly Calliphora. The results are obtained for a pairs of wings of 10 male flies and fresh wings are used. The wing is divided into nine locations along the span and seven locations along the chord based on venation patterns. The length and mass of the sections is measured and the mass per unit length is calculated. The bending stiffness measurements are taken at three locations, basal (near root), medial and distal (near tip) of the fly wing. Torsional stiffness measurements are also made and the elastic axis of the wing is approximately located. The experimental data is then used for structural modeling of the wing as a stepped cantilever beam with nine spanwise sections of varying mass per unit lengths, flexural rigidity (EI) and torsional rigidity (GJ) values. Inertial values of nine sections are found to approximately vary according to an exponentially decreasing law over the nine sections from root to tip and it is used to calculate an approximate value of Young’s modulus of the wing biomaterial. Shear modulus is obtained assuming the wing biomaterial to be isotropic. Natural frequencies, both in bending and torsion, are obtained by solving the homogeneous part of the respective governing differential equations using the finite element method. The results provide a complete analysis of Calliphora wing structure and also provide guidelines for the biomimetic structural design of insect-scale flapping wings.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Templin RJ (2000) The spectrum of animal flight: insects to pterosaurs. Prog Aerosp Sci 36:393–436CrossRef Templin RJ (2000) The spectrum of animal flight: insects to pterosaurs. Prog Aerosp Sci 36:393–436CrossRef
2.
Zurück zum Zitat Shyy W, Berg M, Ljungqvist D (1999) Flapping and flexible wings for biological and micro air vehicles. Prog Aerosp Sci 35:455–505CrossRef Shyy W, Berg M, Ljungqvist D (1999) Flapping and flexible wings for biological and micro air vehicles. Prog Aerosp Sci 35:455–505CrossRef
3.
Zurück zum Zitat Dickinson MH, Lehmann FO, Sane SP (1999) Wing rotation and the aerodynamic basis of insect flight. Science 284:1954–1960CrossRef Dickinson MH, Lehmann FO, Sane SP (1999) Wing rotation and the aerodynamic basis of insect flight. Science 284:1954–1960CrossRef
4.
Zurück zum Zitat Maybury WJ, Lehmann FO (2004) The fluid dynamics of flight control by kinematic phase lag variation between two robotic insect wings. J Exp Biol 207:4707–4726CrossRef Maybury WJ, Lehmann FO (2004) The fluid dynamics of flight control by kinematic phase lag variation between two robotic insect wings. J Exp Biol 207:4707–4726CrossRef
5.
Zurück zum Zitat Ellington CP (1999) The novel aerodynamics of insect flight: applications to micro-air vehicles. J Exp Biol 202:3439–3448 Ellington CP (1999) The novel aerodynamics of insect flight: applications to micro-air vehicles. J Exp Biol 202:3439–3448
6.
Zurück zum Zitat Ansari SA, Zbikowski R, Knowles K (2006) Aerodynamic modelling of insect-like flapping flight for micro air vehicles. Prog Aerosp Sci 42:129–172CrossRef Ansari SA, Zbikowski R, Knowles K (2006) Aerodynamic modelling of insect-like flapping flight for micro air vehicles. Prog Aerosp Sci 42:129–172CrossRef
7.
Zurück zum Zitat Szmelter J, Zbikowski R (2002) A study of flow arising from insect wing flapping motion. Int J Numer Methods Fluids 40:497–505MATHCrossRef Szmelter J, Zbikowski R (2002) A study of flow arising from insect wing flapping motion. Int J Numer Methods Fluids 40:497–505MATHCrossRef
8.
Zurück zum Zitat Delauriar JD, Harris JM (1982) Experimental-study of oscillating-wing propulsion. J Aircr 19:368–373CrossRef Delauriar JD, Harris JM (1982) Experimental-study of oscillating-wing propulsion. J Aircr 19:368–373CrossRef
9.
Zurück zum Zitat Wang ZJ (2000) Vortex shedding and frequency selection in flapping wing flight. J Fluid Mech 410:323–341MATHCrossRef Wang ZJ (2000) Vortex shedding and frequency selection in flapping wing flight. J Fluid Mech 410:323–341MATHCrossRef
10.
Zurück zum Zitat Hall KC, Hall SR (1996) Minimum induced power requirements for flapping flight. J Fluid Mech 323:285–315MATHCrossRef Hall KC, Hall SR (1996) Minimum induced power requirements for flapping flight. J Fluid Mech 323:285–315MATHCrossRef
11.
Zurück zum Zitat Okamoto M, Yasuda K, Azuma A (1996) Aerodynamics characteristics of the wings and body of a dragonfly. J Exp Biol 199:281–294 Okamoto M, Yasuda K, Azuma A (1996) Aerodynamics characteristics of the wings and body of a dragonfly. J Exp Biol 199:281–294
12.
Zurück zum Zitat Wang ZJ (2005) Dissecting insect flight. Annu Rev Fluid Mech 37:183–210CrossRef Wang ZJ (2005) Dissecting insect flight. Annu Rev Fluid Mech 37:183–210CrossRef
13.
Zurück zum Zitat Meyers MA, Chen PY, Lin AYM, Seki Y (2008) Biological materials: structure and mechanical properties. Prog Mater Sci 53:1–206CrossRef Meyers MA, Chen PY, Lin AYM, Seki Y (2008) Biological materials: structure and mechanical properties. Prog Mater Sci 53:1–206CrossRef
14.
Zurück zum Zitat Wang XS, Li Y, Shi YF (2008) Effects of sandwich microstructures on mechanical behavior of dragonfly wing vein. Compos Sci Technol 68:186–192CrossRef Wang XS, Li Y, Shi YF (2008) Effects of sandwich microstructures on mechanical behavior of dragonfly wing vein. Compos Sci Technol 68:186–192CrossRef
15.
Zurück zum Zitat Machida K, Oikawa T (2007) Structure analysis of the wings of anotogaster sieboldii and hybris subjacens. Key Eng Mater 345–346:1237–1240CrossRef Machida K, Oikawa T (2007) Structure analysis of the wings of anotogaster sieboldii and hybris subjacens. Key Eng Mater 345–346:1237–1240CrossRef
16.
Zurück zum Zitat Smith MJC (1996) Simulating moth wing aerodynamics: towards the development of flapping wing technology. AIAA J 34:1348–1355MATHCrossRef Smith MJC (1996) Simulating moth wing aerodynamics: towards the development of flapping wing technology. AIAA J 34:1348–1355MATHCrossRef
17.
Zurück zum Zitat Wootton RJ, Herbert RC, Young PG, Evans KE (2003) Approaches to the structural modelling of insect wings. Philos Trans R Soc Lond B Biol Sci 358:1577–1587CrossRef Wootton RJ, Herbert RC, Young PG, Evans KE (2003) Approaches to the structural modelling of insect wings. Philos Trans R Soc Lond B Biol Sci 358:1577–1587CrossRef
18.
Zurück zum Zitat Combes SA, Daniel TL (2003a) Flexural stiffness in insect wings I. scaling and the influence of wing venation. J Exp Biol 206:2979–2987CrossRef Combes SA, Daniel TL (2003a) Flexural stiffness in insect wings I. scaling and the influence of wing venation. J Exp Biol 206:2979–2987CrossRef
19.
Zurück zum Zitat Combes SA, Daniel TL (2003b) Flexural stiffness in insect wings II. spatial distribution and dynamic wing bending. J Exp Biol 206:2989–2997CrossRef Combes SA, Daniel TL (2003b) Flexural stiffness in insect wings II. spatial distribution and dynamic wing bending. J Exp Biol 206:2989–2997CrossRef
20.
Zurück zum Zitat Ennos AR (1988) The importance of torsion in the design of insect wings. J Exp Biol 140:137–160 Ennos AR (1988) The importance of torsion in the design of insect wings. J Exp Biol 140:137–160
21.
Zurück zum Zitat Ennos AR (1988) The inertial cause of wing rotation in diptera. J Exp Biol 140:161–169 Ennos AR (1988) The inertial cause of wing rotation in diptera. J Exp Biol 140:161–169
22.
Zurück zum Zitat Ennos AR (1995) Mechanical behaviour in torsion of insect wings, blades of grass and other canbered structures. Proc R Soc Lond B Biol Sci 140:161–169 Ennos AR (1995) Mechanical behaviour in torsion of insect wings, blades of grass and other canbered structures. Proc R Soc Lond B Biol Sci 140:161–169
23.
Zurück zum Zitat Sunada S, Zeng LJ, Kawachi K (1998) The relationship between dragonfly wing structure and torsional deformation. J Theor Biol 193:39–45CrossRef Sunada S, Zeng LJ, Kawachi K (1998) The relationship between dragonfly wing structure and torsional deformation. J Theor Biol 193:39–45CrossRef
24.
Zurück zum Zitat Rosenfeld NC, Wereley NM (2009) Time-periodic stability of a flapping insect wing structure in hover. J Aircr 46:450–464CrossRef Rosenfeld NC, Wereley NM (2009) Time-periodic stability of a flapping insect wing structure in hover. J Aircr 46:450–464CrossRef
25.
Zurück zum Zitat Barbakadze N, Enders S, Gorb S, Arzt E (2006) Local mechanical properties of the head articulation cuticle in the beetle Pachnoda marginata (Coleoptera, Scarabaeidae). J Exp Biol 209:722–730CrossRef Barbakadze N, Enders S, Gorb S, Arzt E (2006) Local mechanical properties of the head articulation cuticle in the beetle Pachnoda marginata (Coleoptera, Scarabaeidae). J Exp Biol 209:722–730CrossRef
26.
Zurück zum Zitat Langer MG, Ruppersberg JP, Gorb S (2004) Adhesion forces measured at the level of a terminal plate of the fly’s seta. Proc R Soc Lond B Biol Sci 271:2209–2215CrossRef Langer MG, Ruppersberg JP, Gorb S (2004) Adhesion forces measured at the level of a terminal plate of the fly’s seta. Proc R Soc Lond B Biol Sci 271:2209–2215CrossRef
27.
Zurück zum Zitat Deng XY, Schenato L, Wu WC, Sastry SS (2006a) Flapping flight for biomimetic robotic insects: part I—System modeling. IEEE Trans Robot 22:776–788CrossRef Deng XY, Schenato L, Wu WC, Sastry SS (2006a) Flapping flight for biomimetic robotic insects: part I—System modeling. IEEE Trans Robot 22:776–788CrossRef
28.
Zurück zum Zitat Deng XY, Schenato L, Sastry SS (2006b) Flapping flight for biomimetic robotic insects: part II—Flight control design. IEEE Trans Robot 22:789–803CrossRef Deng XY, Schenato L, Sastry SS (2006b) Flapping flight for biomimetic robotic insects: part II—Flight control design. IEEE Trans Robot 22:789–803CrossRef
29.
Zurück zum Zitat Gorb SN, Popov VL (2002) Probabilistic fasteners with parabolic elements: biological system, artificial model and theoretical considerations. Philos Trans R Soc Lond Ser A Math Phys Eng Sci 360:211–225CrossRef Gorb SN, Popov VL (2002) Probabilistic fasteners with parabolic elements: biological system, artificial model and theoretical considerations. Philos Trans R Soc Lond Ser A Math Phys Eng Sci 360:211–225CrossRef
30.
Zurück zum Zitat Matushkina N, Gorb S (2007) Mechanical peoperties of the endophytic ovipositor in damselflies (Zygopetra, Odonata) and their oviposition substrates. Zoology 110:167–175CrossRef Matushkina N, Gorb S (2007) Mechanical peoperties of the endophytic ovipositor in damselflies (Zygopetra, Odonata) and their oviposition substrates. Zoology 110:167–175CrossRef
31.
Zurück zum Zitat Rao SS (2004) Mechanical vibrations, 4th edn. Pearson Education (Singapore) Pte. Ltd., Indian Branch, Delhi Rao SS (2004) Mechanical vibrations, 4th edn. Pearson Education (Singapore) Pte. Ltd., Indian Branch, Delhi
32.
Zurück zum Zitat Bao L, Hu JS, Yu YL, Cheng P, Xu BQ, Tong BG (2006) Viscoelastic constitutive model related to deformation of insect wing under loading in flapping motion. Appl Math Mech 27:741–748MATHCrossRef Bao L, Hu JS, Yu YL, Cheng P, Xu BQ, Tong BG (2006) Viscoelastic constitutive model related to deformation of insect wing under loading in flapping motion. Appl Math Mech 27:741–748MATHCrossRef
33.
Zurück zum Zitat Vincent JFV, Wegst UGK (2004) Design and mechanical properties of insect cuticle. Arthropod Struct Develop 33:187–199CrossRef Vincent JFV, Wegst UGK (2004) Design and mechanical properties of insect cuticle. Arthropod Struct Develop 33:187–199CrossRef
34.
Zurück zum Zitat Watson GS, Watson JA (2004) Natural nano-structures on insects—possible functions of ordered arrays characterized by atomic force microscopy. Appl Surf Sci 235:139–144CrossRef Watson GS, Watson JA (2004) Natural nano-structures on insects—possible functions of ordered arrays characterized by atomic force microscopy. Appl Surf Sci 235:139–144CrossRef
35.
Zurück zum Zitat Cook RD, Malkus RD, Plesha ME, Witt RJ (2005) Concepts and applications of finite element analysis. Wiley, Singapore Cook RD, Malkus RD, Plesha ME, Witt RJ (2005) Concepts and applications of finite element analysis. Wiley, Singapore
36.
Zurück zum Zitat Gere JM, Timoshenko SP (1999) Mechanics of materials. Stanley Thrones, Kingston upon Thames Gere JM, Timoshenko SP (1999) Mechanics of materials. Stanley Thrones, Kingston upon Thames
Metadaten
Titel
An Experimental and Numerical Study of Calliphora Wing Structure
verfasst von
R. Ganguli
S. Gorb
F.-O. Lehmann
S. Mukherjee
S. Mukherjee
Publikationsdatum
01.10.2010
Verlag
Springer US
Erschienen in
Experimental Mechanics / Ausgabe 8/2010
Print ISSN: 0014-4851
Elektronische ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-009-9316-8

Weitere Artikel der Ausgabe 8/2010

Experimental Mechanics 8/2010 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.