Skip to main content
Erschienen in: Experimental Mechanics 9/2012

01.11.2012

Static and Dynamic Characteristics of an Artificial Wing Mimicking an Allomyrina Dichotoma Beetle’s Hind Wing for Flapping-Wing Micro Air Vehicles

verfasst von: N. S. Ha, Q. V. Nguyen, N. S. Goo, H. C. Park

Erschienen in: Experimental Mechanics | Ausgabe 9/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The development of flapping-wing micro air vehicles for many applications, such as hazardous environment exploration, reconnaissance, and search and rescue, demands properly designed, biologically inspired wings to produce enough lift force for their operation. To compare an artificial wing with a natural wing in terms of mechanical properties, overall flexural stiffness is frequently measured with a static loading test setup. However, a dynamic testing method to determine wing deformation patterns has not been developed, even though wing deformation patterns may provide more information about the characteristics of artificial wings. A reliable dynamic testing method is crucial to the development of a high-performance artificial wing. Moreover, the relationship between static and dynamic characteristics of the artificial wing is rare in literature. Therefore, in this study, we present a complete analysis of an artificial wing mimicking an Allomyrina Dichotoma beetle’s hind wing by investigating its static and dynamic characteristics separately, as well as the relationship between them. The dynamic characteristics such as natural frequency, mode shape, and damping ratio of two basic vibration modes (first bending and first torsion) in the operating frequency range were determined using a Bruel & Kjaer (B&K) fast Fourier transform analyzer. To verify experimental results, the natural frequencies were calculated by measuring the flexural and torsional stiffness of an artificial wing and solving the respective governing differential equations. The experimental results from the B&K fast Fourier transform analyzer were consistent with the calculated results. Even though natural frequency is important in the design of an artificial wing, mode shapes, which can be determined only by dynamic testing, can provide reliable guidelines for the biomimetic design of insect-scale artificial wings.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mahardika N, Nguyen QV, Park HC (2011) Effect of outer wing separation on lift and thrust generation in a flapping wing system. Bioinsp Biomim 6:036006–036016CrossRef Mahardika N, Nguyen QV, Park HC (2011) Effect of outer wing separation on lift and thrust generation in a flapping wing system. Bioinsp Biomim 6:036006–036016CrossRef
2.
Zurück zum Zitat Ratti J, Vachtsevanos G (2012) Inventing a biologically inspired, energy efficient micro aerial vehicle. J Intell Robot Syst 64:437–455CrossRef Ratti J, Vachtsevanos G (2012) Inventing a biologically inspired, energy efficient micro aerial vehicle. J Intell Robot Syst 64:437–455CrossRef
3.
Zurück zum Zitat Mukherjee S, Ganguli R (2010) Non-linear dynamic analysis of a piezoelectrically actuated flapping wing. J Intel Mat Syst Str 21:1157–1167CrossRef Mukherjee S, Ganguli R (2010) Non-linear dynamic analysis of a piezoelectrically actuated flapping wing. J Intel Mat Syst Str 21:1157–1167CrossRef
4.
Zurück zum Zitat Khan ZA, Agrawal SK (2011) Study of biologically inspired flapping mechanism for micro air vehicles. AIAA J 49:1354–1365CrossRef Khan ZA, Agrawal SK (2011) Study of biologically inspired flapping mechanism for micro air vehicles. AIAA J 49:1354–1365CrossRef
5.
Zurück zum Zitat Ratti J, Vachtsevanos G (2010) A biologically-inspired micro aerial vehicle. J Intell Robot Syst 60:153–178CrossRefMATH Ratti J, Vachtsevanos G (2010) A biologically-inspired micro aerial vehicle. J Intell Robot Syst 60:153–178CrossRefMATH
6.
Zurück zum Zitat Shyy W, Aono H, Chimakurthi SK, Trizila P, Kang CK, Cesnik CES, Liu H (2010) Recent progress in flapping wing aerodynamics and aeroelasticity. Prog Aerosp Sci 46:284–327CrossRef Shyy W, Aono H, Chimakurthi SK, Trizila P, Kang CK, Cesnik CES, Liu H (2010) Recent progress in flapping wing aerodynamics and aeroelasticity. Prog Aerosp Sci 46:284–327CrossRef
7.
Zurück zum Zitat Mukherjee S, Ganguli R (2010) Ionic polymer metal composite flapping actuator mimicking dragonflies. CMC-Comput Mater Con 19:105–133 Mukherjee S, Ganguli R (2010) Ionic polymer metal composite flapping actuator mimicking dragonflies. CMC-Comput Mater Con 19:105–133
8.
Zurück zum Zitat Truong QT, Nguyen QV, Park HC, Byun DY, Goo NS (2011) Modification of a four-bar linkage system for a higher optimal flapping frequency. J Intel Mat Syst Str 22:59–66CrossRef Truong QT, Nguyen QV, Park HC, Byun DY, Goo NS (2011) Modification of a four-bar linkage system for a higher optimal flapping frequency. J Intel Mat Syst Str 22:59–66CrossRef
9.
Zurück zum Zitat Ramasamy M, Leishman JG, Lee TE (2007) Flow field of a rotating-wing micro air vehicle. J Aircr 44:1236–1244CrossRef Ramasamy M, Leishman JG, Lee TE (2007) Flow field of a rotating-wing micro air vehicle. J Aircr 44:1236–1244CrossRef
10.
Zurück zum Zitat Ellington CP (1984) The aerodynamics of hovering insect flight. Phil Trans R Soc Lond B 305:1–181CrossRef Ellington CP (1984) The aerodynamics of hovering insect flight. Phil Trans R Soc Lond B 305:1–181CrossRef
11.
Zurück zum Zitat Dickinson MH, Gotz KG (1993) Unsteady aerodynamic performance of model wings at low Reynolds numbers. J Exp Biol 174:45–64 Dickinson MH, Gotz KG (1993) Unsteady aerodynamic performance of model wings at low Reynolds numbers. J Exp Biol 174:45–64
12.
Zurück zum Zitat Dickinson MH (1994) The effects of wing rotation on unsteady aerodynamic performance at low Reynolds number. J Exp Biol 192:179–206 Dickinson MH (1994) The effects of wing rotation on unsteady aerodynamic performance at low Reynolds number. J Exp Biol 192:179–206
13.
Zurück zum Zitat Dickinson MH, Lehmann FO, Sane SP (1999) Wing rotation and the aerodynamic basis of insect flight. Science 284:1954–1960CrossRef Dickinson MH, Lehmann FO, Sane SP (1999) Wing rotation and the aerodynamic basis of insect flight. Science 284:1954–1960CrossRef
14.
Zurück zum Zitat Ellington CP, van den Berg C, Will Mott A, Thomas A (1996) Leading-edge vortices in insect flight. Nature 384:626–630CrossRef Ellington CP, van den Berg C, Will Mott A, Thomas A (1996) Leading-edge vortices in insect flight. Nature 384:626–630CrossRef
15.
Zurück zum Zitat Sane SP, Dickinson MH (2001) The control of flight force by a flapping wing: lift and drag production. J Exp Biol 204:2607–2626 Sane SP, Dickinson MH (2001) The control of flight force by a flapping wing: lift and drag production. J Exp Biol 204:2607–2626
16.
Zurück zum Zitat Sane SP, Dickinson MH (2002) The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. J Exp Biol 205:1087–1096 Sane SP, Dickinson MH (2002) The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. J Exp Biol 205:1087–1096
17.
Zurück zum Zitat Walker SM, Thomas ALR, Taylor GK (2009) Deformable wing kinematics in the desert locust: how and why do camber, twist and topography vary through the stroke? J R Soc Interface 6:735–747CrossRef Walker SM, Thomas ALR, Taylor GK (2009) Deformable wing kinematics in the desert locust: how and why do camber, twist and topography vary through the stroke? J R Soc Interface 6:735–747CrossRef
18.
Zurück zum Zitat Tanaka H, Whitney JP, Wood RJ (2011) Effect of flexural and torsional wing flexibility on lift generation in hoverfly flight. Integr Comp Biol 1–9 Tanaka H, Whitney JP, Wood RJ (2011) Effect of flexural and torsional wing flexibility on lift generation in hoverfly flight. Integr Comp Biol 1–9
19.
Zurück zum Zitat Newman DJS, Wootton RJ (1986) An approach to the mechanics of pleating in dragonfly wings. J Exp Biol 125:361–372 Newman DJS, Wootton RJ (1986) An approach to the mechanics of pleating in dragonfly wings. J Exp Biol 125:361–372
20.
Zurück zum Zitat Wootton RJ, Evans KE, Herbert RC, Smith CW (2000) The hind wing of the desert locust (Schistocerca gregaria Forskal) I. Functional morphology and mode of operation. J Exp Biol 203:2921–2931 Wootton RJ, Evans KE, Herbert RC, Smith CW (2000) The hind wing of the desert locust (Schistocerca gregaria Forskal) I. Functional morphology and mode of operation. J Exp Biol 203:2921–2931
21.
Zurück zum Zitat Steppan SJ (2000) Flexural stiffness patterns of butterfly wings (Papilionoidea). J Res Lepid 35:61–77 Steppan SJ (2000) Flexural stiffness patterns of butterfly wings (Papilionoidea). J Res Lepid 35:61–77
22.
Zurück zum Zitat Combes SA, Daniel TL (2003) Flexural stiffness in insect wings I. Scaling and the influence of wing venation. J Exp Biol 206:2979–2987CrossRef Combes SA, Daniel TL (2003) Flexural stiffness in insect wings I. Scaling and the influence of wing venation. J Exp Biol 206:2979–2987CrossRef
23.
Zurück zum Zitat Ennos AR (1988) The importance of torsion in the design of insect wings. J Exp Biol 140:137–160 Ennos AR (1988) The importance of torsion in the design of insect wings. J Exp Biol 140:137–160
24.
Zurück zum Zitat Shang JK, Combes SA, Finio BM, Wood RJ (2009) Artificial insect wings of diverse morphology for flapping-wing micro air vehicles. Bioinsp Biomim 4:036002–036008CrossRef Shang JK, Combes SA, Finio BM, Wood RJ (2009) Artificial insect wings of diverse morphology for flapping-wing micro air vehicles. Bioinsp Biomim 4:036002–036008CrossRef
25.
Zurück zum Zitat Tanaka H, Wood RJ (2010) Fabrication of corrugated artificial insect wings using laser micromachined molds. J Micromech Microeng 20:075008–075016CrossRef Tanaka H, Wood RJ (2010) Fabrication of corrugated artificial insect wings using laser micromachined molds. J Micromech Microeng 20:075008–075016CrossRef
26.
Zurück zum Zitat Chen JS, Chen JY, Chou YF (2008) On the natural frequencies and mode shapes of dragonfly wings. J Sound Vib 313:643–654CrossRef Chen JS, Chen JY, Chou YF (2008) On the natural frequencies and mode shapes of dragonfly wings. J Sound Vib 313:643–654CrossRef
27.
Zurück zum Zitat Wootton RJ, Herbert RC, Young PG, Evans KE (2003) Approaches to the structural modelling of insect wings. Phil Trans R Soc Lond B 358:1577–1587CrossRef Wootton RJ, Herbert RC, Young PG, Evans KE (2003) Approaches to the structural modelling of insect wings. Phil Trans R Soc Lond B 358:1577–1587CrossRef
28.
Zurück zum Zitat Darvizeh M, Darvizeh A, Rajabi H, Rezaei A (2009) Free vibration analysis of dragonfly wings using finite element method. Int J Multiphysics 3:101–110CrossRef Darvizeh M, Darvizeh A, Rajabi H, Rezaei A (2009) Free vibration analysis of dragonfly wings using finite element method. Int J Multiphysics 3:101–110CrossRef
29.
Zurück zum Zitat Jongerius SR, Lentink D (2010) Structural analysis of a dragonfly wing. Exp Mech 50:1323–1334CrossRef Jongerius SR, Lentink D (2010) Structural analysis of a dragonfly wing. Exp Mech 50:1323–1334CrossRef
30.
Zurück zum Zitat Rajabi H, Moghadami M, Darvizeh A (2011) Investigation of microstructure, natural frequencies and vibration modes of dragonfly wing. J Bionic Eng 8:165–173CrossRef Rajabi H, Moghadami M, Darvizeh A (2011) Investigation of microstructure, natural frequencies and vibration modes of dragonfly wing. J Bionic Eng 8:165–173CrossRef
31.
Zurück zum Zitat Song F, Lee KL, Soh AK, Zhu F, Bai YL (2004) Experimental studies of the material properties of the forewing of cicada (Homoptera, Cicadidae). J Exp Biol 207:3035–3042CrossRef Song F, Lee KL, Soh AK, Zhu F, Bai YL (2004) Experimental studies of the material properties of the forewing of cicada (Homoptera, Cicadidae). J Exp Biol 207:3035–3042CrossRef
32.
Zurück zum Zitat Mengesha TE, Vallance RR, Mittal R (2011) Stiffness of desiccating insect wings. Bioinsp Biomim 6:014001–014009CrossRef Mengesha TE, Vallance RR, Mittal R (2011) Stiffness of desiccating insect wings. Bioinsp Biomim 6:014001–014009CrossRef
33.
Zurück zum Zitat Zeng L, Matsumoto H, Sunada S, Ohnuki T, Kawachi K (1995) Two dimensional, non-contact measurement of the natural frequencies of dragonfly wings using a quadrant position sensor. Opt Eng 34:1226–1231CrossRef Zeng L, Matsumoto H, Sunada S, Ohnuki T, Kawachi K (1995) Two dimensional, non-contact measurement of the natural frequencies of dragonfly wings using a quadrant position sensor. Opt Eng 34:1226–1231CrossRef
34.
Zurück zum Zitat Sudo S, Takagi K, Tsuyuki K, Yano T (2008) Dynamic behavior of dragonfly wings. J JSEM 8:163–168 Sudo S, Takagi K, Tsuyuki K, Yano T (2008) Dynamic behavior of dragonfly wings. J JSEM 8:163–168
35.
Zurück zum Zitat Sims TW, Palazotto AN, Norris A (2010) A structural dynamic analysis of a Manduca Sexta forewing. Int J MAV 2:119–140 Sims TW, Palazotto AN, Norris A (2010) A structural dynamic analysis of a Manduca Sexta forewing. Int J MAV 2:119–140
36.
Zurück zum Zitat Ganguli R, Gorb S, Lehmann F-O, Mukherjee S (2010) An experimental and numerical study of Calliphora wing structure. Exp Mech 50:1183–1197CrossRef Ganguli R, Gorb S, Lehmann F-O, Mukherjee S (2010) An experimental and numerical study of Calliphora wing structure. Exp Mech 50:1183–1197CrossRef
37.
Zurück zum Zitat Ha NS, Jin TL, Goo NS, Park HC (2011) Anisotropy and non-homogeneity of an Allomyrina Dichotoma beetle hind wing membrane. Bioinsp Biomim 6:046003–046018CrossRef Ha NS, Jin TL, Goo NS, Park HC (2011) Anisotropy and non-homogeneity of an Allomyrina Dichotoma beetle hind wing membrane. Bioinsp Biomim 6:046003–046018CrossRef
38.
Zurück zum Zitat Truong QT, Nguyen QV, Truong VT, Park HC, Byun DY, Goo NS (2011) A modified blade element theory for estimation of forces generated by a beetle-mimicking flapping wing system. Bioinsp Biomim 6:036008–036019CrossRef Truong QT, Nguyen QV, Truong VT, Park HC, Byun DY, Goo NS (2011) A modified blade element theory for estimation of forces generated by a beetle-mimicking flapping wing system. Bioinsp Biomim 6:036008–036019CrossRef
39.
Zurück zum Zitat Mohammad A, Park HC, Hwang DY, Byun DY, Goo NS (2009) Mimicking unfolding motion of a beetle hind wing. Chin Sci Bull 54:2416–2424CrossRef Mohammad A, Park HC, Hwang DY, Byun DY, Goo NS (2009) Mimicking unfolding motion of a beetle hind wing. Chin Sci Bull 54:2416–2424CrossRef
40.
Zurück zum Zitat Haas F, Gorb S, Blickhan R (2000) The function of resilin in beetle wings. Proc R Soc Lond B 267:1375–1381CrossRef Haas F, Gorb S, Blickhan R (2000) The function of resilin in beetle wings. Proc R Soc Lond B 267:1375–1381CrossRef
41.
Zurück zum Zitat Sato H, Berry CW, Peeri Y, Baghoomian E, Casey BE, Lavella G, VandenBrooks JM, Harrison JF, Maharbiz MM (2009) Remote radio control of insect flight. Front Integr Neurosci 3:1–10CrossRef Sato H, Berry CW, Peeri Y, Baghoomian E, Casey BE, Lavella G, VandenBrooks JM, Harrison JF, Maharbiz MM (2009) Remote radio control of insect flight. Front Integr Neurosci 3:1–10CrossRef
42.
Zurück zum Zitat Sato H, Maharbiz MM (2010) Recent developments in the remote radio control of insect flight. Front Neurosci 4:199CrossRefMATH Sato H, Maharbiz MM (2010) Recent developments in the remote radio control of insect flight. Front Neurosci 4:199CrossRefMATH
43.
Zurück zum Zitat Nguyen QV, Park HC, Goo NS, Byun DY (2010) Characteristics of a beetle’s free flight and a flapping-wing system that mimics beetle flight. J Bionic Eng 7:77–86CrossRef Nguyen QV, Park HC, Goo NS, Byun DY (2010) Characteristics of a beetle’s free flight and a flapping-wing system that mimics beetle flight. J Bionic Eng 7:77–86CrossRef
44.
Zurück zum Zitat Jin T, Goo NS, Park HC (2010) Finite element modeling of a beetle wing. J Bionic Eng 7:S145–S149CrossRef Jin T, Goo NS, Park HC (2010) Finite element modeling of a beetle wing. J Bionic Eng 7:S145–S149CrossRef
45.
Zurück zum Zitat Bhayu PR, Nguyen QV, Park HC, Goo NS, Byun DY (2010) Artificial cambered-wing for a beetle-mimicking flapper. J Bionic Eng 7:S130–S136CrossRef Bhayu PR, Nguyen QV, Park HC, Goo NS, Byun DY (2010) Artificial cambered-wing for a beetle-mimicking flapper. J Bionic Eng 7:S130–S136CrossRef
46.
Zurück zum Zitat Nguyen QV, Truong QT, Park HC, Goo NS, Byun DY (2010) Measurement of force produced by an insect-mimicking flapping-wing system. J Bionic Eng 7:S94–S102CrossRef Nguyen QV, Truong QT, Park HC, Goo NS, Byun DY (2010) Measurement of force produced by an insect-mimicking flapping-wing system. J Bionic Eng 7:S94–S102CrossRef
47.
Zurück zum Zitat Vincent JFV, Wegst UGK (2004) Design and mechanical properties of insect cuticle. Arthropod Struct Dev 33:187–199CrossRef Vincent JFV, Wegst UGK (2004) Design and mechanical properties of insect cuticle. Arthropod Struct Dev 33:187–199CrossRef
48.
Zurück zum Zitat Marks LS (1951) Mechanical engineers’ handbook, 5th edn. McGraw-Hill, New York Marks LS (1951) Mechanical engineers’ handbook, 5th edn. McGraw-Hill, New York
49.
Zurück zum Zitat Sunada S, Zeng L, Kawachi K (1998) The relationship between dragonfly wing structure and torsional deformation. J Theor Biol 193:39–45CrossRef Sunada S, Zeng L, Kawachi K (1998) The relationship between dragonfly wing structure and torsional deformation. J Theor Biol 193:39–45CrossRef
50.
Zurück zum Zitat Beliveau JG, Vigneron FR, Soucy Y, Draisey S (1986) Modal parameter estimation from base excitation. J Sound Vib 107:435–449CrossRef Beliveau JG, Vigneron FR, Soucy Y, Draisey S (1986) Modal parameter estimation from base excitation. J Sound Vib 107:435–449CrossRef
51.
Zurück zum Zitat Wu Z, Wright MT, Ma X (2010) The experimental evaluation of the dynamics of fluid-loaded microplates. J Micromech Microeng 20:075034–075044CrossRef Wu Z, Wright MT, Ma X (2010) The experimental evaluation of the dynamics of fluid-loaded microplates. J Micromech Microeng 20:075034–075044CrossRef
52.
Zurück zum Zitat Chou YF, Wang LC (2001) On the modal testing of microstructures: its theoretical approach and experimental setup. J Vib Acoust 123:104–109CrossRef Chou YF, Wang LC (2001) On the modal testing of microstructures: its theoretical approach and experimental setup. J Vib Acoust 123:104–109CrossRef
53.
Zurück zum Zitat Ozdoganlar OB, Hansche BD, Carne TG (2005) Experimental modal analysis for microelectromechanical systems. Exp Mech 45:498–506CrossRef Ozdoganlar OB, Hansche BD, Carne TG (2005) Experimental modal analysis for microelectromechanical systems. Exp Mech 45:498–506CrossRef
54.
Zurück zum Zitat Lehmann FO, Gorb S, Nasir N, Schutzner P (2011) Elastic deformation and energy loss of flapping fly wings. J Exp Biol 214:2949–2961CrossRef Lehmann FO, Gorb S, Nasir N, Schutzner P (2011) Elastic deformation and energy loss of flapping fly wings. J Exp Biol 214:2949–2961CrossRef
55.
Zurück zum Zitat Combes SA, Daniel TL (2001) Shape, flapping and flexion: wing and fin design for forward flight. J Exp Biol 204:2073–2085 Combes SA, Daniel TL (2001) Shape, flapping and flexion: wing and fin design for forward flight. J Exp Biol 204:2073–2085
56.
Zurück zum Zitat Wegst UGK, Ashby MF (2004) The mechanical efficiency of natural materials. Phil Mag 84:2167–2186CrossRef Wegst UGK, Ashby MF (2004) The mechanical efficiency of natural materials. Phil Mag 84:2167–2186CrossRef
Metadaten
Titel
Static and Dynamic Characteristics of an Artificial Wing Mimicking an Allomyrina Dichotoma Beetle’s Hind Wing for Flapping-Wing Micro Air Vehicles
verfasst von
N. S. Ha
Q. V. Nguyen
N. S. Goo
H. C. Park
Publikationsdatum
01.11.2012
Verlag
Springer US
Erschienen in
Experimental Mechanics / Ausgabe 9/2012
Print ISSN: 0014-4851
Elektronische ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-012-9611-7

Weitere Artikel der Ausgabe 9/2012

Experimental Mechanics 9/2012 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.